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1 Energy-conserving DPD formulation

The energy-conserving dissipative particle dynamics (eDPD) method is an extension of the classic
DPD method. It was developed by introducing the internal energy as an additional property to the DPD
system for consideration of the energy equation [1]. Similarly to the classic DPD method, an eDPD
system consists of many coarse-grained particles. Each of them represents a group of actual molecules
rather than a single atom/molecule directly. The time evolution of an eDPD particle i with unit mass
is governed by the conservation of momentum and energy, which is described by the following set of
equations [2]

dri
dt

= vi , (1)

dvi

dt
= Fi =

∑
j ̸=i

(FC
ij + FD

ij + FR
ij) , (2)

Cv
dTi

dt
= Qi =

∑
j ̸=i

(QC
ij +QV

ij +QR
ij) , (3)

where t, ri, vi and Fi denote time, and position, velocity, force vectors, respectively. Cv is the thermal
capacity of eDPD particles, Ti the temperature and Qi the net heat flux of particle i. The summations
are carried out over all other particles within a cutoff radius rc. Specifically, the three components of Fi

including the conservative force FC
ij , dissipative force FD

ij and random force FR
ij are expressed as

FC
ij = aij(T )ωC(rij)eij , (4)

FD
ij = −γijωD(rij)(vij · eij)eij , (5)

FR
ij = σijωR(rij)ξij∆t−1/2eij , (6)

where rij = |ri − rj | is the distance between particles i and j, eij = rij/rij the unit vector from particle
j to i, vij = vi−vj the velocity difference and ∆t the time step for time integration. Also, aij(T ) is the
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temperature-dependent repulsive force parameters, γij the dissipative coefficient and σij the strength of
random force. Moreover, the heat flux between particles includes the collisional heat flux QC

ij , viscous
heat flux QV

ij and random heat flux QR
ij , which are given by [2]
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ij = kijωCT (rij)

(
1
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− 1

Tj

)
, (7)
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]
− σijωR(rij)(eij · vij)ξij

}
, (8)

QR
ij = βijωRT (rij)∆t−1/2ζij . (9)

where kij = C2
vκ(Ti + Tj)

2/4kB and βij determine the strength of the collisional and random heat
fluxes. ωC(r), ωD(r), ωR(r), ωCT (r) and ωRT (r) are the weight functions of FC , FD, FR, QC

ij and
QR

ij , respectively. They are often given by ω(r) = (1 − r/rc)
Λ in which Λ is the exponent of these

weight functions, i.e., Λ = 1 for ωC(r) and Λ = 2 for ωD(r). Also, ξij and ζij are symmetric Gaussian
random variables with zero mean and unit variance. To satisfy the fluctuation-dissipation theorem, the
dissipative and random forces are coupled via σ2

ij = 4γijkBTiTj/(Ti + Tj) and ωD(r) = ω2
R(r), and

the collisional and random heat fluxes are coupled via β2
ij = 2kBkij and ωCT (r) = ω2

RT (r). Interested
readers should refer to Refs. [1, 2] for further details of the eDPD framework.

2 Modeling of thermoresponsive polymer

In the eDPD method, the bead-spring representation of polymer chains is employed to model poly-
mers in complex fluids. Different spring models can be used for describing the spring interactions be-
tween connected DPD particles. Examples include the Hookean spring, the finitely extensible nonlinear
elastic (FENE) spring and the wormlike chain (WLC) [3]. In this study, we consider linear polymer
chains with Hookean springs. The elastic spring force is expressed as

FS
ij = ks(1− rij/rs)eij , (10)

where ks = 200 is the spring constant, and the equilibrium bond length between two consecutive particles
is set to rs = 0.4rc. Cross-links are also modeled as Hookean springs with ks = 200 and rs = 0.4rc.
As shown in Fig. S1, many linear polymer chains are cross-linked to generate a microgel bead, and each
chain is made up of 50 eDPD particles. The cross-links with a density of approximately 3% of total
bonds are randomly distributed in the microgel bead. Fig. S1 shows a microgel bead consisting of four
linear polymer chains bonded by cross-links. In the simulations, we consider different size of microgels,
which consist of 100, 200, 500 and 1000 cross-linked polymer chains, respectively.

The potential between thermoresponsive polymer (TRP) and solvent is sensitive to the tempera-
ture, and the polymer-solvent interaction parameter χ is a function of temperature [4]. In the DPD
method, the Flory-Huggins χ-parameter is linear with respect to the excess repulsion ∆a given by
χ ≈ 0.487∆a/kBT [5] when the number density is set to ρ = 4. Here, the excess repulsion is de-
fined by ∆a = asp − ass where s represents solvent and p stands for polymer. To model the thermally
induced phase transition of TRP, we define the excess repulsion ∆a as a function of temperature to
consider the temperature-dependence of the Flory-Huggins χ-parameter.
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Figure S1: Coarse-grained eDPD model of cross-linked
polymer chains. Cross-links are marked with circles. Each
chain consists of 50 connected eDPD particles through
Hookean spring. As an example, only four linear polymer
chains are presented.

Figure S2: Temperature-dependence of conservative force
between polymer and solvent particles asp, the excess re-
pulsion ∆a and corresponding Flory-Huggins χ-parameter.
The polymer is hydrophilic for at low temperatures (T <
Tc) and hydrophobic at high temperatures (T > Tc).

For the conservative force, between particles of same type the repulsion parameters are taken as
ass(T ) = app(T ) = 75kBT/ρ = 18.75kBT , and the cross terms are given as

asp(T ) =
75kBT

ρ
+A0 +

∆A

1.0 + exp(−τ · (T − Tc))
, (11)

which contains a sharp change by ∆A at T = Tc, and the sharpness is determined by the parameter τ .
In the simulations, we use A0 = −10, ∆A = 20 and τ = 300 so that the polymer is hydrophilic (χ < 0)
at low temperatures (T < Tc) and hydrophobic (χ > 0) at high temperatures (T > Tc), as shown in Fig.
S2.

The parameters involved in Eqs. (1)-(9) are listed in Table 1. Since the conservative force can be
written as the negative gradient of potential energy, when the conservative force between particles is
given by FC

ij(rij) = aij(T )(1 − rij/rc)eij , the corresponding potential is Uij(rij) = 1
2aij(T )rc(1 −

rij/rc)
2. As the temperature of the eDPD system increases, the pair potential between particles changes

with temperature because of the variation of repulsive coefficient aij . To satisfy the conservation of
energy, the change of potential energy is considered to be balanced by a change of internal energy.
Specifically, the total energy for each pair is considered invariable and its variation is zero upon time
integration, i.e., ∆Eij = ∆Uij +∆ei −Qi +∆ej −Qj = 0, where ∆ei = Cv∆Ti and ∆ej = Cv∆Tj

are the changes of internal energy of particles i and j, and Qi and Qj represent their net heat fluxes.
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Table 1 Parameters for simulations of thermally induced phase transition of TRP. The symbol s represents solvent
and p stands for polymer.

Name Symbol Value
Number density ρ 4
Cutoff radius rc 1.0
Critical temperature Tc 1.0
Temperature of system kBT 0.8Tc-1.4Tc

Time step ∆t 0.01

Repulsive coefficient
ass, app 75kBT/ρ
asp 75kBT/ρ− 10 + 20/{1.0 + exp[−300(T − Tc)]}

Dissipative coefficient γij 4.5
Strength of random force σij σ2

ij = 4γijkBTiTj/(Ti + Tj)

Thermal capacity Cv 1.0× 103

Heat friction coefficient κ 1.0× 10−3

Weight functions ω(r) ωC(r) = ωR(r) = ωRT (r) = 1 − r/rc, ωD(r) =
ωCT (r) = (1− r/rc)
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3 Simulation setup

In the present study, the eDPD systems consist of half a million particles, and the simulations are
performed using a GPU-accelerated DPD USERMESO package [6]. A modified velocity-Verlet algorithm
[5] is employed for the numerical integration of the eDPD equations with time step ∆t = 0.01.

In practice, four eDPD systems involving different size of microgels are constructed in a compu-
tational domain of 50rc × 50rc × 50rc. Periodic boundary conditions are applied for all boundaries.
The particle number density is set to ρ = 4 and the total number of particles used in the simulations is
500 000. We consider the microgels consisting of 100, 200, 500 and 1000 cross-linked polymer chains
with 50 eDPD particles per chain, which correspond to polymer concentration of 1 wt%, 2 wt%, 5 wt%
and 10 wt%, respectively. Here, the mass of polymer particle is equal to the mass of solvent particle.

The particle systems of a microgel bead surrounded by solvent particles are initialized with random
configurations at a low temperature T0 = 0.8Tc. To obtain the thermal equilibrium state, we run the
eDPD simulations at T0 = 0.8Tc for at least twice the relaxation time trelax of the microgels. The
relaxation time trelax is obtained by computing their gyration radius Rg and fitting the time evolution of
Rg with an exponential function exp(−t/trelax). For instance, Fig. S3 shows the time evolution of Rg

for a microgel bead (5 wt%) at low temperature T = 0.8Tc. The computed Rg is fitted by Rg(t) =
16.31−3.54 ·exp(−t/272.01), which indicates trelax = 272.01. Therefore, a pre-run simulation for 600
time units (> 2trelax) is carried out for obtaining the thermal equilibrium state. Then, similarly to the
differential scanning calorimetry (DSC) experiments, the temperature of the eDPD system is increased
linearly from T0 = 0.8Tc to T1 = 1.4Tc within 1500 time units.

For linearly heating up the eDPD system, each eDPD particle is coupled with a thermal background
of desired temperature TB(t). Therefore, an eDPD particle i with temperature Ti(t) can obtain a heat
flux QS

i (t) from the thermal background dependent on the temperature difference ∆T = TB(t)− Ti(t),
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Figure S3: Time evolution of the gyration radius Rg of a
microgel bead (5 wt%) at low temperature T = 0.8Tc. The
gyration radius obtained from the eDPD simulation is fitted
by Rg(t) = 16.31 − 3.54 · exp(−t/272.01), which indi-
cates that the relaxation time is trelax = 272.01.

Figure S4: Temperature evolution of the eDPD systems dur-
ing the simulations. A heating process is performed after the
pre-run simulation. The curve reveals that the temperature is
increased linearly with time during heating from T = 0.8Tc

to T = 1.4Tc.

which is given by
QS

i (t) = λ · Cv ·∆T = λ · Cv ·
(
TB(t)− Ti(t)

)
, (12)

where λ is a relaxation factor and we set λ = 0.1 in the simulations. Then, the total heat flow (en-
dothermic energy) of the eDPD system can be computed by a summation of QS

i over all the particles.
The temperature evolution of the eDPD systems during the simulations is illustrated in Fig. S4, which
reveals that the temperature is increased linearly with time during heating from T = 0.8Tc to T = 1.4Tc.

4 Size of microgel beads

In the present work, “small” and “large” microgel beads are defined with respect to the size of
cooperative unit in eDPD systems. Let n be the number of cooperative unit in a thermally induced phase
transition. When a microgel bead has only one cooperative unit, i.e., n ≤ 1, the microgel bead undergoes
a transition as a whole (“all-or-none” transition), which is denoted by “small”, while “large” microgel
bead represents a microgel bead that has two or more cooperative units.

In experiments, it is well-known that the number of cooperative units in hydrogels or macromolecules
is proportional to the molecular weight. The number of cooperative units can be computed by the
ratio of the enthalpy change of transition ∆H and the effective (van’t Hoff) enthalpy ∆Heff , i.e.,
n = ∆H/∆Heff , where ∆H = MQtr and ∆Heff = 4RT 2

pCp(Tp)/Qtr. Here, M is the molecular
weight, Qtr is the heat of transition (the area under the heat absorption peak). More detailed description
of the cooperative units (“domains”) can be found in Tiktopolo et al.’s paper [7].

Based on the heating curves in our simulations, for the microgel bead of 1 wt%, the enthalpies are
∆H = 9.84 × 104 and ∆Heff = 2.30 × 105, and hence the number of cooperative unit (“domain”) is
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n = 0.43 < 1, which indicates that the microgel bead of of 1 wt% has only one single cooperative unit
undergoing “all-or-none” transition. Therefore, it is denoted by “small” microgel bead in the manuscript.
Similarly, we have n = 3.60 for the microgel bead of 5 wt% and n = 7.69 for the microgel bead of
10 wt%. This means that they have multiple cooperative units and they are denoted by “large” microgel
beads.

5 Discussion on the shift of endothermic peaks

The endothermic peaks of LCST-type TRPs shift slightly to lower temperatures when the concentra-
tion increases, as has been observed in many experiments [7, 8]. Usually, the magnitude of the peak shift
is small. For example, Kunugi et al. [8] quantified the endothermic peak shifts using polymers (PNVI-
BA and PNIPAM) at various concentrations. Their experimental data showed that the endothermic peak
widths are larger than 10◦C while the peak temperatures shift by approximately 1◦C.

In our mesoscopic modeling, the peak widths are affected by the variation of temperature on polymer
particles. In particular, the distribution of internal energy in an eDPD system depends on the heat capacity
Cv of each eDPD particle,

P (kBT ) =
1√

2π/Cv

e−
1
2
Cv(kBT−kBT0)2 (13)

which indicates that the mean temperature of eDPD particles is T0 and the variance is the reciprocal of
thermal capacity 1/Cv.

Figure S5: Probability distribution functions (PDF) of tem-
perature in eDPD systems at T0 = 1.0 with various thermal
capacities, Cv = 0.5× 103, 1.0× 103 and 2.0× 103.

Figure S6: Thermogram analog to differential scanning
calorimetry (DSC) heating curve with a fixed scanning rate
(4.0× 10−4Tc per time unit) at a concentration of 5 wt%.
Each eDPD system has 5.0× 105 particles.

Figure S5 shows the probability distribution functions (PDF) of temperature in eDPD systems with
Cv = 0.5 × 103, 1.0 × 103 and 2.0 × 103. Larger fluctuations in temperature will result in wider
endothermic peaks. Since the variance is 1/Cv, increasing Cv will decrease the variation of temperature
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and will diminish the distribution of temperature, which yields a narrower endothermic peak, as shown
in Fig. S6.

The thermal capacity of eDPD particle Cv is proportional to the size of particle, i.e., Cv = C∗
vL

∗3/ρk∗B
in which C∗

v is the volumetric heat capacity of polymers or fluids, L∗ the length scale, k∗B the Boltzmann
constant and ρ the number density of eDPD particles. Therefore, eDPD systems having larger length
scales should have narrower endothermic peak when the heterogeneities of polymers are not considered.

6 Video Clips

1. Video clip S1 illustrates the dynamic behavior of a small microgel bead (1 wt%) in the coil-to-
globule phase transition during heating from T = 0.8Tc to T = 1.4Tc. The phase transition of the small
microgel bead is a relatively simple “all-or-none” process.

2. Video clip S2 illustrates the dynamic behavior of a large microgel bead (5 wt%) in the coil-to-
globule phase transition during heating from T = 0.8Tc to T = 1.4Tc. The dynamic details confirm
that the large microgel bead has many “independent domains” that start their self-aggregation processes
simultaneously.
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