Highly Enantioselective Copper(I)-Catalyzed Conjugate Addition of 1,3-Diynes to $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Trifluoromethyl Ketones

Amparo Sanz-Marco, ${ }^{[a]}$ Gonzalo Blay, ${ }^{[a]}$ M. Carmen Muñoz, ${ }^{[b]}$ and José R. Pedro* ${ }^{[a]}$
[a] Departament de Química Orgànica, Facultat de Química, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot (València), Spain
[b] Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, E-46022-València, Spain

SUPPORTING INFORMATION

Table of Contents:

General Experimental Methods S2
Typical procedures and characterization data for compounds $\mathbf{1}$ S2
Typical procedures and characterization data for compounds 2 S8
Typical procedures and characterization data for compounds $\mathbf{3}$ S11
Synthesis of compounds 4-7 S21
References S24
NMR spectra S25
Chiral analysis chromatograms S76
Crystal data and ORTEP plot for compound 3af S101

General Experimental Methods

Reactions were carried out under nitrogen in round bottom flasks oven-dried overnight at $120^{\circ} \mathrm{C}$. Commercial reagents were used as purchased. Stock solutions of 1,3-diynes 2in diethyl ether were prepared as described in the literature, stored in the freezer and a required aliquot concentrated under reduced pressure prior to use. ${ }^{1}$ Toluene was distilled from CaH_{2}. Triethylamine was dried and stored on $4 \AA$ molecular sieves. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel $60,0.040-0.063 \mathrm{~mm}$. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for ${ }^{1} \mathrm{H}$ and at 75 MHz for ${ }^{13} \mathrm{C}$ NMR using residual non deuterated solvent $\left(\mathrm{CHCl}_{3}\right)$ as internal standard ($\delta 7.26$ and 77.0 ppm , respectively), and at 282 MHz for ${ }^{19} \mathrm{~F}$ NMR using CFCl_{3} as internal standard. Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on a Q-TOF spectrometer equipped with an electrospray source with a capillary voltage of 3.3 kV (ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary columns from Daicel. Chiral GLC analyses were carried out in an chromatograph equipped with a flame ionization detector using nitrogen ($1 \mathrm{~mL} / \mathrm{min}$) as carrier gas, $\mathrm{T}_{\text {injector }}=220^{\circ} \mathrm{C}, \mathrm{T}_{\text {detector }}=220^{\circ} \mathrm{C}$.

Typical procedure for the synthesis of α, β-unsaturated trifluoromethyl ketones $1 .{ }^{2}$

Trifluoromethyltrimethylsilane ($0.34 \mathrm{~mL}, 2.31 \mathrm{mmol}$) was added to a solution of the corresponding α, β-unsaturated methyl ester (1.85 mmol) in pentane (1 mL) at room temperature under nitrogen atmosphere. A 1 M solution of tetrabutylammonium fluoride (TBAF) in THF ($5 \mu \mathrm{~L}, 0.046 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to room temperature and stirred for 18 h . Then, the solvent was removed under reduced pressure. The residue was dissolved in THF (1 mL) and treated with 4 M aqueous $\mathrm{HCl}(1 \mathrm{~mL})$. After 10 h , the reaction mixture was diluted with diethyl ether (20 mL), washed with brine (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:EtOAc (99:01) gave the corresponding enones 1.

(E)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (1a) ${ }^{3}$

Yellow oil, 90% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (d, $J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{dd}, J=$ $16.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $35.1 \mathrm{~Hz}, \mathrm{C}), 146.9$ (CH), 139.3 (C), 131.8 (CH), 130.9 (CH), 126.5 $(\mathrm{CH}), 126.3(\mathrm{CH}), 116.7(\mathrm{CH}), 116.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ $\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.3$ (s, 3F). Data consistent with the literature. ${ }^{3}$

(E)-1,1,1-trifluoro-4-(o-tolyl)but-3-en-2-one (1b) ${ }^{4}$

Yellow oil, 85% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ (d, $J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=3.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.25 (m, 1H), 6.96 (dd, $J=15.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.1 \mathrm{~Hz}, \mathrm{C}\right), 146.9$ $(\mathrm{CH}), 139.3(\mathrm{C}), 131.8(\mathrm{CH}), 130.9(\mathrm{CH}), 126.5(\mathrm{CH}), 126.3(\mathrm{CH}), 116.7(\mathrm{CH}), 116.4$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.3(\mathrm{~s}, 3 \mathrm{~F})$. Data consistent with the literature. ${ }^{4}$

(\boldsymbol{E})-1,1,1-trifluoro-4-(m-tolyl)but-3-en-2-one (1c) ${ }^{5}$

Yellow oil, 60% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26$ (m, 2H), 6.95 (dd, $J=$ 16.0, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $180.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.3 \mathrm{~Hz}, \mathrm{C}\right), 150.4(\mathrm{CH}), 139.0(\mathrm{C}), 133.2(\mathrm{CH})$, $129.8(\mathrm{CH}), 129.1(\mathrm{CH}), 126.5(\mathrm{CH}), 116.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.8 \mathrm{~Hz}\right.$, CF_{3}), $116.3(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.1$ ($\mathrm{s}, 3 \mathrm{~F}$). Data consistent with literature. ${ }^{5}$

(E)-1,1,1-trifluoro-4-(m-tolyl)but-3-en-2-one (1d) ${ }^{6}$

Yellow oil, 89% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.97$ (dd, $J=15.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.3 \mathrm{~Hz}, \mathrm{C}\right), 150.2(\mathrm{CH})$, $143.4(\mathrm{C}), 130.7(\mathrm{C}), 130.0(2 \mathrm{CH}), 129.3(2 \mathrm{CH}), 116.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 115.6$ $(\mathrm{CH}), 21.7\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.2(\mathrm{~s}, 3 \mathrm{~F})$. Data consistent with the literature. ${ }^{6}$

(E)-4-(2-bromophenyl)-1,1,1-trifluorobut-3-en-2-one (1e) ${ }^{3}$

Yellow oil, 54% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (dd, $J=7.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.7 \mathrm{~Hz}, \mathrm{C}\right), 148.3(\mathrm{CH}), 136.7$ (C), $133.9(\mathrm{CH}), 133.0(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 119.1(\mathrm{CH}), 116.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $290.9 \mathrm{~Hz}, \mathrm{CF}_{3}$); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0(\mathrm{~s}, 3 \mathrm{~F})$. Data consistent with the literature. ${ }^{3}$

(E)-4-(4-bromophenyl)-1,1,1-trifluorobut-3-en-2-one (1f) ${ }^{3}$

Yellow oil, 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ (d, J $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.00$ (dd, $J=16.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.9 (q, $J=35.3 \mathrm{~Hz}, \mathrm{C}), 148.6$ (CH), 132.6 (2CH), 132.2 (C), $130.4(2 \mathrm{CH}), 127.0(\mathrm{C}), 117.1(\mathrm{CH}), 116.3\left(\mathrm{q}, J=290.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-78.1$ (s, 3F). Data consistent with literature. ${ }^{3}$
(E)-1,1,1-trifluoro-4-(2-methoxyphenyl)but-3-en-2-one (1g) ${ }^{4}$

Yellow oil, 63% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, $J=8.5$, $7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=16.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.5$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.5$ (q, $\left.J=34.6 \mathrm{~Hz}, \mathrm{C}\right), 159.6$ (C), 145.8 (CH), 133.7 (CH), 130.3 $(\mathrm{CH}), 122.4(\mathrm{C}), 120.9(\mathrm{CH}), 117.1(\mathrm{CH}), 116.5\left(\mathrm{q}, J=290.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 111.4(\mathrm{CH})$, $55.6\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0$ (s, 3F). Data consistent with literature. ${ }^{4}$

(E)-1,1,1-trifluoro-4-(4-methoxyphenyl)but-3-en-2-one (1h) ${ }^{3}$

Yellow oil, 73% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63-7.60 (m, 2H), 6.97-6.94 (m, 2H), 6.89 (dd, $J=15.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.3 \mathrm{~Hz}, \mathrm{C}\right), 163.2(\mathrm{C})$, $149.9(\mathrm{CH}), 131.4(2 \mathrm{CH}), 126.2(\mathrm{C}), 116.4$ ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), $114.8(2 \mathrm{CH}), 114.1$ $(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0(\mathrm{~s}, 3 \mathrm{~F})$. Data consistent with literature. ${ }^{3}$

(E)-1,1,1-trifluoro-4-(naphthalen-2-yl)but-3-en-2-one (1i) ${ }^{3}$

Yellow solid, mp $63-65{ }^{\circ} \mathrm{C}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.85$ (m, 3H), 7.73 (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53$ (m, 2H), 7.12 (dd, $J=15.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.2 \mathrm{~Hz}, \mathrm{C}\right), 150.2(\mathrm{CH}), 135.1(\mathrm{C}), 133.1(\mathrm{C}), 132.7(\mathrm{CH}), 130.8(\mathrm{C})$,
$129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.1(\mathrm{CH}), 123.3(\mathrm{CH}), 116.6(\mathrm{CH})$, 116.4 (q, $J_{\mathrm{C}-\mathrm{F}}=290.8 \mathrm{~Hz}, \mathrm{CF}_{3}$); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0$ (s, 3F). Data consistent with literature. ${ }^{3}$

Synthesis of (E)-1,1,1-trifluoro-6-phenylhex-3-en-2-one (1j) and aliphatic enones 1 k and 11.

Methyl (E)-5-phenylpent-2-enoate ${ }^{7}$

To a stirred solution of 3-phenylpropanal ($0.33 \mathrm{~mL}, 2.49$ mmol) in dichloromethane $(10 \mathrm{~mL})$, Wittig ylide $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}(1.0 \mathrm{~g}, 2.99 \mathrm{mmol})$ was added at room temperature under nitrogen atmosphere. After 24 h , the solvent was evaporated under reduced pressure and the resulting crude was purified by column chromatography to give methyl (E)-5-phenylpent-2-enoate as a liquid (425 mg , 90%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dt}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.91(\mathrm{dt}, J=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H})$. Data consistent with literature. ${ }^{7}$

(E)-5-phenylpent-2-en-1-ol ${ }^{8}$

DIBAL-H ($4.2 \mathrm{~mL}, 4.20 \mathrm{mmol}, 1 \mathrm{M}$ in toluene) was added to a solution of (E)-5-phenylpent-2-enoate ($400 \mathrm{mg}, 2.10 \mathrm{mmol}$) in tetrahydrofuran (5 mL) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 4 h , saturated aqueous Roche's salt solution (8 mL) and ethyl acetate (6 mL) were added and stirred for 1 h . The organic layer was separated and dried over anhydrous MgSO_{4} and evaporated under reduced pressure. The residue was purified by column chromatography to give (E)-5-phenylpent-2-en-1-ol ($320 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.78-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.46$ (brs, 1H). Data consistent with literature. ${ }^{8}$

(E)-5-phenylpent-2-enal ${ }^{9}$

To a stirred solution of (E)-5-phenylpent-2-en-1-ol ($300 \mathrm{mg}, 1.86$ $\mathrm{mmol})$ in dichloromethane $(16 \mathrm{~mL}), \mathrm{MnO}_{2}(2.97 \mathrm{~g}, 34.2 \mathrm{mmol})$ was added at room temperature under nitrogen atmosphere. After 72 h , dichloromethane was evaporated and the resulting crude was purified by column chromatography to give methyl (E)-5-phenylpent-2-enal as a liquid ($278 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34-7.29 (m, $2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{dt}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{ddt}, J=15.7,7.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H})$. Data consistent with literature. ${ }^{9}$

(E)-1,1,1-trifluoro-6-phenylhex-3-en-2-ol ${ }^{10}$

A 1M solution of TBAF in THF ($0.16 \mathrm{~mL}, 0.156 \mathrm{mmol}$) was added to a solution of (E)-5-phenylpent-2-enal ($250 \mathrm{mg}, 1.56$ $\mathrm{mmol})$ and $\mathrm{TMSCF}_{3}(0.3 \mathrm{~mL}, 2.06 \mathrm{mmol})$ in pentane $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere and the resulting mixture was allowed to reach room temperature. After 24 h , pentane was evaporated under reduced pressure. THF (1 mL) and 4 M aqueous $\mathrm{HCl}(1 \mathrm{~mL})$ were added, and the mixture was stirred 24 h . Then, the organic layer was separated, dried over anhydrous MgSO_{4} and evaporated. Purification by column chromatography gave (E)-1,1,1-trifluoro-6-phenylhex-3-en-2-ol ($340 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 6.07-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.34(\mathrm{~m}, 1 \mathrm{H})$, 2.78-2.73 (m, 2H), 2.49-2.42 (m, 2H), $2.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$. Data consistent with literature. ${ }^{10}$

(E)-1,1,1-trifluoro-6-phenylhex-3-en-2-one (1j)

Dess-Martin periodinane ($720 \mathrm{mg}, 1.70 \mathrm{mmol}$) was added in one portion to a solution of (E)-1,1,1-trifluoro-6-phenylhex3 -en-2-ol($300 \mathrm{mg}, 1.30 \mathrm{mmol}$) in dichloromethane (2.6 mL) at room temperature under nitrogen atmosphere. After 48 h , the resulting suspension was poured into 3 mL of a 5:1 mixture of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and saturated aqueous NaHCO_{3} solution. The organic layer washed with water, dried over MgSO_{4} and evaporated. The residue was purified by column chromatography to give $\mathbf{1 j}(200 \mathrm{mg}, 67 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.11$ (m, $6 \mathrm{H}), 6.36(\mathrm{dd}, J=15.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7$ ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.3 \mathrm{~Hz}, \mathrm{C}$), $155.2(\mathrm{CH}), 139.9(\mathrm{C}), 128.6(2 \mathrm{CH})$, $128.3(2 \mathrm{CH}), 126.5(\mathrm{CH}), 121.9(\mathrm{CH}), 116.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 34.8\left(\mathrm{CH}_{2}\right), 33.8$ $\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0(\mathrm{~s}, 3 \mathrm{~F}) . \mathrm{HRMS}(\mathrm{ESI}) m / z: 228.0754(\mathrm{M}+$ $\mathrm{H})^{+}, \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}$ requires 228.0762 .

Methyl (E)-hept-2-enoate ${ }^{11}$

Prepared from valeraldehyde following the above procedure. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{dt}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74(\mathrm{dt}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{qd}, J=7.2$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. Data consistent with literature. ${ }^{11}$

(\boldsymbol{E})-Hept-2-en-1-ol

Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.72-5.55(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}, J=$ 13.1, $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{br} \mathrm{s}, \mathrm{OH}), 1.39-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

(E)-Hept-2-enal ${ }^{12}$

Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.11 (ddt, $J=15.6,7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$. Data consistent with literature. ${ }^{12}$
(E)-1,1,1-Trifluorooct-3-en-2-ol ${ }^{13}$
 $\left.\mathrm{CDCl}_{3}\right) \delta 6.03-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.37(\mathrm{~m}$, $1 \mathrm{H}), 2.21(\mathrm{br} \mathrm{s}, \mathrm{OH}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 4 \mathrm{H})$, 0.93-0.86 (m, 3H); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.0(\mathrm{~s}, 3 \mathrm{~F})$. Data consistent with literature. ${ }^{13}$

(E)-1,1,1-Trifluorooct-3-en-2-one (1k) ${ }^{13}$

 CDCl_{3}) $\delta 7.33$ (dt, $\left.J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.40(\mathrm{ddd}, J=15.8$, $2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddd}, J=14.8,7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.46$ (m, 2H), 1.41-1.33 (m, 2H), $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $179.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.1 \mathrm{~Hz}, \mathrm{C}\right), 157.0(\mathrm{CH}), 121.3(\mathrm{CH}), 116.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $32.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 15.2\left(\mathrm{CH}_{3}\right)$. Data consistent with literature. ${ }^{13}$

Methyl (E)-5-methylhex-2-enoate ${ }^{14}$

Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{dt}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=15.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. Data consistent with literature. ${ }^{14}$

(\boldsymbol{E})-5-Methylhex-2-en-1-ol ${ }^{15}$

COH
Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.68-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.91$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{br} \mathrm{s}, \mathrm{OH}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. Data consistent with literature. ${ }^{15}$

(E)-5-Methylhex-2-enal ${ }^{16}$

Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=$ $15.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. Data consistent with literature. ${ }^{16}$

(E)-1,1,1-Trifluoro-6-methylhept-3-en-2-ol

Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.00-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-$ $4.36(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{dd}, J=$ 6.6, $2.2 \mathrm{~Hz}, 6 \mathrm{H}$) ; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.0(\mathrm{~s}, 3 \mathrm{~F})$.
(E)-1,1,1-Trifluoro-6-methylhept-3-en-2-one (11)

Prepared following the above procedure. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=15.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-$ $2.18(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.1 \mathrm{~Hz}, \mathrm{C}\right), 155.7(\mathrm{CH}), 122.4(\mathrm{CH}), 116.2$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 42.3\left(\mathrm{CH}_{2}\right), 27.8(\mathrm{CH}), 22.2\left(2 \mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $(282 \mathrm{MHz}$, CDCl_{3}) $\delta-78.0(\mathrm{~s}, 3 \mathrm{~F}) ;$ HRMS (ESI) $m / z: 181.0844(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}$ requires 181.0840.

Synthesis and characterization of 1,3-diynes 2

1,3-Diynes 2 were synthesized according to the procedure described in the literature. ${ }^{1}$

4-Bromo-2-methylbut-3-yn-2-ol

$\mathrm{Br}_{2}(3.9 \mathrm{~mL}, 0.077 \mathrm{~mol})$ was added dropwise via syringe to a stirred solution of $\mathrm{KOH}(30.1 \mathrm{~g}, 0.536 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min , 2-methyl-3-butyn-2-ol ($10 \mathrm{~mL}, 0.103 \mathrm{~mol}$) was added dropwise via an addition funnel. After 1 h , the mixture was warmed to rt and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 50 mL). The organic phase was dried with MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel to afford 4-bromo-2-methyl-3-but-3-yn-2-ol in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.51$ (br s, 1 H), $1.49(\mathrm{~s}, 6 \mathrm{H})$. Data consistent with literature. ${ }^{17}$

Representative procedure: 2-Methyl-6-phenylhexa-3,5-diyn-2-ol

$\mathrm{CuCl}(23.3 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added to a solution of $30 \% \mathrm{BuNH}_{2} / \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The blue color was quenched by the addition of a spatula of $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$. Phenylacetylene $(\mathbf{2 a}, 1.29 \mathrm{~mL}, 11.76 \mathrm{mmol})$ was added and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, becoming a yellow cloudy solution. A solution of 4-bromo-2-methyl-3-but-3-yn-2-ol $(2.0 \mathrm{~g}, 12.35 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. Then, a spatula of $\mathrm{NH}_{2}(\mathrm{OH}) \cdot \mathrm{HCl}$ was added to the reaction mixture. After 5 min , the mixture was warmed to rt and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel to afford 2-methyl-6-phenylhexa-3,5-diyn-2-ol ($1.93 \mathrm{~g}, 89 \%$).

2-Methyl-6-phenylhexa-3,5-diyn-2-ol

89\% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.47$ (m, 2 H), 7.37-7.32 (m, 3H), 2.12 (br s, 1H), 1.59 ($\mathrm{s}, 6 \mathrm{H}$). Data consistent with the literature. ${ }^{18}$

6-(3-Fluorophenyl)-2-methylhexa-3,5-diyn-2-ol

6-(4-Fluorophenyl)-2-methylhexa-3,5-diyn-2-ol

80% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.49-7.44 (m, 2 H), 7.04-6.98 (m, 2H), 2.06 (br s, 1H), 1.58 ($\mathrm{s}, 6 \mathrm{H}$). Data consistent with the literature. ${ }^{19}$

6-(2-Methoxyphenyl)-2-methylhexa-3, 5-diyn-2-ol

 83% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (dd, $J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, J=8.3,7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.85$ $(\mathrm{m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H})$. Data consistent with the literature. ${ }^{20}$

6-(4-Methoxyphenyl)-2-methylhexa-3, 5-diyn-2-ol

literature. ${ }^{19}$
78% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.38$ (m, 2H), 6.84-6.79 (m, 2H), 3.79 (s, 3H), 2.60 (br s, $1 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H})$. Data consistent with the

2-Methyl-6-(thiophen-3-yl)hexa-3,5-diyn-2-ol

80% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{dd}, J=3.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (dd, $J=5.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (br s, 1H), 1.57 (s, 6H). Data consistent with the literature. ${ }^{19}$

2-Methyl-8-phenylocta-3,5-diyn-2-ol

84% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29$ (m, $2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H})$. Data consistent with the literature. ${ }^{17}$

11-Chloro-2-methylundeca-3,5-diyn-2-ol

85% yield; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.56(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.75-$ $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H})$.

2-Methyl-6-(triisopropylsilyl)hexa-3,5-diyn-2-ol

61% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.95$ (br s, 1H), 1.54
$(\mathrm{s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H})$. Data consistent with the literature. ${ }^{17}$

Synthesis of 1,3-diynes 2

A solution of the required diynol (7.71 mmol) in toluene (10 mL) was added to a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.07 \mathrm{~g}, 7.71 \mathrm{mmol})$ and 18 -crown- $6(0.61 \mathrm{~g}, 2.31 \mathrm{mmol})$ in toluene $(13 \mathrm{~mL})$ under nitrogen atmosphere at room temperature. The reaction mixture was heated at reflux until the reaction was determined to be complete by TLC ($1-2 \mathrm{~h}$). Then, the reaction was cooled to room temperature, extracted with EtOAc ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated. The crude oil was purified by column chromatography on silica gel to give the terminal 1,3 -diynes $\mathbf{2}$. The 1,3 -diynes were passed through a short plug of alumina and then stored in $\mathrm{Et}_{2} \mathrm{O}$ solution $(200 \mathrm{~mL})$ in the freezer. Prior to use they were concentrated via rotary evaporation.

Buta-1,3-diyn-1-ylbenzene (2a)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H})$. Data consistent with the literature. ${ }^{17}$

1-(Buta-1,3-diyn-1-yl)-3-fluorobenzene (2b)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}$, $1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H})$.

1-(Buta-1,3-diyn-1-yl)-4-fluorobenzene (2c)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.53-7.46 (m, 2H), 7.06-6.98 (m, 2H), 2.47 (s, 1H).

1-(Buta-1,3-diyn-1-yl)-2-methoxybenzene (2d)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (ddd, $J=8.4,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (td, $J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), 2.52 (s, 1H). Data consistent with the literature. ${ }^{20}$

1-(Buta-1,3-diyn-1-yl)-4-methoxybenzene (2e)

with the literature. ${ }^{20}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.85-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H})$. Data consistent

3-(Buta-1,3-diyn-1-yl)thiophene (2f)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{dd}, \mathrm{J}=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.46 (s, 1H).

Hexa-3,5-diyn-1-ylbenzene (2g)

9-Chloronona-1,3-diyne (2h)

$\mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{C}\right)_{4} \equiv \equiv \mathrm{H}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.54(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ (td, $J=7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 2 \mathrm{H})$.

Buta-1,3-diyn-1-yltriisopropylsilane (2i)

TIPS $=\overline{=} \mathrm{H}^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 21 \mathrm{H})$.

Typical procedures and characterization data for compounds 3

General procedure for the enantioselective conjugate diynylation reaction

$\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}(1.1 \mathrm{mg}, 0.0034 \mathrm{mmol})$ and $(R)-\mathrm{L} 1(4.1 \mathrm{mg}, 0.0034 \mathrm{mmol})$ were added to a dried round bottom flask which was purged with nitrogen. Toluene (0.2 mL) was added via syringe and the mixture was stirred for 1.5 h at room temperature under nitrogen atmosphere. Then, a solution of α, β-unsaturated trifluoromethyl ketone $\mathbf{1}(0.144$ $\mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ was added via syringe, followed of triethylamine ($2 \mu \mathrm{~L}$, 0.0144 mmol). The solution was stirred for 10 min at room temperature. Then a solution of 1,3-diyne $2(0.188 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ was added via syringe and the solution
was stirred at room temperature until the reaction was complete (TLC). The reaction mixture was quenched with 20% aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x}$ 15 mL), washed with brine (15 mL), dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:ethyl acetate mixtures afforded compound 3 .

(\boldsymbol{R})-1,1,1-trifluoro-4,8-diphenylocta-5,7-diyn-2-one (3aa)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (93\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{-} \operatorname{PrOH} 95: 05,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=4.96 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=4.61 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-29.3\left(c 1.05, \mathrm{CHCl}_{3}\right)(93 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 8 \mathrm{H}), 4.41$ (dd, $J=7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (ddd, $J=18.7,7.9,0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19$ (ddd, $J=18.7,6.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1$ (q, $J_{\mathrm{C}-\mathrm{F}}$ $=36.2 \mathrm{~Hz}, \mathrm{C}), 138.3(\mathrm{C}), 132.6(2 \mathrm{CH}), 129.2(\mathrm{CH}), 129.1(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 127.9$ $(\mathrm{CH}), 127.4(2 \mathrm{CH}), 121.5(\mathrm{C}), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 82.2(\mathrm{C}), 77.3(\mathrm{C}), 73.5$ (C), $68.4(\mathrm{C}), 44.4\left(\mathrm{CH}_{2}\right), 32.6(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7(\mathrm{~s}, 3 \mathrm{~F})$; HRMS (ESI) $m / z: 327.0982(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}$ requires 327.0997.

(S)-1,1,1-trifluoro-8-phenyl-4-(o-tolyl)octa-5,7-diyn-2-one (3ba)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (94\%) was determined by chiral HPLC (Chiralcel OD-H), hexane- ${ }^{i} \operatorname{PrOH} 95: 05,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=16.0 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=11.8 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-35.2\left(c 1.02, \mathrm{CHCl}_{3}\right)(94 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}) $\delta 7.49-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.59(\mathrm{dd}, J=8.7$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (ddd, $J=18.7,8.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{ddd}, J=18.7,5.4,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.2 \mathrm{~Hz}, \mathrm{C}\right), 136.8(\mathrm{C})$, $135.5(\mathrm{C}), 133.0(2 \mathrm{CH}), 131.5(\mathrm{CH}), 129.6(\mathrm{CH}), 128.8(2 \mathrm{CH}), 128.3(\mathrm{CH}), 127.5(\mathrm{CH})$, $127.3(\mathrm{CH}), 121.9(\mathrm{C}), 115.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 82.8(\mathrm{C}), 77.9(\mathrm{C}), 74.0(\mathrm{C})$, 68.3 (C), $43.4\left(\mathrm{CH}_{2}\right), 29.4(\mathrm{CH}), 19.7\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.6(\mathrm{~s}$, 3 F); HRMS (ESI) $m / z: 341.1160(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}$ requires 341.1153.

(S)-1,1,1-trifluoro-8-phenyl-4-(m-tolyl)octa-5,7-diyn-2-one (3ca)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (93\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{-} \operatorname{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=5.1 \mathrm{~min}$, minor enantiomer t_{r} $=4.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-18.9\left(c 1.00, \mathrm{CHCl}_{3}\right)(93 \% e e) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 4 \mathrm{H}), 4.37(\mathrm{dd}, J=8.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=18.7,8.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (ddd, $J=18.7,6.1,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.4 \mathrm{~Hz}, \mathrm{C}\right), 138.9(\mathrm{C})$, $138.2(\mathrm{C}), 132.6(2 \mathrm{CH}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(2 \mathrm{CH}), 128.0(\mathrm{CH})$, $124.4(\mathrm{CH}), 121.5(\mathrm{C}), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 82.3(\mathrm{C}), 77.2(\mathrm{C}), 73.6(\mathrm{C})$, 68.3 (C), $44.4\left(\mathrm{CH}_{2}\right), 32.5(\mathrm{CH}), 21.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7(\mathrm{~s}$, 3 F); HRMS (ESI) $m / z: 341.1164(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}$ requires 341.1153.

(R)-1,1,1-trifluoro-8-phenyl-4-(p-tolyl)octa-5,7-diyn-2-one (3da)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (92\%) was determined by chiral HPLC (Chiralpak AS-H), hexane-i $\operatorname{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=5.4 \mathrm{~min}$, minor enantiomer t_{r} $=4.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-25.8\left(c 0.84, \mathrm{CHCl}_{3}\right)(92 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.37$ (dd, $J=7.7$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (ddd, $J=18.7,7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (ddd, $J=18.7,6.4,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.2 \mathrm{~Hz}, \mathrm{C}\right), 137.7(\mathrm{C})$, 135.3 (C), $132.6(2 \mathrm{CH}), 129.7(2 \mathrm{CH}), 129.2(\mathrm{CH}), 128.4(2 \mathrm{CH}), 127.2(2 \mathrm{CH}), 121.5$ (C), $115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 82.5(\mathrm{C}), 77.2(\mathrm{C}), 73.6(\mathrm{C}), 68.3(\mathrm{C}), 44.4\left(\mathrm{CH}_{2}\right)$, $32.2(\mathrm{CH}), 21.0\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7$ (s, 3F); HRMS (ESI) m / z : $341.1150(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}$ requires 341.1153.
(S)-4-(2-bromophenyl)-1,1,1-trifluoro-8-phenylocta-5,7-diyn-2-one (3ea)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (94\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{-} \operatorname{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=5.2 \mathrm{~min}$, minor enantiomer t_{r} $=4.8 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-95.3\left(c 0.55, \mathrm{CHCl}_{3}\right)(94 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=7.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=7.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.4 \mathrm{~Hz}, \mathrm{C}\right), 137.7(\mathrm{C}), 133.7(\mathrm{CH}), 133.0(2 \mathrm{CH})$,
130.0(CH), 129.9 (CH), 129.7 (CH), 128.8 (2CH), $128.6(\mathrm{CH}), 123.3$ (C), $121.8(\mathrm{C})$, $115.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 81.4(\mathrm{C}), 77.8(\mathrm{C}), 73.9(\mathrm{C}), 69.5(\mathrm{C}), 43.2\left(\mathrm{CH}_{2}\right), 33.1$ $(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.5$ (s, 3F); HRMS (ESI) m / z : 405.0096/407.0075 $(\mathrm{M}+\mathrm{H})^{+} 98.8 / 100.0, \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrF}_{3} \mathrm{O}$ requires 405.0102/407.0081.

(R)-4-(4-bromophenyl)-1,1,1-trifluoro-8-phenylocta-5,7-diyn-2-one (3fa)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (92%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{i} \mathrm{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=7.5 \mathrm{~min}$, minor enantiomer t_{r} $=6.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-19.9\left(c 0.78, \mathrm{CHCl}_{3}\right)(92 \% e e) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.51-7.47 (m, 4H), 7.37-7.27 (m, 5H), $4.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{ddd}, J=$ $18.8,7.5,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (ddd, $J=18.8,6.5,0.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.6 \mathrm{~Hz}, \mathrm{C}\right), 137.3(\mathrm{C}), 132.6(2 \mathrm{CH}), 132.2(2 \mathrm{CH}), 129.3$ $(\mathrm{CH}), 129.1(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 121.9(\mathrm{C}), 121.3(\mathrm{C}), 115.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 81.4 (C), 77.6 (C), 73.3 (C), 68.8 (C), $44.2\left(\mathrm{CH}_{2}\right), 32.1(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz , CDCl_{3}) $\delta-79.7(\mathrm{~s}, 3 \mathrm{~F}) ;$ HRMS (ESI) $m / z: 405.0099 / 407.0078(\mathrm{M}+\mathrm{H})^{+} 98.8 / 100.0$, $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrF}_{3} \mathrm{O}$ requires 405.0102/407.0081.

(S)-1,1,1-trifluoro-4-(2-methoxyphenyl)-8-phenylocta-5,7-diyn-2-one (3ga)

Purified by flash chromatography eluting with hexane-ethyl acetate (95:05). Enantiomeric excess (94\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{i} \operatorname{PrOH} 95: 05,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=4.8 \mathrm{~min}$, minor enantiomer t_{r} $=4.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-23.5\left(c 1.01, \mathrm{CHCl}_{3}\right)(94 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{dd}, J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{td}, \mathrm{J}=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=7.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.21$ (dd, $J=6.6$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.6 \mathrm{~Hz}, \mathrm{C}\right), 156.9(\mathrm{C})$, $132.6(2 \mathrm{CH}), 129.1(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(2 \mathrm{CH}), 126.1(\mathrm{C}), 121.7(\mathrm{C})$, $121.0(\mathrm{CH}), 115.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=292.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 110.6(\mathrm{CH}), 82.4(\mathrm{C}), 76.6(\mathrm{C}), 73.8(\mathrm{C})$, $68.1(\mathrm{C}), 55.4\left(\mathrm{CH}_{3}\right), 42.6\left(\mathrm{CH}_{2}\right), 27.4(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7(\mathrm{~s}$, $3 \mathrm{~F})$; HRMS (ESI) $m / z: 357.1107(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}$ requires 357.1102.

(R)-1,1,1-trifluoro-4-(4-methoxyphenyl)-8-phenylocta-5,7-diyn-2-one (3ha)

Purified by flash chromatography eluting with hexane-ethyl acetate (95:05). Enantiomeric excess (92\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{-}$PrOH 99:01, 1 $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=9.6 \mathrm{~min}$, minor enantiomer t_{r} $=8.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-31.6\left(c 0.70, \mathrm{CHCl}_{3}\right)(92 \% e e) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48$ (dd, $\left.J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H})$, 6.92-6.87 (m, 2H), 4.38-4.31 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.33$ (ddd, $J=18.6,7.6,0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.4 \mathrm{~Hz}, \mathrm{C}\right)$, 159.2 (C), 132.5 (2CH), 130.3 (C), 129.2 (CH), $128.5(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 121.5(\mathrm{C})$, $115.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=297.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 114.4(2 \mathrm{CH}), 82.5(\mathrm{C}), 77.2(\mathrm{C}), 73.5(\mathrm{C}), 68.2(\mathrm{C})$, $55.3\left(\mathrm{CH}_{3}\right), 44.5\left(\mathrm{CH}_{2}\right), 31.8(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F}) ;$ HRMS (ESI) $m / z: 357.1112(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}$ requires 357.1102.

(\boldsymbol{R})-1,1,1-trifluoro-4-(naphthalene-2-yl)-8-phenylocta-5,7-diyn-2-one (3ia)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (92\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- - PrOH 99:01, 1 $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=8.3 \mathrm{~min}$, minor enantiomer t_{r} $=7.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-38.8\left(c 1.00, \mathrm{CHCl}_{3}\right)(92 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.29$ (m, 3H), 4.59 (dd, $J=7.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=18.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=$ $18.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.4 \mathrm{~Hz}, \mathrm{C}\right), 135.5$ (C), 133.4 (C), 132.8 (C), 132.6 (2CH), 129.3 (CH), 129.1 (CH), 128.4 (2CH), 127.9 $(\mathrm{CH}), 127.7(\mathrm{CH}), 126.6(\mathrm{CH}), 126.4(\mathrm{CH}), 126.3(\mathrm{CH}), 125.0(\mathrm{CH}), 121.5(\mathrm{C}), 115.3$ (q, $J_{\mathrm{C}-\mathrm{F}}=291.9 \mathrm{~Hz}, \mathrm{CF}_{3}$), $82.1(\mathrm{C}), 77.4(\mathrm{C}), 73.5(\mathrm{C}), 68.7(\mathrm{C}), 44.3\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{CH})$; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7$ ($\mathrm{s}, 3 \mathrm{~F}$); HRMS (ESI) $m / z: 377.1158(\mathrm{M}+\mathrm{H})^{+}$, $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}$ requires 377.1153 .

(S)-1,1,1-trifluoro-4-phenethyl-8-phenylocta-5,7-diyn-2-one (3ja)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (84%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{-} \operatorname{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=5.1 \mathrm{~min}$, minor enantiomer t_{r} $=4.8 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-44.5\left(c \quad 0.44, \mathrm{CHCl}_{3}\right)(84 \% e e) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.73$ (m, 3H), 1.91$1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.1 \mathrm{~Hz}, \mathrm{C}\right), 140.6(\mathrm{C})$,
$132.6(2 \mathrm{CH}), 129.2(\mathrm{CH}), 128.6(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 126.3(\mathrm{CH}), 121.6$ (C), $115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=292.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 83.5(\mathrm{C}), 77.2(\mathrm{C}), 73.6(\mathrm{C}), 67.7(\mathrm{C}), 41.4\left(\mathrm{CH}_{2}\right)$, $35.8\left(\mathrm{CH}_{2}\right)$, $33.3(\mathrm{CH}), 26.5\left(\mathrm{CH}_{2}\right)$; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-79.8 ($\mathrm{s}, 3 \mathrm{~F}$); HRMS (ESI) $m / z: 355.1329(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ requires 355.1310.

(S)-4-Butyl-1,1,1-trifluoro-8-phenylocta-5,7-diyn-2-one (3ka)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (87\%) was determined by chiral HPLC (Chiralcel OD-H), hexane- ${ }^{i}$ PrOH 99:01, 1 $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=14.0 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=9.5 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-3.8\left(c 0.63, \mathrm{CHCl}_{3}\right)(87 \% e e) ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.28 (m, 3H), 3.15-3.00 (m, 2H), $2.88(\mathrm{dd}, J=18.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.49(\mathrm{~m}$, 2 H), 1.43-1.34 (m, 4H), $0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.9$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=35.8 \mathrm{~Hz}, \mathrm{C}\right), 132.5(2 \mathrm{CH}), 129.1(\mathrm{CH}), 128.4(2 \mathrm{CH}), 121.7(\mathrm{C}), 115.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $\left.=291.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 84.2(\mathrm{C}), 76.3(\mathrm{C}), 73.7(\mathrm{C}), 67.0(\mathrm{C}), 41.5\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 29.2$ (CH), $26.9\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right) 13.9\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F})$; HRMS (ESI) $m / z: 307.1312(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ requires 307.1310.

(S)-1,1,1-Trifluoro-4-isobutyl-8-phenylocta-5,7-diyn-2-one (3la)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (88\%) was determined by chiral HPLC (Chiralcel OD-H), hexane- ${ }^{i} \operatorname{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=10.9 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=9.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-5.6\left(c 0.51, \mathrm{CHCl}_{3}\right)(88 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.28 (m, 3H), 3.15-3.00 (m, 2H), $2.88(\mathrm{dd}, J=18.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.9 \mathrm{~Hz}, \mathrm{C}\right), 132.5(2 \mathrm{CH}), 129.1(\mathrm{CH}), 128.4(2 \mathrm{CH}), 121.7(\mathrm{C}), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $\left.=291.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 84.0(\mathrm{C}), 76.3(\mathrm{C}), 73.7(\mathrm{C}), 67.0(\mathrm{C}), 43.3\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 26.1$ $(\mathrm{CH}), 25.2(\mathrm{CH}), 23.2\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F}) ;$ HRMS (ESI) m/z: $307.1317(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ requires 307.1310.

(R)-1,1,1-trifluoro-8-(3-fluorophenyl)-4-phenylocta-5,7-diyn-2-one (3ab)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (90%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{i} \mathrm{PrOH} 99: 01,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=5.9 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=5.3$ min.
$[\alpha]_{\mathrm{D}}{ }^{20}-15.7\left(c 0.60, \mathrm{CHCl}_{3}\right)(90 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.26(\mathrm{~m}$, 7 H), 7.19-7.15 (m, 1H), 7.10-7.06 (m, 1H), 4.41 (dd, $J=7.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (ddd, J $=18.7,8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=18.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 188.0$ (q, $J=36.3 \mathrm{~Hz}, \mathrm{C}), 162.2(\mathrm{~d}, J=247.3 \mathrm{~Hz}, \mathrm{C}), 138.1(\mathrm{C}), 130.1(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $\mathrm{CH}), 129.1(2 \mathrm{CH}), 128.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{CH}), 128.0(\mathrm{CH}), 127.4(2 \mathrm{CH}), 123.4(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, \mathrm{C}), 119.3(\mathrm{~d}, J=22.9 \mathrm{~Hz}, \mathrm{CH}), 116.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 115.3(\mathrm{q}, J=$ $\left.291.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 82.9(\mathrm{C}), 77.5(\mathrm{C}), 75.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}, \mathrm{C}\right), 68.1(\mathrm{C}), 44.4\left(\mathrm{CH}_{2}\right), 32.6$ (CH); ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7$ ($\mathrm{s}, 3 \mathrm{~F}$), -112.8 (s, 1F); HRMS (ESI) $\mathrm{m} / \mathrm{z}:$ $345.0910\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{O}\right.$ requires 345.0903.

(R)-1,1,1-trifluoro-8-(4-fluorophenyl)-4-phenylocta-5,7-diyn-2-one (3ac)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (92%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{i} \mathrm{PrOH} 99: 01,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=8.9 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=6.5$ min.
$[\alpha]_{\mathrm{D}}{ }^{20}-14.5\left(c \quad 0.67, \mathrm{CHCl}_{3}\right)(92 \% e e) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=$ 18.7, 8.0 Hz, 1H), 3.18 (dd, $J=18.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $188.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.4 \mathrm{~Hz}, \mathrm{C}\right), 163.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251.6 \mathrm{~Hz}, \mathrm{C}\right), 138.2(\mathrm{C}), 134.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $8.5 \mathrm{~Hz}, 2 \mathrm{CH}), 129.1(2 \mathrm{CH}), 128.0(\mathrm{CH}), 127.4(2 \mathrm{CH}), 117.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}, \mathrm{C}), 115.9$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=22.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 82.2(\mathrm{C}), 76.2(\mathrm{C}), 73.3(\mathrm{C})$, 68.3 (C), $44.4\left(\mathrm{CH}_{2}\right), 32.6(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F}),-109.0$ (s, 1F); HRMS (ESI) $m / z: 345.0913(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{O}$ requires 345.0903.

(R)-1,1,1-trifluoro-8-(2-methoxyphenyl)-4-phenylocta-5,7-diyn-2-one (3ad)

Purified by flash chromatography eluting with hexaneethyl acetate (95:05). Enantiomeric excess (92\%) was determined by chiral HPLC (Chiralpak AS-H), hexane${ }^{i}$ PrOH 95:05, $1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=6.6 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=6.3 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-17.0\left(c 0.91, \mathrm{CHCl}_{3}\right)(92 \%$ ee $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.29(\mathrm{~m}$, $7 \mathrm{H}), 6.90(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.3 \mathrm{~Hz}, \mathrm{C}\right), 161.5(\mathrm{C}), 138.4(\mathrm{C}), 134.5(\mathrm{CH}), 130.7(\mathrm{CH}), 129.0$ $(2 \mathrm{CH}), 127.9(\mathrm{CH}), 127.4(2 \mathrm{CH}), 120.5(\mathrm{CH}), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 110.7$ $(\mathrm{CH}), 110.6(\mathrm{CH}), 82.7(\mathrm{C}), 77.3(\mathrm{C}), 73.8(\mathrm{C}), 68.7(\mathrm{C}), 55.8\left(\mathrm{CH}_{3}\right), 44.4\left(\mathrm{CH}_{2}\right), 32.6$ $(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7$ ($\mathrm{s}, 3 \mathrm{~F}$); HRMS (ESI) m/z: $357.1109(\mathrm{M}+$ $\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}$ requires 357.1102.

Purified by flash chromatography eluting with hexane-ethyl acetate (95:05). Enantiomeric excess (91%) was determined by chiral HPLC (Chiralcel OD-H), hexane- ${ }^{i} \mathrm{PrOH} 80.20,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=11.7 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=$ 8.0 min .
$[\alpha]_{\mathrm{D}}{ }^{20}-32.7\left(c 0.75, \mathrm{CHCl}_{3}\right)(91 \% e e) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.30(\mathrm{~m}$, 7 H), 6.86-6.81 (m, 2H), 4.40 (dd, $J=7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3 H), 3.36 (ddd, $J=18.6$, $7.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (ddd, $J=18.6,6.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 188.1 (q, $\left.J_{\text {C-F }}=36.7 \mathrm{~Hz}, \mathrm{C}\right), 160.4$ (C), 138.5 (C), 134.2 (2CH), 129.0 (2CH), 127.9 $(\mathrm{CH}), 127.4(2 \mathrm{CH}), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 114.1(2 \mathrm{CH}), 113.4(\mathrm{C}), 81.6(\mathrm{C})$, 77.5 (C), 72.4 (C), 68.7 (C), $55.3\left(\mathrm{CH}_{3}\right), 44.5\left(\mathrm{CH}_{2}\right), 32.6(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz , CDCl_{3}) $\delta-79.8$ (s, 3F); HRMS (ESI) $m / z: 357.1115(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}$ requires 357.1102.

(\boldsymbol{R})-1,1,1-trifluoro-4-phenyl-8-(thiophen-3-yl)octa-5,7-diyn-2-one (3af)

Purified by flash chromatography eluting with hexaneethyl acetate (99:01). Enantiomeric excess (94\%) was determined by chiral HPLC (Chiralpak AS-H), hexane${ }^{i} \operatorname{PrOH} 99: 01,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=8.4 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=7.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-26.6\left(c 0.86, \mathrm{CHCl}_{3}\right)(94 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{dd}, J=3.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=5.0,1.2 \mathrm{~Hz}$, 1 H), 4.40 (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (ddd, $J=18.6,7.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (ddd, $J=$ 18.7, 6.1, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.0(\mathrm{q}, J=36.3 \mathrm{~Hz}, \mathrm{C}), 138.3$ (C), $131.4(\mathrm{CH}), 130.2(\mathrm{CH}), 129.1(2 \mathrm{CH}), 127.9(\mathrm{CH}), 127.4(2 \mathrm{CH}), 125.6(\mathrm{CH}), 120.6$ (C), 115.3 ($\mathrm{q}, J=291.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), $82.0(\mathrm{C}), 73.2(\mathrm{C}), 72.5(\mathrm{C}), 68.4(\mathrm{C}), 44.4\left(\mathrm{CH}_{2}\right)$, 32.6 (CH); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8$ ($\mathrm{s}, 3 \mathrm{~F}$); HRMS (ESI) $m / z: 333.0569$ $(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{OS}$ requires 333.0561.

(R)-1,1,1-trifluoro-4,10-diphenyldeca-5,7-diyn-2-one (3ag)

Purified by flash chromatography eluting with hexaneethyl acetate (99:01). Enantiomeric excess (93\%) was determined by chiral HPLC (Chiralpak AS-H), hexane- $\operatorname{PrOH} 99: 01,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=$ 6.4 min , minor enantiomer $\mathrm{t}_{\mathrm{r}}=5.7 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-14.2\left(c 0.90, \mathrm{CHCl}_{3}\right)(93 \% e e) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.37-7.19 (m, $10 \mathrm{H}), 4.31$ (dd, $J=7.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31 (ddd, $J=18.6,7.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (ddd, J $=18.6,6.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR
($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1$ ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.3 \mathrm{~Hz}, \mathrm{C}$), $140.0(\mathrm{C}), 138.5(\mathrm{C}), 129.0(2 \mathrm{CH})$, $128.5(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 127.8(\mathrm{CH}), 127.3(2 \mathrm{CH}), 126.5(\mathrm{CH}), 115.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.6\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 79.3(\mathrm{C}), 75.6(\mathrm{C}), 68.7(\mathrm{C}), 65.3(\mathrm{C}), 44.5\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 32.3(\mathrm{CH})$, $21.4\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F})$; HRMS (ESI) $m / z: 355.1317$ $(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ requires 355.1310.

(S)-1,1,1-trifluoro-10-phenyl-4-(o-tolyl)deca-5,7-diyn-2-one (3bg)

Purified by flash chromatography eluting with hexaneethyl acetate (99:01). Enantiomeric excess (95%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{i} \mathrm{PrOH} 99: 01,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=$ 5.4 min , minor enantiomer $\mathrm{t}_{\mathrm{r}}=5.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-6.1\left(c 1.15, \mathrm{CHCl}_{3}\right)(95 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.41(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.17 (m, 8H), 4.49 (dd, $J=8.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=18.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, $J=18.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.5 \mathrm{~Hz}, \mathrm{C}\right), 140.0(\mathrm{C}), 136.6(\mathrm{C})$, $135.0(\mathrm{C}), 131.0(\mathrm{CH}), 128.5(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 127.8(\mathrm{CH}), 127.1(\mathrm{CH}), 126.8(\mathrm{CH})$, $126.5(\mathrm{CH}), 115.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 79.0(\mathrm{C}), 75.8(\mathrm{C}), 68.1(\mathrm{C}), 65.4(\mathrm{C}), 43.0$ $\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 28.7(\mathrm{CH}), 21.4\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($\left.282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -79.7 (s, 3F); HRMS (ESI) $m / z: 369.1470(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}$ requires 369.1466.

(R)-12-chloro-1,1,1-trifluoro-4-phenyldodeca-5,7-diyn-2-one (3ah)

Purified by flash chromatography eluting with hexane-ethyl acetate (99:01). Enantiomeric excess (93%) was determined by chiral HPLC (Chiralpak AS-H), hexane- ${ }^{i} \mathrm{PrOH}$ 99:01, 1 $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=7.5 \mathrm{~min}$, minor
enantiomer $\mathrm{t}_{\mathrm{r}}=6.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-11.7\left(c 0.89, \mathrm{CHCl}_{3}\right)(93 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.26(\mathrm{~m}$, $5 \mathrm{H}), 4.30(\mathrm{dd}, J=7.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{ddd}, J=18.6,7.9,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12$ (ddd, $J=18.6,6.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{td}, J=6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.2 \mathrm{~Hz}\right.$, C), $138.5(\mathrm{C}), 129.0(2 \mathrm{CH}), 127.8(\mathrm{CH}), 127.3(2 \mathrm{CH}), 115.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 79.2 (C), $75.5(\mathrm{C}), 68.6(\mathrm{C}), 65.3(\mathrm{C}), 44.5\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right)$, $25.3\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F}) ;$ HRMS (ESI) m / z : 341.0930/343.0899 $(\mathrm{M}+\mathrm{H})^{+}$100.0/31.7, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{O}$ requires 341.0920/343.0891.

(\boldsymbol{R})-1,1,1-trifluoro-4-phenyl-8-(triisopropylsilyl)octa-5,7-diyn-2-one (3ai)

Purified by flash chromatography eluting with hexaneethyl acetate (99:01). Enantiomeric excess (85\%) was determined by chiral HPLC (Chiralcel OD-H), hexane${ }^{i} \operatorname{PrOH} 99: 01,1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=8.6 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=6.1 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-14.5\left(c 0.77, \mathrm{CHCl}_{3}\right)(85 \% e e) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.29(\mathrm{~m}$, 5 H), 4.33 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (ddd, $J=18.8,7.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (ddd, $J=18.8$, $6.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.3\right.$ $\mathrm{Hz}, \mathrm{C}), 138.2(\mathrm{C}), 129.0(2 \mathrm{CH}), 127.9(\mathrm{CH}), 127.4(2 \mathrm{CH}), 115.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291.9 \mathrm{~Hz}\right.$, $\left.\mathrm{CF}_{3}\right), 89.1(\mathrm{C}), 83.3(\mathrm{C}), 76.3(\mathrm{C}), 69.0(\mathrm{C}), 44.3\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{CH}), 18.5\left(6 \mathrm{CH}_{3}\right), 11.2$ (3CH); ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.8$ (s, 3F); HRMS (ESI) m/z: 407.2024 (M+ $\mathrm{H})^{+}, \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{OSi}$ requires 407.2018.

Synthetic transformations of compounds 3

(R)-1,1,1-trifluoro-4,8-diphenyloctan-2-one (4)

A solution of compound $\mathbf{3 a a}(10 \mathrm{mg}, 0.031 \mathrm{mmol}, 93 \% \mathrm{ee}$) in EtOAc (0.4 mL) was stirred under hydrogen atmosphere in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(3 \mathrm{mg})$ for 30 min at room temperature. Then, the reaction mixture was filtered through a short pad of silica gel, which was washed with EtOAc, and the solvent was removed under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:EtOAc (99:01) gave compound 4 ($9.2 \mathrm{mg}, 89 \%$). Enantiomeric excess (92%) was determined by chiral HPLC, Chiralcel OD-H, hexane-iPrOH 99:01, $1 \mathrm{~mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=10.8$ min , minor enantiomer $\mathrm{t}_{\mathrm{r}}=7.6 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-2.3\left(c 0.78, \mathrm{CHCl}_{3}\right)(92 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 5 \mathrm{H})$, 7.20-7.09 (m, 5H), 3.26-3.16 (m, 1H), 3.02-2.99 (m, 2H), 2.56-2.50 (m, 2H), 1.70-1.48 $(\mathrm{m}, 4 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.1 \mathrm{~Hz}\right.$, C), $143.0(\mathrm{C}), 142.4(\mathrm{C}), 128.7(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 127.3(2 \mathrm{CH}), 126.8$ $(\mathrm{CH}), 125.7(\mathrm{CH}), 115.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=292.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 43.5\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right)$, $35.6\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.0(\mathrm{~s}, 3 \mathrm{~F})$; HRMS (ESI) $m / z: 335.1631(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}$ requires 335.1623.
(4R)-1,1,1-trifluoro-2-methyl-4,8-diphenylocta-5,7-diyn-2-ol (5)

A commercial 3 M solution of MeMgCl in THF ($77 \mu \mathrm{~L}$, 0.230 mmol) was diluted with diethyl ether (0.3 mL) and cooled to $0^{\circ} \mathrm{C}$ under nitrogen. A solution of compound 3aa ($50 \mathrm{mg}, 0.153 \mathrm{mmol}$) in dry diethyl ether $(0.5 \mathrm{~mL})$ was added dropwise via syringe and the reaction mixture was allowed to reach room temperature. After 2 h , the reaction was quenched with a solution of citric acid (1 mL). The aqueous layer was extracted with diethyl ether (3 x 15 mL) and the organic layer was dried over MgSO_{4}. Removal of the solvent under reduced pressure followed by flash chromatography eluting with hexane:EtOAc (99:01) gave 5 ($40.8 \mathrm{mg}, 78 \%$) as a ca. $4.5: 1$ mixture of two diastereomeric alcohols. Enantiomeric excess (91\%) was determined by chiral HPLC, Chiralpak AY-H, hexane-iPrOH 99:01, $1 \mathrm{~mL} / \mathrm{min}$, major diastereomer: major enantiomer $\mathrm{t}_{\mathrm{r}}=23.2 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=$ 16.1 min .

Major (1S,4R)-diastereomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.31(\mathrm{~m}, 8 \mathrm{H}), 4.04(\mathrm{dd}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, \mathrm{OH}), 2.38(\mathrm{dd}, J=14.5,9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{dd}, J=14.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2$ (C), $132.5(2 \mathrm{CH}), 129.2(\mathrm{CH}), 129.1(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 127.6(\mathrm{CH}), 127.4(2 \mathrm{CH})$, $121.5(\mathrm{C}), 84.1(\mathrm{C}), 77.2(\mathrm{C}), 73.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=28.5 \mathrm{~Hz}, \mathrm{C}\right), 73.5(\mathrm{C}), 69.1(\mathrm{C}), 42.6\left(\mathrm{CH}_{2}\right)$, $33.3(\mathrm{CH}), 20.3\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-84.0(\mathrm{~s}, 3 \mathrm{~F})$.

Minor ($\mathbf{1 R}, \mathbf{4 R}$)-diastereomer (representative peaks taken from the diastereomeric mixture): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.13$ (dd, $\left.J=9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.54(\mathrm{~s}, 1 \mathrm{H})$, 2.23-2-17 (m, 2H), $1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-83.1$ ($\mathrm{s}, 3 \mathrm{~F}$).

(2S,4R,Z)-2-methyl-4-phenyl-5-(3-phenylpro-2-yn-1-ylidene)-2(trifluoromethyl)tetrahydrofuran (6)

AgOTf ($10.0 \mathrm{mg}, 0.038 \mathrm{mmol}$) was added to a solution of the diastereomeric mixture of $5(26 \mathrm{mg}, 0.076 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at rt under nitrogen atmosphere and the mixtures was stirred overnight. Then, removal of the solvent under reduced pressure followed by flash chromatography eluting with hexane:EtOAc (99:01) allowed to obtain furan 6 as the major product ($15.6 \mathrm{mg}, 60 \%$). Enantiomeric excess (92%) was determined by chiral HPLC (Chiralcel OD-H), hexane- ${ }^{i} \mathrm{PrOH} 99: 01,1$ $\mathrm{mL} / \mathrm{min}$, major enantiomer $\mathrm{t}_{\mathrm{r}}=13.3 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{r}}=27.4 \mathrm{~min}$. The cyclization product resulting from the minor diastereomer of $\mathbf{5}$ could not be obtained pure in sufficient amount.
$[\alpha]_{\mathrm{D}}{ }^{20}-5.9\left(c 1.00, \mathrm{CHCl}_{3}\right)(92 \% e e) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.25(\mathrm{~m}, 10 \mathrm{H})$, $4.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=11.5,9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=12.9,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=12.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.5(\mathrm{C}), 138.5(\mathrm{C}), 131.3(2 \mathrm{CH}), 129.0(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 128.1(2 \mathrm{CH}), 127.8$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 125.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=254.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.1(\mathrm{C}), 93.1(\mathrm{C}), 84.8(\mathrm{C}), 84.2$ (C), $81.0(\mathrm{CH}), 47.3(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-82.2(\mathrm{~s}, 3 \mathrm{~F})$; HRMS (ESI) $m / z: 343.1300(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ requires 343.1310.

The stereochemistry of compound $\mathbf{6}$ was determined by NOESY experiments (See figure S1 and NOESY experiment in the NMR spectra section). A relevant interaction was observed between the CH_{3} group at $\mathrm{C} 2(\delta 1.63)$ and $\mathrm{H} 4(\delta 4.18)$ which indicated the trans disposition between the Me group at C 2 and the phenyl group at C 4 . NOE was also observed between one of the hydrogens of the phenyl group at C 4 ($\delta 7.30$) and the olefinic hydrogen H1' ($\delta 4.30$) which indicated the Z geometry of the exocyclic double bond. Other spatial interactions detected in the NOESY experiment are shown in figure S1.

The cyclization product resulting from the minor diastereomer of 5 could not be obtained pure in sufficient amount.

Figure S1. Interactions observed in NOESY experiment with compound 6.

(R)-1,1,1-trifluoro-4-phenylocta-5,7-diyn-2-one (7)

$\mathrm{AcOH}(4 \mu \mathrm{~L}, 0.096 \mathrm{mmol})$ and 1 M TBAF in THF ($68 \mu \mathrm{~L}$, 0.068 mmol) were added to a solution of 3aa ($35.4 \mathrm{mg}, 0.087$ $\mathrm{mmol})$ in THF (1 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 4 h, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). The organic layer was washed with saturated aqueous NaHCO_{3} and dried over MgSO_{4}. Removal of the solvent under reduced pressure followed by flash chromatography eluting with hexane:EtOAc (99:01) gave 7 ($15 \mathrm{mg}, 70 \%$). Enantiomeric excess (85%) was determined by GLC (Supelco β -dex-225, $\mathrm{T}_{\text {column }}=100{ }^{\circ} \mathrm{C}(5 \mathrm{~min})$ to $150{ }^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} / \mathrm{min}$), major enantiomer $\mathrm{t}_{\mathrm{r}}=20.2$ min , minor enantiomer $\mathrm{t}_{\mathrm{r}}=19.9 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{20}-6.0\left(c 0.80, \mathrm{CHCl}_{3}\right)(85 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H})$, $4.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=18.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=18.7,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 187.9(\mathrm{q}, J=36.1 \mathrm{~Hz}, \mathrm{C})$, $137.9(\mathrm{C}), 129.1(2 \mathrm{CH}), 128.0(\mathrm{CH}), 127.3(2 \mathrm{CH}), 115.2\left(\mathrm{q}, J=291.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 76.1$ (C), $68.0(\mathrm{C}), 67.6(\mathrm{C}), 67.1(\mathrm{CH}), 44.2\left(\mathrm{CH}_{2}\right), 32.1(\mathrm{CH}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right)$ $\delta-79.8(\mathrm{~s}, 3 \mathrm{~F})$. HRMS (ESI) $m / z: 250.0601(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}$ requires 250.0605 .

References:

1. Turlington, M.; Du, Y.; Ostrum, S. G.; Santosh, V.; Wren, K.; Lin, T.; Sabat, M.; Pu, L. J. Am. Chem. Soc.2011, 133, 11780-11794.
2. Singh, R. P.; Cao, G.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64, 2873-2876.
3. Davies, A. T.; Picket, P. M.; Slawin, A. M. Z.; Smith, A. D. ACS Catal. 2014, 4, 2696-2700.
4. Sasaki, S.; Yamauchi, T.; Higashiyama, K. Tetrahedron Lett. 2010, 51, 2326-2328.
5. Andrew, R. J.; Mellor, J. M. Tetrahedron2000, 56, 7261-7266.
6.Yeh, P.-P.; Daniels, D. S. B.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2014, 16, 964-967.
6. Hon, Y.-S.; Lee, C.-F. Tetrahedron, 2000, 56, 7893-7902.
7. Kamal, A; Krishnaji, T.; Reddy, P. V. Tetrahedron Asymmetry2007, 18, 1775-1779.
8. Kamijo, S.; Yokosaka, S.; Inoue, M. Tetrahedron2012, 68, 5290-5296.
9. Kubota, T.; Yamamoto, M. Tetrahedron Lett. 1992, 18, 2603-2606.
10. O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Stephen, R. K.; Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed.2009, 48, 6836-6839.
11. Liu, J.; Ma, S. Org. Lett.2013, 15, 5150-5153.
12. Linderman, R. J.; Jamois, E. A.; Tennyson, S. D. J. Org. Chem.1994, 59, 957-962.
13. Bressette, A. R.; Glover IV, L. C. Synlett 2004, 4, 738-740.
14. Race, J. N.; Bower, J. F. Org. Lett.2013, 15, 4616-4619.
15. Palais, L.; Babel, L.; Quitard, A.; Belot, S.; Alexakis, A. Org. Lett.2010, 12, 19881991.
16. Trost, B. M.; Chan, V. S.; Yamamoto, D. J. Am. Chem. Soc.2010, 132, 5186-5192.
17. Jiang, H.-F.; Wang, A.-Z. Synthesis 2007, 1649-1654.
18. Peng, H.; Xi, V.; Ronaghi, N.; Dong, B.; Akhmedor, N. G.; Shi, X. J. Am. Chem. Soc.2014, 136, 13174-13177.
19. West, K.; Hayward, L. N.; Batsanov, A. S.; Bryce, M. R. Eur. J. Org. Chem. 2008, 5093-5098.

N犬N゚～心
$\underset{F}{F}$
$\stackrel{\text { n }}{\sim}$

$\underbrace{\text { men }}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

```
Mog%%
\infty
%%%
```


${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underset{\mid}{\underset{\sim}{\underset{\sim}{\sim}}} \underset{\mid}{\stackrel{\sim}{\pi}}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(

피충
$\stackrel{\widetilde{N}}{\underset{\sim}{7}}$
$\stackrel{\circ}{\stackrel{\circ}{\sim}}$

呙

8が勿一 লij io io $\stackrel{\circ}{\stackrel{\circ}{1}}$

${ }^{13} \mathrm{C}$ NMR， $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 $\xrightarrow{2}$

(

${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

우이N ©	$\stackrel{\text { d }}{\substack{\text { or }}}$		产 	¢ ¢ ¢ ¢	N	\%		
41	,	1 い	\|l	-		1 1	1	\|

い $\stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\begin{aligned} & \text { on } \\ & \text { Oid } \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\oplus} \end{aligned}$	펔		ก f f がべペ゙ペ。	$\stackrel{\sim}{\text { Hn}}$	$\stackrel{\circ}{\text { ¢ }}$
4ir	｜			\1／	＜${ }^{1}$	｜		，

우요 ゅio	$\stackrel{\text { ® }}{\text { ¢ }}$		ooin ion en en	$\underset{\text { ¢ }}{\text { ¢ }}$	Ұ 8 웅 ヘペペポ	$\stackrel{\sim}{\text { F }}$	$\stackrel{\sim}{\sim}$
－		$41 /$	$1>$		1／	｜	


```
&om
```



~~~
\(\stackrel{\underset{i}{i}}{\stackrel{7}{i}}\)




す





~~~


$\stackrel{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(1)

군

${ }^{13} \mathrm{C}$ NMR， $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\text { Nhin }}$

Ph
${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

쿵
$\stackrel{\underset{\sim}{m}}{\underset{1}{\sim}} \stackrel{\text { ® }}{\text { I }}$
$\stackrel{\stackrel{\rightharpoonup}{\sim}}{1}$

${ }^{13} \mathrm{C}$ NMR, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underset{\sim}{\underset{\sim}{\sim}}$

${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

No.	RT	Area	Area s	Name
1	4,65	2465760	50,380	
2	5,02	2428560	49,620	
	4894320	100,000		

No.	RT	Area	Area \%	Name
1	4,61	257020	3,634	
2	4,96	6815740	96,366	
		7072760	100,000	

No.	RI	Area	Area \%	Name
1	10,53	8678849	46,540	
2	14,45	9969369	53,460	
	18648218	100,000		

No.	RT	Area	Area \%	Name
1	11,82	571890	3,041	
2	16,03	18232734	96,959	
	18804624	100,000		

(

No.	RT	Area	Area \%	Name
1	4,68	2681421	49,375	
2	5,20	2749298	50,625	
		5430719	100,000	

Nc.	2T	Area	Area \&	Tane
1	4,64	224090	3,346	
2	5,13	6473650	96,654	
	6697740	100,000		

No.	RT	Area	Area \%	Name
1	4,99	892965	41,562	
2	5,44	1255550	58,438	
	2148515	100,000		

No.	RT	Area	Area s	Name
1	4,89	684287	3,904	
2	5,41	16843182	96,096	
		17527469	100,000	

No.	FT	Area	Area \%	Name
1	4,81	1555938	38,221	
2	5,26	2514991	61,779	
		4070929	100,000	

No.	RI	Area	Area 8	Name
1	4,77	95880	2,942	
2	5,21	3162605	97,058	
	3258485	100,000		

No.	RT	Area	Area s	Name
1	6,92	5136516	47,433	
2	7,62	5692533	52,567	
	10829049	100,000		

No.	RT	Area	Area s
1	6,90	723662	4,134
2	7,50	16780606	95,866
	17504268	100,000	

No.	RT	Area	Area \%	Name
1	4,56	2669087	41,420	
2	4,81	3774937	58,580	
		6444024	100,000	

No.	RT	Area	Area s	Name
1	4,65	173215	2,769	
2	4,79	6002755	97,231	
		6255974	100,000	

(miser

No.	RI	Area	Area \%	Name
1	8,25	12612009	65,706	
2	9,81	6582744	34,294	
		19194753	100,000	

No.	RT	Area	Area \%	Name
1	8,27	959560	3,830	
2	9,63	24093489	96,170	
	25053049	100,000		

No.	RT	Area	Area \&	Name
1	7,01	5097430	47,640	
2	8,00	5602400	52,360	
		10699830	100,000	

No.	RT	Area	Area $\frac{2}{8}$	Name
1	7,27	313310	4,220	
2	8,31	711649	95,780	
		424959	100,000	

No.	RI	Area	Area $\frac{8}{8}$	Name
1	4,99	8081701	45,712	
2	5,37	9597828	54,288	
	17679529	100,000		

No.	RT	Area	Area	Name
1	4,77	209190	7,909	
2	5,10	2435920	92,091	
	2645110	100,000		

No.	RT	Area	Area $\frac{8}{8}$	Name
1	9,63	871793	40,807	
2	15,11	1264565	59,193	
	2136358	100,000		

No.	RI	Area	Area s	Name
1	9,50	4845669	6,584	
λ	14,01	68755020	93,416	
	73600689	100,000		

No.	RT	Area	Area \%	Name
1	8,71	8989552	45,278	
2	10,48	10864597	54,722	

No.	RT	Area	Area \%	Name
1	9,08	933955	5,787	
	10,94	15204374	94,213	
	16138329	100,000		

No.	RI	Area	Area s	Name
1	5,09	472.8612	42,648	
2	5,68	6358912	57,352	
	11087524	100,600		

No.	RT	Area	Area \%	Name
1	5,28	382970	4,891	
2	5,91	7447430	95,109	
	7830400	100,000		

No.	RT	Area	Area \%	Name
1	6,43	12217009	56,425	
2	9,09	9434744	43,575	
	21651753	100,000		

No.	RT	Area	Area 8	Name
1	6,45	914700	4,241	
2	8,94	20654849	95,759	
	21569549	100,000		

No.	RT	Area	Area \%	Name
1	6,36	6495509	46,866	
2	6,71	7364260	53,134	
	13859769	100,000		

No.	RT	Area	Nrea z
1	6,26	342438	4,235
2	6,58	7743531	95,765
	8085969	100,000	

No.	KI	Area	Area \%	Name
1	8,70	11899390	50,292	
2	14,87	11761444	49,708	100,000

No.	RT	Area	Area 8	Nane
1	7,99	1317470	4,692	
2	11,71	26760145	95,308	
		28077615	100,000	

No.	RT	Area	Area \%	Name
1	7,07	11345104	46,558	
2	8,44	13022510	53,442	
	24367614	100,000		

| No. | RT | Arca | |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 7,10 | 453060 | 2,956 |
| 2 | 3,36 | 14863920 | 97,042 |
| | $153: 7000$ | $10 C, 000$ | |

No.	RT	Area	Area \%	Name
1	5,59	1665740	49,487	
2	6,41	1701300	50,513	
	3363040	100,000		

No.	RI	Area	Arsa $\#$	Name
1	5,67	111960	3,582	
2	6,42	3013840	96,418	
	3125800	100,000		

No.	F.T	Area	Area \%	Name
1	5,16	1203620	41,271	
2	5,52	1712730	58,729	
	2916350	100,000		

No.	RT	Area	Area \%	Name
1	5,09	46615	2,495	
2	5,44	1821564	97,505	
	1863179	100,000		

No.	RT	Area	Area \%
1	6,41	4885935	53,752
2	7,34	4203895	46,248
	9089830	100,000	

No.	RI	Area	Area \%	Name
1	6,58	79900	3,499	
2	7,47	2203660	96,501	
	2283560	100,000		

3ai

No.	RT	Area	Area $\%$
1	5,15	402000	42,335
2	8,65	547580	57,665
	949580	100,000	

No.	RT	Area	Area \%	Name
1	6,09	103290	7,765	
2	8,55	1226890	92,235	
	1330180	100,000		

No.	RT	Area	Area \%	Name
1	7,81	292440	64,377	
2	11,20	161825	35,623	
		454265	100,000	

No.	RT	Area	Area \%	Name
1	7,59	92900	4,029	
2	10,80	2212770	95,971	
		2305670	100,000	

No.	RI	Area	Area \&	Name
1	16,01	17112915	57,875	
2	24,55	12455609	42,125	
	29668624	100,000		

No.	RI	Area	Area \%	Name
1	16,07	4191960	5,111	
2	23,19	77826252	94,889	
		82018212	100,000	

No.	RT	Area	Area \%	Name
1	13,73	7843.499	39,970	
2	27,69	11780098	60,030	100,000
		19623597		

No.	RT	Area	Area s	Name
1	13,33	8947060	96,240	
2	27,35	349510	3,760	
	9296570	100,000		

Peal: Number (\#)	Retention Time (min!	Area	Area * ! $\%$!
1	19.932	29844	7.160
2	20.152	386946	92.840

X-ray data for compound 3af: crystallized from dichloromethane $/ n$-hexane at $-20^{\circ} \mathrm{C}$; $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{1} \mathrm{~S}_{1} ; \mathrm{M}_{\mathrm{r}}=332.33$; monoclinic; space group $=\mathrm{P} 2_{1} ; a=5.5930(1), b=$ 8.1070(3); $c=17.5700(5) \AA ; \alpha=90.00, \beta=95.029(2), \gamma=90.00^{\circ} ; V=793.60(4) \AA^{3} ; Z=$ 2; $\rho_{\text {calcd }}=1.391 \mathrm{Mg} \mathrm{m}^{-3} ; \mu=0.235 \mathrm{~mm}^{-1} ; F(000)=240$. A colourless crystal of $0.04 \times 0.08 \times 0.10 \mathrm{~mm}^{3}$ was used; $2709[\mathrm{R}(\mathrm{int})=0.0399]$ independent reflections were collected on a Enraf Nonius CCD diffractomer by using graphite-monochromated $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$) operating at 50 kV and 30 mA . The cell parameters were determined and refined by a least-squares fit of all reflections. The structure was solved by direct methods and Fourier synthesis. It was refined by full-matrix leastsquares procedures on F^{2} (SHELXL-97). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in calculated positions and refined riding on the respective carbon atoms. Final $R(\omega R)$ values were $R=0.0689$ and $\omega R=$ 0.1968 . CCDC-1046444 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S2. ORTEP plot for the X-ray structure of compound 3af. The thermal ellipsoids are drawn at the 50% probability level.

