1

A Switch-On MRI Contrast Agent for Noninvasive Visualization of Methylmercury

Gyan Singh, Kuang-Mei Hsu, Yu-Jen Chen, Shou-Cheng Wu, Chiao-Yun Chen,* Yun-Ming Wang*

Experimental Section

Materials and instrumentations:

4,7,10-(Tris-tert-butylcarboxymethyl)-(1,4,7,10-tetraazacyclodecane) (DO3A-tris-*tert*-butyl ester),¹ compound 1^2 , and $1a^2$ were synthesized following the previously reported procedure with minor modification. Tetra-n-butylammonium bromide (TBAB), anhydrous sodium sulfate $(Na_2SO_4),$ 1,3-dibromopropane, 1,2-dibromoethane, boron trifluoride diethyl etherate(BF₃ \cdot O(C₂H₅)₂), iron(III) chloride hexahydrate (FeCl₃ \cdot 6H₂O), magnesium chloride (MgCl₂), zinc bromide (ZnBr₂), copper(II) chloride (CuCl₂), chloroform-d, DMSO-d₆, D₂O, and HEPES were purchased from Sigma-Aldrich. 4-Hydroxybenzaldehyde, 2-hydroxybenzaldehyde, 1,4-dioxane, methyl thioglycolate, and anhydrous potassium carbonate (K₂CO₃) were purchased from Alfa Aesar. 1,4,7,10-Tetraazacyclododecane, sodium chloride (NaCl), and calcium chloride (CaCl₂) were purchased from Strem chemicals, J. T baker, and SHOWA, respectively. Potassium chloride (KCl), Mercury(II) chloride (HgCl₂), and Methylmercury(II) chloride(CH₃HgCl) were purchased from Merck. All commercial grade chemicals were used without further purification. Luminescence was measured by using a Hitachi F-7000 fluorescence spectrophotometer. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on a Bruker-300 NMR Spectrometer. The concentration of the Gd(III) complex was determined by ICP-MS(Agilent 7500ce ICP-MS). The relaxivity measurements were performed using a relaxometer operating at 20 MHz and 37.0 ± 0.1 °C (NMR-120 Minispec, Bruker, Germany). MR imaging was performed with a 3.0 T MR scanner (Sigma; GE Medical Systems, Milwaukee, WI) and Bruker 7.0 T MR imaging system (Ettlingen, Germany). The HPLC experiments were performed on an Amersham ÄKTA basic 10 instrument equipped with an Amersham UV-900 detector and Amersham Frac-920 fraction collector. Mass spectral analyses were performed with a Waters Q-Tof (Waters, Milford, Massachusetts).

1. Synthesis

Tri-*tert*-butyl 2,2',2''-(10-(3-(2-formylphenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2)

To the acetonitrile (MeCN) solution (20 mL) of DO3A-tris-*tert*-butyl ester (5.1 g, 10 mmol), were added anhydrous potassium carbonate (K₂CO₃) (6.9 g, 50 mmol) and compound **1** (3.8 g, 14 mmol). The resulting mixture was refluxed for 2 days. The reaction was cooled to room temperature and filtered. The filtrate was evaporated under reduced pressure to leave a yellow gum. The crude product was dissolved in dichloromethane (CH₂Cl₂) and purified on a silica gel column. The mixture was first eluted with ethyl acetate (EtOAc) and then the product was eluted with 5% CH₃OH / CH₂Cl₂. The product was obtained as a white foam in 63% yield (4.3 g, 6.3 mmol). ¹H NMR (300 MHz, CDCl₃ w/TMS): δ 10.38 (s, 1H), 7.77 (m, 1H), 7.50 (m, 1H),7.00 (m, 2H), 3.67 (brs, 2H), 3.35–2.18 (a set of very broad and multiple peaks with an integration corresponding to 24H), 1.99 (brs, 2H), 1.41-1.38 (m, 27H); ¹³C NMR (75 MHz, CDCl₃ w/TMS): δ 189.47, 189.39, 173.71, 172.74, 170.41, 170.03, 161.13, 160.51, 136.22, 129.45, 128.46, 124.72, 121.03, 120.91, 112.94, 112.63, 82.94, 82.60, 81.85, 67.16, 65.90, 56.93, 56.62, 55.83, 52.78, 50.37, 48.03, 28.12, 27.95, 27.84, 25.94, 23.35; HRESI-MS(ESI⁺): calculated for [C₃₆H₆₀N₄O₈]⁺ 676.4411, found 677.4499. The appropriate isotope pattern was observed.

Tri*-tert*-butyl 2,2',2''-(10-(3-(2-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6 -yl) phenoxy) propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3)

To a solution of **2** (3 g, 4.4 mmol) and methyl thioglycolate (0.72 ml, 13 mmol) in dry CH₂Cl₂ (90 ml), BF₃·Et₂O (0.3 ml, 3 mmol) was added slowly. The mixture was allowed to stir at 4 °C for 12 hrs. After 12 hrs, the reaction was quenched by addition of water (50 ml). The mixture was extracted with CH₂Cl₂ (40 ml×3). The combined organic phase was washed with brine, dried over anhydrous sodium sulfate (Na₂SO₄) and concentrated under reduced pressure. The crude product was dissolved in CH₂Cl₂ and purified on a silica gel column, eluting with 3% CH₃OH in CH₂Cl₂. The product was obtained as a yellowish foam in 76% yield (2.9 g, 3.3 mmol). ¹H NMR (300 MHz, CDCl₃ w/TMS): δ 7.45 (d, 1H), 6.93 (m, 3H), 5.71(s, 1H), 4.19(brs, 2H), 3.66 (m, 6H), 3.37–2.33 (a set of very broad and multiple peaks with an integration corresponding to 28H), 2.29

(brs, 2H), 1.45-1.43 (m, 27H). ¹³C NMR (75 MHz, CDCl₃ w/TMS): δ 173.80, 172.82, 170.74, 170.53,170.23, 155.40, 155.28, 129.86, 129.63, 128.84, 128.51, 126.84, 126.59, 121.08, 120.87, 82.87, 82.54, 81.81, 66.91, 65.48, 55.67, 55.77, 55.32, 52.62, 49.98, 47.95, 47.67, 47.53, 33.93, 33.79, 33.69, 28.21, 27.92, 25.93, 23.29; HRESI-MS(ESI⁺): calculated for [C₄₂H₇₀N₄O₁₁S₂]⁺ 870.4483, found 871.4573. The appropriate isotope pattern was observed.

2,2',2''-(10-(3-(2-(Bis((carboxymethyl)thio)methyl)phenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4)

Compound **3** (2.4 g, 2.7 mmol) was dissolved in the mixture (15 mL) of dioxane and sodium hydroxide (NaOH) with the ratio of 3:1 (v/v). This solution was stirred vigorously for about 10 hrs under N₂ at 50 °C. The mixture was concentrated under reduced pressure and the solide obtained was re-dissolved in 60 mL HCl (6N) and allowed to stir at room temprature for next 12 hrs. HCl was removed by coevaporation with water (3×100 mL). This compound was purified by AG 1 × 8 anion exchange resin column (200-400 mesh, HCO^{2–} form, eluted first with H₂O and then with a gradient of formic acid. The final product **4** was obtained as a white solide in 29% yield. (0.6 g, 0.8 mmol). ¹H NMR (300 MHz, D₂0): δ 7.48 (d, 1H), 7.31 (m, 1H), 7.01(m, 2H), 5.38 (s, 1H), 4.08 (m, 2H), 3.26 (m, 4H), 2.97 (brs, 6H), 2.64–2.17 (a set of very broad and multiple peaks with an integration corresponding to 18H), 1.93 (brs, 2H). ¹³C NMR (75 MHz, D₂O): δ 180.31, 179.94, 177.03, 155.11, 129.67, 128.43, 127.68, 120.93, 113.16, 67.65, 59.03, 58.44, 50.90, 50.32, 50.01, 48.90, 47.67, 37.62, 25.06; HRESI-MS (ESI⁺): calculated for [C₂₈H₄₂N₄O₁₁S₂]⁺ 674.2291, found 675.2361. The appropriate isotope pattern was observed.

Scheme S1. Synthesis of p-MeHgGad

Tri-*tert*-butyl 2,2',2''-(10-(2-(4-formylphenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2a)

Synthesis procedure is similar to that of compound **2**. ¹H NMR (300 MHz, CDCl₃ w/TMS): δ 9.84 (s, 1H), 7.73 (d, 2H), 7.19 (d, 2H), 4.33 (brs, 2H), 3.52–2.16 (a set of very broad and multiple peaks with an integration corresponding to 24H), 1.48 (s, 9H), 1.22 (brs, 18H); ¹³C NMR (75 MHz, CDCl₃ w/TMS): δ 191.06, 172.97, 172.67, 163.87, 131.93, 130.61, 115.94, 82.55, 82.41, 65.78, 55.67, 55.88, 52.30, 50.06, 31.14, 28.18, 27.91; HRESI-MS(ESI⁺): calculated for [C₃₅H₅₈N₄O₈]⁺ 662.4255, found 663.4321. The appropriate isotope pattern was observed.

Tri-*tert*-butyl 2,2',2''-(10-(2-(4-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)ethyl) -1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3a)

Synthesis procedure is similar to that of compound **3**. ¹H NMR (300 MHz, CDCl₃ w/TMS): δ 7.29 (d, 2H), 6.96 (d, 2H), 5.24(s, 1H), 4.16 (brs, 2H), 3.71 (s, 6H), 3.50–2.38 (a set of very broad and multiple peaks with an integration corresponding to 28H), 1.46 (m, 9H), 1.26 (brs, 18H). ¹³C NMR (75 MHz, CDCl₃ w/TMS): δ 172.97, 172.64, 170.60, 158.89, 131.19, 129.08, 115.58, 114.93, 82.48, 82.38, 82.14, 65.42, 56.49, 55.81, 53.20, 52.66, 52.34, 50.44, 49.82, 33.91, 31.13, 28.16, 28.01; HRESI-MS(ESI⁺): calculated for [C₄₁H₆₈N₄O₁₁S₂]⁺ 856.4326, found 857.4413. The appropriate isotope pattern was observed.

2,2',2''-(10-(2-(4-(Bis((carboxymethyl)thio)methyl)phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4a)

Synthesis procedure is similar to that of compound 4. ¹H NMR (300 MHz, D₂0): δ 7.42 (d, 2H), 6.99 (d, 2H), 5.16 (s, 1H), 4.35 (brs, 2H), 3.75–3.24 (a set of very broad and multiple peaks with an integration corresponding to 28H). ¹³C NMR (75 MHz, D₂O): δ 174.57, 174.45, 157.56, 131.15, 129.29, 114.81, 52.27, 52.52, 51.65, 49.75, 35.13, 34.92; HRESI-MS (ESI⁺): calculated for [C₂₇H₄₀N₄O₁₁S₂]⁺ 660.2135, found 661.2209. The appropriate isotope pattern was observed.

1. Preparation of o-MeHgGad

The Gd(III) complex were prepared by dissolving the ligand 4 (0.5 g, 0.74 mmol) in H₂O (10 mL). The pH of the solution was adjusted to 6.5 with dilute sodium hydroxide. A solution of GdCl₃ (0.56 g, 0.78 mmol) in 5 mL (pH = 6.5) was added drop wise, maintaining pH at 5.5–6.5 with dilute sodium hydroxide. The mixture solution was stirred at room temperature for 12 hrs and the pH of the solution was periodically monitored and maintained. After 12 hrs the pH of the mixture solution was brought to 8.0, and the solution was centrifuged to remove excess lanthanide ions as Gd(OH)₃ and verified by the xylenol orange test. The trace Gd(OH)₃ was further removed by filtrating with 200 nm nylon filter, and the solution was freeze-dried under reduced pressure. *o*-MeHgGad was purified by HPLC and identified by HRESI-MS (Fig. S24). Similar procedure were followed for synthesis of *o*-MeHgEura (Eu(III) analog of *o*-MeHgGad) (HRESI-MS spectrum, Fig. S25), *p*-MeHgGad (HRESI-MS spectrum, Fig. S27, ESI)

Luminescence lifetime measurements

Luminescence measurements were performed on solutions consisting of 500 μ M Eu(III) analogues of *o*-MeHgGad in H₂O and D₂O in the absence and presence of CH₃Hg⁺. The rate of luminescence decay was measured using a Hitachi F-7000 fluorimeter (San Francisco, CA) with an excitation wavelength of 394 nm and an emission wavelength of 615 nm. The emission lifetimes (τ) values obtained in H₂O and D₂O are is summarized in Table S1. The number of bound water molecules was determined using equations S1 and S2.³

$$q = 1.05[1/\tau_{\rm H2O} - 1/\tau_{\rm D2O}]$$
(S1)

$$q = 1.05[(1/\tau_{\rm H2O} - 1/\tau_{\rm D2O}) - 0.25]$$
(S2)

where q is the number of water molecules bound to metal ions, τ_{H2O} is the luminescence half-life in water solution and τ_{D2O} is the luminescence half-life in deuterium oxide solution, respectively.

			q	
	$ au^{-1}_{ m H2O}$	$ au^{-1}$ D2O	<i>eq 2</i>	<i>eq 3</i>
o-MeHgEur ^a	2.207	1.990	0.227	-0.039
o-MeHgEur + 2 equiv. CH ₃ Hg ⁺	2.481	0.641	1.932	1.908
<i>p</i> -MeHgEur ^{<i>b</i>}	2.178	0.519	1.741	1.690

Table S1 Luminescence lifetimes (ms) and calculated number of inner-sphere water molecules (q) for the Eu (III) analog of *o*-MeHgGad in the absence and presence of CH_3Hg^+

^{*a*}Eu (III) analog of *o*-MeHgGad

^bEu (III) analog of *p*-MeHgGad

2. Relaxation time measurement (r1)

The longitudinal relaxation times (T_1) of Gd(III) complex were measured to determine relaxivity (r_1). All measurements were performed in 20mM HEPES buffer (pH 7.4) using a relaxometer operating at 20 MHz and 37.0 ± 0.1 °C (NMR-120 minispec, Bruker). Before each measurement the relaxometer was tuned and calibrated. The values of r_1 were determined from 5 data points generated by an inversion–recovery pulse sequence. Gd(III) concentrations were determined using ICP-OES. Relaxivity profile of DOTAREM[®], *o*-MeHgGad, and *p*-MeHgGad were computed from the slope of the plot of $1/T_1$ vs. [Gd]. Methyl mercury response was determined by the addition of CH₃HgCl dissolved in DMSO (final solutions with Gd contain <5% DMSO by volume) to solutions of the contrast agent. Hg²⁺ response was determined by the addition of HgCl₂ dissolved in H₂O. For metal ion selectivity experiments, aqueous NaCl, KCl, MgCl₂, CaCl₂, FeCl₃•6H₂O, CuCl₂, and ZnCl₂ were used.

3. MR imaging study

MR imaging experiment was performed with a 3.0 T MR imaging scanner (Sigma, GE Medical Systems, Milwaukee, WI) using a knee coil. The T_1 -weighted scanning was performed under the following condition: fast gradient echo, TR = 200 ms, TE = 61.3 ms, coronal view, and section thickness = mm, FOV = 10 cm.

4. In vivo MR imaging study

C57BL/6JNarl mice were purchased from the National Laboratory Animal Center, Taipei, Taiwan. Animal experiments were performed in accordance with our institutional guidelines for animal research. To simulate methyl mercury exposer 100 µL of methylmercury chloride solution (HEPES buffer containing DMSO (2%, v/v)) at the dose of 0.1 mmol/kg was injected intravenously via a tail vein into mice (n = 3). For control experiment three mice were given HEPES buffer injection. After 7 hrs, a single dose of *o*-MeHgGad (0.1 mmol/kg) was administered to each mouse by intravenous injection via the tail vein. The whole-body imaging of pentobarbital-anesthetized mice was performed with a 7.0 T MR imaging system (Bruker, Ettlingen, Germany). MR images were acquired before 4hrs, and 30 minutes after the contrast agent administration using a *T*₁-weighted fast spin-echo sequence 7.0 T imaging (TR/TE/ flip angle = 400/15/10°) for every 3 mm sectioning thickness. Contrast enhancement were calculated in the regions of interest (ROI) manually drawn on kidney, liver, and intestine using equation S3 and the data is represented as mean \pm SD (n = 3)

Enhancement (%) =
$$\left[\frac{(SI_{post} - SI_{pre})}{SI_{pre}}\right] \times 100$$
 (S3)

where SI_{post} and SI_{pre} are the MR signal integnity determined in the ROI at postcontrast and precontrast, respectively.

		-CH ₃ Hg ⁺	+ (CH ₃ Hg ⁺
	ROI	Enhancement (%)	ROI	Enhancement
	ROI 1	+1.1±0.1 %	ROI 8	+5.2±0.6%
Liver	ROI 2	+1.3±0.1 %	ROI 9	+20.5±2.7%
	ROI 3	+0.2±0.4 %	ROI 10	+23.8±4.3%
	ROI 4	+6.9±0.3 %	ROI 11	+18.4±2.7%
Intestine	ROI 5	+3.8±0.2 %	ROI 12	+24.7±2.1%
	ROI 6	+4.4±0.5 %	ROI 13	+18.8±1.2%
Kidney	ROI 7	+4.7±1.1 %	ROI 14	+11.5±3.6 %

Table S2 MR signal enhancement percentage in liver, intestine, and kidney

	Element contents ($\mu g/g$)				
		-CH ₃ Hg ⁺	$+CH_3Hg^+$		
-	Gd	Hg	Gd	Hg	
kidney	23.62	0.063	20.80	10.40	
liver	13.88	0.088	16.40	5.76	
intestine	12.15	0.042	12.70	3.55	

Table S3 Tissue distributions of Gd(III) and Hg(II) ions 45minutes post intravenous injection of o-MeHgGad at the dose of 0.1 mmol/kg in mice treated and not treated with CH₃Hg⁺

Fig. S1 ¹H NMR spectra (dry DMSO-*d*₆, 300 MHz): (A) *o*-MeHgGad ligand; (B) 1:3 mixture of *o*-MeHgGad ligand and CH₃Hg⁺.

Fig. S2 ¹H NMR spectra (D₂O, 300 MHz): (A) *p*-MeHgGad ligand; (B) 1:1 mixture of *p*-MeHgGad ligand and CH₃Hg⁺; (C) 1:2 mixture of *p*-MeHgGad ligand and CH₃Hg⁺.

Fig. S3 ¹H NMR spectra (dry DMSO- d_6 , 300 MHz): (A) *p*-MeHgGad ligand; (B) 1:3 mixture of *p*-MeHgGad ligand and CH₃Hg⁺.

Fig. S4 Relaxivity of *p*-MeHgGad (\blacksquare), DOTAREM[®] (\blacklozenge), and *o*-MeHgGad (\blacktriangle). All measurements were performed in 20mM HEPES buffer (pH 7.4) at 37.0 ± 0.1 °C and 20 MHz. Gd(III) concentrations were determined by ICP-MS.

Fig. S5 Relaxivity response of *o*-MeHgGad (0.6 mM) to various concentration of Hg²⁺ ion at 37.0 \pm 0.1 °C and 20 MHz in 20 mM HEPES buffer pH 7.4.

¹H NMR, ¹³C NMR, and HR-ESI spectra

Fig.S6 ¹H NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(3-(2-formylphenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2)

Fig. S7 ¹³C NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(3-(2-formylphenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2)

Fig. S8 HRESI-MS(ESI⁺) spectrum of tri-*tert*-butyl 2,2',2"-(10-(3-(2-formylphenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2)

Fig. S9 ¹H NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(3-(2-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3)

Fig. S10 ¹³C NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(3-(2-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3)

Fig. S11 HRESI-MS(ESI⁺) spectrum of tri-*tert*-butyl 2,2',2"-(10-(3-(2-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3)

Fig. S12 ¹H NMR spectrum of 2,2',2"-(10-(3-(2 (bis((carboxymethyl) thio) methyl) phenoxy) propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4)

Fig. S13¹³C NMR spectrum of 2,2',2"-(10-(3-(2 (bis((carboxymethyl) thio)methyl) phenoxy) propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4)

Fig. S14 HRESI-MS(ESI⁺) spectrum of 2,2',2"-(10-(3-(2 (bis((carboxymethyl) thio)methyl) phenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4)

Fig. S15 ¹H NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(2-(4-formylphenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2a)

Fig. S16¹³C NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(2-(4-formylphenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2a)

Fig. S17 HRESI-MS(ESI⁺) spectrum of tri-*tert*-butyl 2,2',2"-(10-(2-(4-formylphenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (2a)

2.727 2.728 2.728 2.528 <li

Fig. S18 ¹H NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(2-(4-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3a)

Fig. S19 ¹³C NMR spectrum of tri-*tert*-butyl 2,2',2"-(10-(2-(4-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3a)

Fig. S20 HRESI-MS(ESI⁺) spectrum of tri-*tert*-butyl 2,2',2"-(10-(2-(4-(3,9-dioxo-2,10-dioxa-5,7-dithiaundecan-6-yl)phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (3a)

Fig. S21 ¹H NMR spectrum of 2,2',2"-(10-(2-(4-(bis((carboxymethyl) thio)methyl)phenoxy) ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4a)

Fig. S22 ¹³C NMR spectrum of 2,2',2"-(10-(2-(4-(bis((carboxymethyl)thio)methyl) phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4a)

Fig. S23 HRESI-MS(ESI⁺) spectrum of 2,2',2"-(10-(2-(4-(bis((carboxymethyl)thio)methyl) phenoxy)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (4a)

Fig. S24 HRESI-MS (ESI⁻) spectrum of o-MeHgGad

Fig. S25 HRESI-MS (ESI⁻) spectrum of *o*-MeHgEur

Fig. S26 HRESI-MS (ESI⁻) spectrum of *p*-MeHgGad

Fig. S27 HRESI-MS (ESI⁻) spectrum of *p*-MeHgEur

Fig. S28 FAB (+) spectrum of o-MeHgGad in the presence of 2 equiv. CH₃Hg⁺

- 1 S. Mizukami, R. Takikawa, F. Sugihara, Y. Hori, H. Tochio, M. Wälchli, M. Shirakawa and K. Kikuchi, *J. Am. Chem. Soc.* 2008,**130**, 794-795
- 2 A. Khalafi-Nezhad, M. Divar and F. Panahi, J. Org. Chem. 2013, 78, 10902-10908
- 3 (a) A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. d. Sousa, J. A. G. Williams and M. Woods, *J. Chem. Soc., Perkin Trans. 2*, 1999, 493;
 (b) W. D. Horrocks and D. R. Sudnick, *J. Am. Chem. Soc.* 1979, **101**, 334.