Electronic Supplementary Information

for

Peroxide promoted tunable decarboxylative alkylation of cinnamic

acids to form alkenes or ketones under metal-free conditions

Jing Ji, Ping Liu and Peipei Sun*

College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210097, China E-mail: sunpeipei@njnu.edu.cn

Contents:

1. General Considerations	S2
2. General Experimental Procedures	S2
3. References	S11
4. Copies of ¹ H and ¹³ C NMR Spectra of the Products	S12
5. GC-FTIR Spectra of the Components of the Gas Generated from the Reaction t	o form
3aa	S47
6. LC-MS Analysis for the Reaction Mixture to Form 3aa after Reacting for 8 h un	der the
Standard Reaction Conditions	S48

1. General Considerations:

All reactions were run in a sealed tube with a Teflon lined cap under air atmosphere. Chemicals were commercially available and were used without purification. Disulfides were purchased or prepared according to the literature procedures.¹ ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometers in CDCl₃ [using (CH₃)₄Si (for ¹H, $\delta = 0.00$; for ¹³C, $\delta = 77.00$) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were obtained with a Waters Q-TOF mass spectrometer. LC-MS was determined on an Agilent 1200HPLC. Melting points are uncorrected.

2. General Experimental Procedures

2.1 Representative procedure for decarboxylative alkylation of cinnamic acids to form

ketones

A mixture of cinnamic acid **1a** (0.5 mmol), 4A molecular sieves (200 mg), cyclohexane **2a** (2.0 mL), DTBP (0.5 mmol, 1.0 equiv.) and TBHP (2.0 mmol, 4.0 equiv., 70% aqueous solution) was sealed in a 25 mL tube with a Teflon lined cap under nitrogen atmosphere. The tube was then placed in an oil bath, stirred and heated at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was quenched with water (20 mL) and extracted with dichloromethane (25 mL × 3). The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude product was purified over a column of silica gel (eluent: hexane/ethyl acetate = 20 : 1) to afford the desired product **3aa**.

2.2 Representative procedure for decarboxylative alkylation of cinnamic acids to form alkenes:

A mixture of cinnamic acid **1a** (0.5 mmol), cyclohexane **2a** (2.0 mL) and DTBP (1.0 mmol, 2.0 equiv.) was sealed in a 25 mL tube with a Teflon lined cap under nitrogen atmosphere. The tube was then placed in an oil bath, stirred and heated at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was quenched with water (20 mL) and extracted with dichloromethane (25 mL \times 3). The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude product was purified over a column of silica gel (eluent: hexane/ethyl acetate = 40 : 1) to afford the desired product **4aa**.

2-Cyclohexyl-1-phenylethan-1-one (**3aa**):¹ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (dd, *J* = 8.2, 1.2 Hz, 2H), 7.59–7.55 (m, 1H), 7.49–7.45 (m, 2H), 2.84 (d, *J* = 6.8 Hz, 2H), 2.05-1.95 (m, 1H), 1.80–1.66 (m, 5H), 1.36–1.16 (m, 3H), 1.09–0.99 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 200.3, 137.5, 132.8, 128.5, 128.1, 46.2, 34.6, 33.5, 26.3, 26.2.

2-Cyclohexyl-1-(*m*-tolyl)ethan-1-one (**3ba**): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (dd, *J* = 9.2, 1.6 Hz, 2H), 7.40–7.34 (m, 2H), 2.83 (d, *J* = 6.8 Hz, 2H), 2.43 (s, 3H), 2.05–1.94 (m, 1H), 1.80-1.65 (m. 5H), 1.33–1.15 (m, 3H), 1.08–0.98 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 200.5, 138.3, 137.6, 133.6, 128.6, 128.4, 125.4, 46.3, 34.6, 33.4, 26.3, 26.2, 21.4; HRMS-ESI (m/z): calcd for C₁₅H₂₀ONa [M + Na]⁺ 239.1406, found 239.1412.

2-Cyclohexyl-1-(*p*-tolyl)ethan-1-one (3ca):² Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 2.81 (d, *J* = 6.8 Hz, 2H), 2.43 (s, 3H), 2.04–1.94 (m, 1H), 1.79–1.65 (m, 5H), 1.32–1.15 (m, 3H), 1.08–0.98 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 200.0, 143.6, 135.0, 129.2, 128.3, 46.1, 34.7, 33.5, 26.3, 26.2, 21.6.

2-Cyclohexyl-1-(3,4-dimethylphenyl)ethan-1-one (**3da**): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (d, *J* = 1.6 Hz, 1H), 7.70 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 2.81 (d, *J* = 6.8 Hz, 2H), 2.34 (s, 6H), 2.03–1.92 (m, 1H), 1.79–1.65 (m, 5H), 1.32–1.15 (m, 3H), 1.07–0.98 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 200.3, 142.3, 136.9, 135.5, 129.7, 129.3, 126.0, 46.1, 34.7, 33.5, 26.3, 26.2, 20.0, 19.8; HRMS-ESI (m/z): calcd for C₁₆H₂₂ONa [M + Na]⁺ 253.1563, found 253.1569.

1-(4-Chlorophenyl)-2-cyclohexylethan-1-one (**3ea**):³ White solid. Mp: 52–54 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.90 (d, J = 8.8 Hz, 2H), 7.44 (J = 8.8 Hz, 2H), 2.80 (d, J = 6.8 Hz, 2H), 2.01–1.92 (m, 1H), 1.78–1.65 (m, 5H), 1.32–1.15 (m, 3H), 1.07–0.98 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 199.0, 139.3, 135.8, 129.6, 128.8, 46.2, 34.5, 33.4, 26.2, 26.1.

1-(3-Chlorophenyl)-2-cyclohexylethan-1-one (**3fa**): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.92 (dd, *J* = 3.6, 2.0 Hz, 1H), 7.84–7.81 (m, 1H), 7.54–7.51 (m, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 2.81 (d, *J* = 6.8 Hz, 2H), 2.02–1.93 (m, 1H), 1.78–1.65 (m, 5H), 1.32–1.15 (m, 3H), 1.07–0.98 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 198.9, 139.0, 134.9, 132.8, 129.9, 128.2, 126.2, 46.3, 34.4, 33.4, 26.2, 26.1; HRMS-ESI (m/z): calcd for C₁₄H₁₇ClONa [M + Na]⁺259.0860, found 259.0869.

1-(2-Chlorophenyl)-2-cyclohexylethan-1-one (**3ga**): Colorless oil.. ¹H NMR (CDCl₃, 400 MHz) δ 7.43–7.29 (m, 4H), 2.82 (d, *J* = 6.8 Hz, 2H), 2.00–1.90 (m, 1H), 1.79–1.62 (m, 5H), 1.31–1.13 (m, 3H), 1.05–0.95 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 203.5, 140.1, 131.4, 130.7, 130.5, 128.6, 126.9, 50.6, 34.2, 33.2, 26.2, 26.1; HRMS-ESI (m/z): calcd for C₁₄H₁₇ClONa [M + Na]⁺ 259.0860, found 259.0866.

1-(4-Bromophenyl)-2-cyclohexylethan-1-one (3ha): White solid. Mp: 52-54 °C. ¹H NMR

(CDCl₃, 400 MHz) δ 7.81 (d, *J* = 8.8 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 2.79 (d, *J* = 6.8 Hz, 2H), 2.01–1.91 (m, 1H), 1.77–1.64 (m, 5H), 1.31–1.14 (m, 3H), 1.06–0.97 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 199.1, 136.1, 131.8, 129.7, 128.0, 46.1, 34.5, 33.4, 26.2, 26.1; HRMS-ESI (m/z): calcd for C₁₄H₁₇BrONa [M + Na]⁺ 303.0355, found 303.0361.

1-(2-Bromophenyl)-2-cyclohexylethan-1-one (**3ia**): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.38–7.35 (m, 2H), 7.31–7.27 (m, 1H), 2,82 (d, *J* = 6.8 Hz, 2H), 2.02– 1.91 (m, 1H), 1.82–1.64 (m, 5H), 1.36–1.14 (m, 3H), 1.07–0.97 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 204.2, 142.3, 133.7, 131.3, 128.3, 127.4, 118.6, 50.4, 34.1, 33.2, 26.2, 26.1; HRMS-ESI (m/z): calcd for C₁₄H₁₇BrONa [M + Na]⁺ 303.0355, found 303.0378.

2-Cyclohexyl-1-(2,4-dichlorophenyl)ethan-1-one (3ja): Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.44 (d, *J* = 1.6 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.31 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 2.81 (d, *J* = 6.8 Hz, 2H), 1.99–1.88 (m, 1H), 1.77–1.64 (m. 5H), 1.33–1.13 (m, 3H), 1.05–0.96 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 202.2, 138.2, 137.0, 131.9, 130.4, 129.9, 127.3, 50.5, 34.3, 33.2, 26.2, 26.1; HRMS-ESI (m/z): calcd for C₁₄H₁₆Cl₂ONa [M + Na]⁺253.1563, found 253.1568.

2-Cyclohexyl-1-(4-(trifluoromethyl)phenyl)ethan-1-one (**3ka**): Colorless oil. ¹H NMR (CDCl₃, 400MHz), δ 8.06 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 2.86 (d, J = 6.8 Hz, 2H), 2.05–1.94 (m, 1H), 1.79–1.65 (m, 5H), 1.33–1.15 (m, 3H), 1.08–0.99 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 199.2, 140.1, 134.2 (q, J = 32.4 Hz), 128.4, 125.6 (q, J = 3.5 Hz), 123.6 (q, J = 270.9 Hz), 46.5, 34.4, 33.4, 26.2, 26.1; HRMS-ESI (m/z): calcd for C₁₅H₁₇F₃ONa [M + Na]⁺ 293.1123, found 293.1136.

QⁱC

2-Cyclopentyl-1-phenylethan-1-one (**3ab**):¹ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.00– 7.97 (m, 2H), 7.60–7.55 (m, 1H), 7.50–7.46 (m, 2H), 3.00 (d, *J* = 6.8 Hz, 2H), 2.47–2.35 (m, 1H), 1.94–1.86 (m, 2H), 1.69–1.55 (m, 4H), 1.25–1.18 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 200.4, 137.3, 132.8, 128.5, 128.1, 44.8, 36.1, 32.7, 25.0.

2-Cyclooctyl-1-phenylethan-1-one (3ac): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.98–7.94 (m, 2H), 7.59–7.54 (m, 1H), 7.49–7.44 (m, 2H), 2.88 (d, *J* = 6.8 Hz, 2H), 2.34–2.26 (m, 1H), 1.69–1.52 (m, 12H), 1.42–1.35 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 200.5, 137.5, 132.8, 128.5, 128.1, 46.9, 34.1, 32.5, 27.1, 26.2, 25.3; HRMS-ESI (m/z): calcd for C₁₆H₂₂ONa [M + Na]⁺ 253.1563, found 253.1568.

1-(4-Bromophenyl)-2-cyclooctylethan-1-one (**3hc**): White solid. Mp: 40–42 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.8 Hz, 2H), 2.84 (d, *J* = 6.8 Hz, 2H), 2.30–2.23 (m, 1H), 1.67–1.51 (m, 12H), 1.41–1.33 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 199.4, 136.1, 131.9, 129.7, 128.0, 46.8, 34.0, 32.5, 27.1, 26.2, 25.3. HRMS-ESI (m/z): calcd for C₁₆H₂₁BrOK [M + K]⁺ 347.0407, found 347.0403.

2-Cyclooctyl-1-(2,4-dichlorophenyl)ethan-1-one (**3jc**): Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.44 (d, *J* = 2.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.32 (dd, *J* = 8.0, 2.0 Hz, 1H), 2.85 (d, *J* = 7.2 Hz, 2H), 2.26–2.18 (m, 1H), 1.66–1.49 (m. 12H), 1.39–1.32 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 202.5, 138.2, 137.0, 131.9, 130.4, 129.9, 127.3, 51.3, 33.9, 32.4, 27.0, 26.2, 25.2; HRMS-ESI (m/z): calcd for C₁₆H₂₀Cl₂ONa [M + Na]⁺ 321.0783, found 321.0781.

2-(1,4-Dioxan-2-yl)-1-phenylethan-1-one (**3ad**):⁴ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.99–7.96 (m , 2H), 7.62–7.58 (m, 1H), 7.51–7.47 (m, 2H), 4.30–4.24 (m, 1H), 3.95 (d, *J* = 11.2 Hz, 1H), 3.82–3.74 (m, 3H), 3.68–3.62 (m, 1H), 3.41 (t, *J* = 10.4 Hz, 1H), 3.27 (dd, *J* = 16.4, 6.4 Hz, 1H), 2.91 (dd, *J* = 16.4, 6.0, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 197.1, 136.9, 133.4, 128.7, 128.2, 71.8, 91.0, 66.9, 66.5, 40.7.

1,3-Diphenylbutan-1-one (**3ae**):⁵ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (dd, *J* = 7.2, 5.2 Hz, 2H), 7.59–7.55 (m, 1H), 7.49–7.45 (m, 2H), 7.35–7,.29 (m, 4H), 7.24–7.20 (m, 1H), 3.58–3.49 (m, 1H), 3.33 (dd, *J* = 16.4, 5.6 Hz, 1H), 3.21 (dd, *J* = 16.4, 8.4 Hz, 1H), 1.36 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 199.1, 146.6, 137.2, 133.0, 128.6, 128.5, 128.1, 126.9, 126.3, 47.0, 35.6, 21.9.

(*E*)-(2-Cyclohexylvinyl)benzene (4aa):⁶ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.40–7.37 (m, 2H), 7.33–7.29 (m, 2H), 7.23–7.19 (m, 1H), 6.37 (d, *J* = 16.0 Hz, 1H), 6.21 (dd, *J* = 16.0 Hz, 6.8 Hz, 1H), 2.20–2.12 (m, 1H), 1.86–1.69 (m, 5H), 1.41–1.16 (m, 5H); ¹³C NMR(CDCl₃, 100 MHz) δ 138.1, 136.9, 128.5, 127.2, 126.7, 125.9, 41.2, 33.0, 26.2, 26.1.

(*E*)-1-(2-Cyclohexylvinyl)-3-methylbenzene (4ba):⁷ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ
7.27–7.20 (m, 3H), 7.07 (d, *J* = 6.8 Hz, 1H), 6.39 (d, *J* = 16.0 Hz, 1H), 6.23 (dd, *J* = 16.0, 6.8 Hz, 1H), 2.40 (s, 3H), 2.24–2.15 (m, 1H), 1.89–1.73 (m, 5H), 1.44-1.20 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.1, 138.0, 136.7, 128.4, 127.6, 127.3, 126.7, 123.2, 41.2, 33.0, 26.2, 26.1, 21.5.

(*E*)-1-Chloro-4-(2-cyclohexylvinyl)benzene (4ea):⁶ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.31–7.26 (m, 4H), 6.33 (dd, *J* = 16.0, 1.2 Hz, 1H), 6.18 (dd, *J* = 16.0, 6.8 Hz, 1H), 2.20–2.11 (m, 1H), 1.86–1.70 (m, 5H), 1.42–1.16 (m, 5H); ¹³C NMR (CDCl₃,100 MHz) δ 137.5, 136.6, 132.2, 128.6, 127.2, 126.1, 41.2, 32.9, 26.2, 26.0.

(*E*)-1-Chloro-3-(2-cyclohexylvinyl)benzene (4fa):⁸ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.37 (s, 1H), 7.24–7.17 (m, 3H), 6.32 (d, *J* = 16.4 Hz, 1H), 6.22 (dd, *J* = 16.4, 6.8 Hz, 1H), 2.21– 2.12 (m, 1H), 1.85–1.70 (m, 5H), 1.42–1.16 (m, 5H); ¹³C NMR (CDCl₃,100 MHz) δ 140.0, 138.4, 134.4, 129.6, 126.7, 126.1, 125.9, 124.2, 41.1, 32.9, 26.1, 26.0.

(*E*)-1-Chloro-2-(2-cyclohexylvinyl)benzene (4ga):⁷ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.54 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.36 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.24–7.20 (m, 1H), 7.17–7.13 (m, 1H), 6.77 (d, *J* = 16.0 Hz, 1H), 6.20 (dd, *J* = 16.0, 7.2 Hz, 1H), 2.27–2.18 (m, 1H), 1.89–1.71 (m, 5H), 1.42–1.19 (m, 5H); ¹³C NMR(CDCl₃,100 MHz) δ 139.7, 136.1, 132.7, 129.6, 127.8, 126.7, 126.5, 123.6, 41.4, 32.9, 26.2, 26.0.

(*E*)-1-Bromo-4-(2-cyclohexylvinyl)benzene (4ha):⁶ White solid. Mp: 43–45 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.43 (d, *J* = 8.8 Hz, 2H), 7.23 (d, *J* = 8.8 Hz, 2H), 6.31 (d, *J* = 16.0 Hz, 1H), 6.20 (dd, *J* = 16.0, 6.8 Hz, 1H), 2.19–2.11 (m, 1H), 1.85–1.70 (m, 5H), 1.41–1.16 (m, 5H); ¹³C NMR (CDCl₃,100 MHz) δ 137.7, 137.0, 131.5, 127.5, 126.2, 120.3, 41.2, 32.9, 26.2, 26.0.

(*E*)-1-Bromo-2-(2-cyclohexylvinyl)benzene (4ia): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.57–7.52 (m, 2H), 7.28–7.24 (m, 1H), 7.10–7.06 (m, 1H), 6.72 (d, *J* = 16.0 Hz, 1H), 6.16 (dd, *J* = 16.0, 6.8 Hz, 1H), 2.27–2.18 (m, 1H), 1.89–1.71 (m, 5H), 1.42–1.19 (m, 5H); ¹³C NMR (CDCl₃,100 MHz) δ 139.8, 137.8, 132.8, 128.1, 127.4, 126.8, 126.3, 123.4, 41.3, 32.9, 26.2, 26.0; HRMS-ESI (m/z): calcd for C₁₄H₁₈Br [M + H]⁺ 265.0592, found 265.0597.

(*E*)-2,4-Dichloro-1-(2-cyclohexylvinyl)benzene (4ja): Colorless oil. ¹H NMR (CDCl₃, 400 MHz)
δ 7.45 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 2.0 Hz, 1H), 7.8 (dd, *J* = 8.4, 2.0 Hz, 2H), 6.67 (d, *J* = 16.0 Hz, 1H), 6.16 (dd, *J* = 16.0, 6.8 Hz, 1H), 2.24–2.15 (m, 1H), 1.86–1.69 (m, 5H), 1.38–1.17 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 134.7, 133.1, 132.6, 129.2, 127.3, 127.0, 122.7, 41.4,

32.8, 26.1, 26.0; HRMS-ESI (m/z): calcd for $C_{14}H_{17}Cl_2$ [M + H]⁺ 255.0707, found 255.0711.

(*E*)-1-(2-Cyclohexylvinyl)-4-(trifluoromethyl)benzene (4ka):⁹ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 6.41(d, *J* = 16.4 Hz, 1H), 6.31 (dd, *J* = 16.4, 6.4 Hz, 1H), 2.24–2.15 (m, 1H), 1.87–1.71 (m, 5H), 1.43–1.18 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 141.6, 139.6, 128.6 (q, *J* = 32.1 Hz), 126.2, 126.1, 125.4 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 270.1 Hz), 41.2, 32.8, 26.1, 26.0.

(*E*)-1-(2-Cyclohexylvinyl)-3-methoxybenzene (4la):⁷ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.24 (t, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.94 (t, *J* = 1.8 Hz, 1H), 6.79 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.36 (d, *J* = 16.0 Hz, 1H), 6.22 (dd, *J* = 16.0, 6.8 Hz, 1H), 3.85 (s, 3H), 2.21–2.13 (m, 1H), 1.87–1.71 (m, 5H), 1.43–1.18 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.8, 139.6, 137.2, 129.4, 127.2, 118.7, 112.4, 111.3, 55.2, 41.2, 33.0, 26.2, 26.1.

(*E*)-1-(2-Cyclohexylvinyl)-2,4-dimethoxybenzene (4ma): Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.38 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 16.4 Hz, 1H), 6.50–6.46 (m, 2H), 6.08 (dd, *J* = 16.4, 7.2 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 2.20–2.12 (m, 1H), 1.87–1.69 (m, 5H), 1.38–1.20 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.8, 157.3, 135.4, 126.8, 121.4, 120.2, 104.7, 98.4, 55.4, 55.3, 41.6, 33.2, 26.3, 26.2. HRMS-ESI (m/z): calcd for C₁₆H₂₃O₂ [M + H]⁺ 247.1698, found 247.1687.

(*E*)-2-(2-Cyclohexylvinyl)pyridine (4na):¹⁰ Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.53 (d, J = 4.8 Hz, 1H), 7.62–7.57 (m, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.10–7.07 (m, 1H), 6.71 (dd, J = 16.0, 6.8 Hz, 1H), 6.45 (d, J = 16.0 Hz, 1H), 2.24–2.15 (m, 1H), 1.87–1.67 (m, 5H), 1.36–1.18 (m, 5H);
¹³C NMR (CDCl₃, 100 MHz) δ 156.3, 149.3, 141.5, 136.4, 127.4, 121.5, 121.1, 41.0, 32.6, 26.1,

(*E*)-1-(2-Cyclohexylvinyl)naphthalene (4oa):⁶ Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 8.22 (d, *J* = 9.2 Hz, 1H), 7.91 (dd, *J* = 7.6, 2.4 Hz, 1H), 7.81 (d, *J* = 4.2 Hz, 1H), 7.65–7.48 (m, 4H), 7.17 (d, *J* = 15.6 Hz, 1H), 6.28 (dd, *J* = 15.6, 7.2 Hz, 1H), 2.38–2.30 (m, 1H), 2.00–1.78 (m, 5H), 1.48– 1.31 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 136.0, 133.7, 131.3, 128.5, 127.2, 125.8, 125.7, 125.6, 124.4, 124.0, 123.5, 41.6, 33.1, 26.3, 26.2.

(*E*)-(2-Cyclopentylvinyl)benzene (4ab):⁶ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.42–7.40 (m, 2H), 7.37–7.32 (m, 2H), 7.26–7.22 (m, 1H), 6.44 (d, *J* = 16.0 Hz, 1H), 6.27 (dd, *J* = 16.0, 7.6 Hz, 1H), 2.71–2.61 (m, 1H), 1.97–1.89 (m, 2H), 1.82–1.64 (m, 4H), 1.51–1.42 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.0, 135.7, 128.5, 127.9, 126.7, 126.0, 43.9, 33.3, 25.3.

(*E*)-Styrylcyclooctane (4ac):⁶ Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.41–7.39 (m, 2H), 7.35–7.32 (m, 2H), 7.25–7.21 (m, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 6.27 (dd, *J* =16.0, 7.6 Hz, 1H), 2.45–2.43(m, 1H), 1.86–1.57 (m, 14H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.2, 137.9, 128.5, 126.9, 126.7, 126.0, 41.4, 31.9, 27.5, 26.0, 25.1.

(*E*)-Styrylcyclododecane (4af): White solid. Mp: 38–40 °C. ¹H NMR (CDCl₃, 400 MHz) δ 7.40 (d, *J* = 7.8 Hz, 2H), 7.35–7.31 (m, 2H), 7.25–7.20 (m, 1H), 6.39 (d, *J* = 16.0 Hz, 1H), 6.15 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.43–2.35 (m, 1H), 1.66–1.51 (m, 2H), 1.47–1.34 (m, 20H). ¹³C NMR (CDCl₃, 100 MHz) δ 138.1, 136.6, 128.5, 128.2, 126.7, 126.0, 37.6, 30.0, 23.9, 23.8, 23.4, 22.4; HRMS-ESI (m/z): calcd for C₂₀H₃₁ [M + H]⁺ 271.2426, found 271.2413.

(3r,5r,7r)-1-((E)-Styryl)adamantine (4ag):¹¹ White solid (a mixture, 83% coupling on C(1) and S10

17% coupling on C(2), determined by ¹H NMR). ¹H NMR (CDCl₃, 400 MHz) δ 7.44–7.20 (m, 5H), 6.55 (dd, *J* = 16.0, 6.4 Hz, 0.17H), 6.45 (d, *J* = 16.0 Hz, 0.17H), 6.29 (d, *J* = 16.4 Hz, 0.83H), 6.15 (d, *J* = 16.4 Hz, 0.83H), 2.61 (d, *J* = 6.0 Hz, 0.17H), 2.08–1.90 (m, 4H), 1.82–1.73 (m, 10.83H); ¹³C NMR (CDCl₃, 100 MHz) δ 142.1, 138.2, 135.1, 128.9, 128.5, 126.7, 126.0, 124.5, 47.8, 47.4, 42.3, 38.8, 38.1, 36.9, 35.6, 35.2, 33.1, 32.2, 31.7, 28.5, 28.1, 27.9.

(*E*)-(3-Methylhept-1-en-1-yl)benzene (4ah):⁶ Colorless oil (a mixture, 10% coupling on C(1), 50% coupling on C(2) and 40% coupling on C(3), determined by ¹H NMR). ¹H NMR (CDCl₃, 400 MHz) δ 7.42–7.40 (m, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.26–7.22 (m, 1H), 6.41–6.37 (m, 1H), 6.29 (dt, *J* = 16.0, 6.8 Hz, 0.10H), 6.16 (dd, *J* = 16.0, 8.0 Hz, 0.50H), 6.01 (dd, *J* = 16.0, 8.8 Hz, 0.40H), 2.37–2.27 (m, 0.5H), 2.26–2.24 (m, 0.1H), 2.13–2.07 (m, 0.4H), 1.55–1.33 (m, 6H), 1.13 (d, *J* = 6.8 Hz, 1.5H), 0.97–0.93 (m, 4.5H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.0, 137.1, 135.6, 129.7, 128.5, 128.0, 126.8, 126.7, 126.0, 44.9, 37.4, 37.3, 36.9, 29.7, 28.2, 22.9, 20.7, 20.5, 14.2, 14.1, 11.9.

3. References

- 1 C. F. Malosh and J. M. Ready, J. Am. Chem. Soc., 2004, 126, 10240-10241.
- 2 C. C. Wamser and W. R. Wagner, J. Am. Chem. Soc., 1981, 103, 7233-7234.
- 3 J. Rey, H.-P. Hu, J. P. Snyder and A. G. M. Barrett, Tetrahedron Lett., 2012, 68, 9211-9217.
- 4 K Cheng, L.-H. Huang and Y.-H. Zhang, Org. Lett., 2009, 11, 2908-2911.
- 5 L. R. Jefferies and S. P. Cook, *Tetrahedron*, 2014, 70, 4204-4027.
- 6 Y.-F. Zhu and Y.-Y. Wei, Chem. Sci., 2014, 5, 2379-2382.
- 7 J.-C. Zhao, H. Fang, J.-L. Han and Y. Pan, Beilstein J. Org. Chem., 2013, 9, 1718-1723.
- 8 W. Affo, H. Ohmiya, T. Fujioka, Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima, Y. Imamura, T. Mizuta and K. Miyoshi, *J. Am. Chem. Soc.*, 2006, **128**, 8068-8077.
- 9 C. M. McMahon and E. J. Alexanian, Angew. Chem. Int. Ed., 2014, 53, 5974-5977.
- 10 D. Mao, G. Hong, S.-Y. Wu, X. Liu, J.-J. Yu and L.-M. Wang, *Eur. J. Org. Chem.*, 2014, 14, 3009-3019.
- 11 K. Kanagaraj and K. Pitchumani, Chem.-Eur. J., 2013, 19, 14425-14431.

4. Copies of ¹H and ¹³C NMR Spectra of the Products

1H CDCL3(3#,SPP) BRUKER AV400 12,03,2014

S26

13C CDCL3(1#,SPP) BRUKER AV400 01,21,2015

13C CDCL3(2#,SPP) BRUKER AV400 01,20,2015

5. GC-FTIR Spectra of the Components of the Gas Generated from the Reaction to form 3aa

Integration Peak List						
Peak	Start	RT	End	Height	Area	Area %
3	3.66	3.76	3.88	5207840	41535817	8.48
5	4.7	4.83	5.06	20667638	180285856	36.79
9	6.65	6.78	6.99	10004558	89968971	18.36
12	8.01	8.14	8.41	4273206	44265062	9.03
16	10.84	11.03	11.5	6730793	109370437	22.32
19	15.07	15.22	15.44	10015550	124681471	25.45
21	15.72	15.81	15.92	5522550	31652722	6.46
23	16.47	16.75	16.87	27510111	489992868	100
24	16.87	17.03	17.4	22618896	443779158	90.57
25	17.8	17.87	18.06	5417192	36222725	7.39

Peak List				
m/z	Abund			
133.2	11290			
141.2	310347			
142.2	27086			
185.3	10324			
247.2	1047752			
248.2	165041			
249.2	20046			
283.2	22730			
285.2	6390			
295.2	6312			

247.2	199696
311.2	72380
319.3	44338
377.3	58698