Supporting Information

Tuning Radical Reactivity by Iodine in Oxidative C(sp³)-H/C(sp)-H Cross-Coupling: An Easy Way toward Furans and Indolizines

Shan Tang,^{*a*} Kun Liu,^{*a*} Yue Long,^{*a*} Xiaotian Qi,^{*b*} Yu Lan,^{*b*,*} and Aiwen Lei^{*a*,*}

^{*a*} College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

^b School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China

E-mail: aiwenlei@whu.edu.cn

General information	S2
General procedure	S3
Figure S1	S4
Figure S2	S5
Isotope labeling experiment	S6
Figure S3	S7
Table S1	S8
Detail descriptions for products	S9
General computational calculation details	S15
References	
Copies of product NMR Spectra	S20

General information

The reactions were conducted in Schlenk tube under N₂ atmosphere. [D]-**2a** was synthesized according to a literature report.¹ Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). Gas chromatographic analyses were performed on Varian GC 2000 gas chromatography instrument with a FID detector and naphthalene was added as internal standard. ¹H and ¹³C NMR data were recorded with Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (77.00 ppm, chloroform), respectively.

General procedure

Method A: Oxidative cross-coupling/cyclization of β-keto esters with terminal alkynes

In a clean sealed Schlenk tube equipped with a stir bar, NaOAc (42.0 mg, 0.50 mmol), I₂ (50.8 mg, 0.20 mmol) were added under N₂ atmosphere. 1,2-Dichloroethane (DCE, 4.0 mL) was injected into the tube via syringe. After the dissolution of the I₂, β -ketone ester (1.5 mmol), alkyne (0.50 mmol) and CHP (70% in cumene, 217.1 mg, 1.0 mmol) was subsequently injected into the reaction tube. The reaction was then stirred at 90 °C for 10 h. After completion, the reaction was quenched with saturated NaHSO₃ solution. Then the reaction was extracted with ethyl ether (3 x 10 mL). The organic layers were combined and dried over anhydrous Na₂SO₄. The pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate = 100:1).

Method B: Oxidative cross-coupling/cyclization of 2-alkylazaarenes with terminal alkynes

In a clean sealed Schlenk tube equipped with a stir bar, NaOAc (42.0 mg, 0.50 mmol), I₂ (38.1 mg, 0.15 mmol) were added under N₂ atmosphere. 1,2-Dichloroethane (DCE, 4.0 mL) was injected into the tube via syringe. After the dissolution of the I₂, 2-alkylazaarenes (1.5 mmol), alkyne (0.50 mmol) and CHP (70% in cumene, 217.1 mg, 1.0 mmol) was subsequently injected into the reaction tube. The reaction was then stirred at 100 °C for 10 h. After completion, the reaction was quenched with saturated NaHSO₃ solution. Then the reaction was extracted with ethyl ether (3 x 10 mL). The organic layers were combined and dried over anhydrous Na₂SO₄. The pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate = 20:1).

Figure S1

¹H NMR spectra study on the mixture of substrate **1a** with iodine and peroxides.

Reaction conditions: (a) **2b** (1.5 mmol) and I₂ (0.20 mmol) in CDCl₃ (2.0 mL), stirring at 90 °C for 1 h; (b) **2b** (1.5 mmol), I₂ (0.20 mmol) and TBHP (1.5 mmol, 70% in aqueous solution) in CDCl₃ (2.0 mL), stirring at 90 °C for 1 h; (c) **2b** (1.5 mmol) and "Bu₄NI (0.40 mmol) in CDCl₃ (2.0 mL), stirring at 90 °C for 1 h.

Figure S2

¹H NMR spectra of the oxidative cross-coupling of **1a** with **2a**.

Reaction conditions: **1a** (1.5 mmol), **2a** (0.50 mmol), I₂ (0.20 mmol), TBHP (1.5 mmol, 70% in aqueous solution) with NaOAc (0.50 mmol), CDCl₃ (2.0 mL), 90 °C.

Isotope labeling experiment

Experiment procedure: In a clean sealed Schlenk tube equipped with a stir bar, ethyny-*d*-benzene (96%-d, 51.5 mg, 0.50 mmol), NaOAc (41.0 mg, 0.50 mmol), I₂ (50.8 mg, 0.20 mmol) were added under N₂ atmosphere. 1,2-Dichloroethane (DCE, 4.0 mL) was injected into the tube via syringe. After the dissolution of the I₂, ethyl acetoacetate (1.5 mmol) and TBHP (70% in water, 192.3 mg, 1.5 mmol) were dropped into the mixture under nitrogen. The reaction was then stirred at 90 °C for 12 h. The resulting reaction solution was purified by flash column chromatography with 39% yield of [D]-**3a** (96%-*D*).

[D]-3a

Figure S3

Free-energy profile and mechanism for oxidation of **R-3** with the help of iodine.

Table S1

Screening of reaction conditions.

	о с		cat. [I]					
/	↓↓↓ → OMe +	<u></u> − Ph −	[0]	Ph				
	1a	2a		3a				
Entry	Catalyst	Oxidant	Solvent	Yield of 3a (%) ^b				
1	ⁿ Bu₄NI	TBHP	DCE	trace				
2	PhI	TBHP	DCE	n.d.				
3	NIS	TBHP	DCE	trace				
4	l ₂	TBHP	DCE	52				
5	none	TBHP	DCE	n.d.				
6	l ₂	TBHP	MeCN	n.d.				
7	I_2	TBHP	EtOAc	n.d.				
8	I_2	TBHP	Toluene	35				
9	I_2	TBHP	DMSO	n.d.				
10	I_2	DTBP	DCE	trace				
11	I_2	TBPB	DCE	24				
12	I_2	CHP	DCE	52				
13	I_2	H_2O_2	DCE	n.d.				
14 ^c	I_2	TBHP	DCE	31				

^{*a*} The reaction was carried out in the presence of **1a** (1.5 mmol), **2a** (0.5 mmol), catalyst (0.20 mmol), oxidant (1.5 mmol, 70% in aqueous solution) with NaOAc (0.50 mmol), solvent (4.0 mL), 90 °C, 10 h. ^{*b*} Yield determined by GC analysis with biphenyl as the internal standard. ^{*c*} 20 mol% I₂ was used.

Detail descriptions for products

MeOOC

Methyl 2-methyl-5-phenylfuran-3-carboxylate (**3a**):² pale yellow liquid was obtained with 50% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.44-7.35 (m, 2H), 7.30 – 7.24 (m, 1H), 6.87 (s, 1H), 3.85 (s, 3H), 2.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.46, 158.73, 151.72, 129.97, 128.68, 127.61, 123.59, 115.05, 105.35, 51.38, 13.87.

Methyl 2-isopropyl-5-phenylfuran-3-carboxylate (**3b**):² pale yellow liquid 51% isolated yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 6.5 Hz, 1H), 6.87 (s, 1H), 3.88 – 3.76 (m, 4H), 1.34 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.72, 164.34, 151.36, 130.13, 128.66, 127.57, 123.59, 113.10, 105.32, 51.33, 27.34, 20.84. EtOOC

Ethyl 2-methyl-5-phenylfuran-3-carboxylate (3c):³ pale yellow liquid was obtained with 60% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.28 – 7.23 (m, 1H), 6.88 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.64 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.05, 158.57, 151.63, 130.02, 128.67, 127.56, 123.57, 115.35, 105.44, 60.18, 14.35, 13.88.

Ethyl 5-(4-fluorophenyl)-2-methylfuran-3-carboxylate (**3d**):³ pale yellow liquid was obtained with 57% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.8, 5.3 Hz, 2H), 7.07 (t, J = 8.8 Hz, 2H), 6.81 (s, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.63 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.95, 162.18 (d, $J_{C-F} = 248.3$ Hz), 158.51, 150.77, 126.36 (d, $J_{C-F} = 3.3$ Hz), 125.35 (d, $J_{C-F} = 4.1$ Hz), 115.70 (d, $J_{C-F} = 22.0$ Hz), 115.37, 105.10 (d, $J_{C-F} = 1.4$ Hz), 60.21, 14.33, 13.84. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.77.

EtOOC

Ethyl 5-(4-chlorophenyl)-2-methylfuran-3-carboxylate (3e):³ pale yellow liquid was obtained with 50% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.6 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 6.86 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.63 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.83, 158.78, 150.53, 133.18, 128.85, 128.47, 124.76, 115.47, 105.90, 60.24, 14.32, 13.86.

Ethyl 5-(2-chlorophenyl)-2-methylfuran-3-carboxylate (3f): pale yellow liquid was obtained with 53% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.42 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.35 (s, 1H), 7.30 (td, *J* = 7.8, 1.3 Hz, 1H), 7.19 (td, *J* = 7.8, 1.7 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.66 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.92, 158.61, 147.83, 130.68, 130.00, 128.32, 128.21, 127.48, 126.77, 115.41, 111.41, 60.22, 14.36, 13.82. HRMS (ESI) calcd for C₁₄H₁₃ClO₃ [M+H]⁺: 265.0626; found: 265.0622. EtoOC

Ethyl 5-(4-bromophenyl)-2-methylfuran-3-carboxylate (3g):³ pale yellow solid was obtained with 48% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.43 (m, 4H), 6.88 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.63 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.79, 158.83, 150.53, 131.77, 128.87, 125.00, 121.30, 115.49, 106.02, 60.24, 14.32, 13.87.

Ethyl 2-methyl-5-(p-tolyl)furan-3-carboxylate (3h):³ pale yellow solid was obtained with 65% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.82 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.64 (s, 3H), 2.34 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.13, 158.22, 151.84, 137.45, 129.34, 127.32, 123.53, 115.22, 104.64, 60.12, 21.24, 14.35, 13.87.

Ethyl 5-(4-acetylphenyl)-2-methylfuran-3-carboxylate (3i):³ white solid was obtained with 48% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.6 Hz, 2H), 7.71 (d, *J* = 8.6 Hz, 2H), 7.04 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.67 (s, 3H), 2.61 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.28, 163.68, 159.71, 150.43, 135.65, 134.01, 128.92, 123.32, 115.80, 107.98, 60.34, 26.54, 14.32, 13.96.

EtOOC

Ethyl 2-methyl-5-pentylfuran-3-carboxylate (**3j**):² pale yellow solid was obtained with 46% isolated yield following Method A. ¹H NMR (400 MHz, CDCl₃) δ 6.22 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.57 – 2.49 (m, 5H), 1.67 – 1.55 (m, 2H), 1.38 – 1.27 (m, 7H), 0.90 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.47, 157.48, 154.39, 113.78, 105.36, 59.92, 31.27, 27.64, 27.47, 22.39, 14.39, 13.99, 13.73.

(1,2-diiodovinyl)benzene (4):⁴ white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H),
7.25 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.95, 128.89, 128.43, 128.36, 96.19, 80.87.

Ethyl 3-phenylindolizine-1-carboxylate (**6a**):⁵ white solid was obtained with 90% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.18 (m, 2H), 7.55 – 7.41 (m, 4H), 7.40 – 7.33 (m, 1H), 7.30 (s, 1H), 7.07 – 6.99 (m, 1H), 6.65 (td, *J* = 6.7, 1.5 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.78, 136.10, 130.96, 128.84, 128.29, 127.74, 126.17, 123.08, 122.02, 119.89, 115.87, 112.36, 104.01, 59.33, 14.49.

EtOOC

Ethyl 3-(p-tolyl)indolizine-1-carboxylate (6b):⁵ white solid was obtained with 90% isolated yield

following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.09 (m, 2H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.26 (m,3H), 7.06 (ddd, *J* = 9.0, 6.6, 1.0 Hz, 1H), 6.68 (td, *J* = 6.9, 1.3 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 1.46 (t, *J* = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.83, 137.66, 136.00, 129.53, 128.27, 128.03, 126.27, 123.14, 121.86, 119.86, 115.58, 112.25, 103.87, 59.30, 21.08, 14.50.

Ethyl 3-(4-methoxyphenyl)indolizine-1-carboxylate (**6c**):⁵ white solid was obtained with 96% isolated yield following Method B. 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 18.9, 8.1 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 7.24 (s, 1H), 7.08 – 6.99 (m, 3H), 6.67 (t, J = 6.5 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 165.04, 159.33, 135.94, 130.04, 126.15, 123.43, 123.24, 121.93, 119.99, 115.49, 114.40, 112.36, 103.82, 59.45, 55.30, 14.62.

EtOOC.

Ethyl 3-(4-fluorophenyl)indolizine-1-carboxylate (**6d**):⁵ white solid was obtained with 80% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 9.1 Hz, 1H), 8.16 (d, J = 7.1 Hz, 1H), 7.56 – 7.41 (m, 2H), 7.25 (s, 1H), 7.21 – 7.11 (m, 2H), 7.05 (ddd, J = 8.9, 6.6, 0.9 Hz, 1H), 6.68 (td, J = 7.0, 1.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.78, 162.22 (d, $J_{C-F} = 249.1$ Hz), 136.07, 130.31 (d, $J_{C-F} = 8.1$ Hz), 127.12 (d, $J_{C-F} = 3.3$ Hz) 125.08, 122.92, 122.10, 119.99, 115.98 (d, $J_{C-F} = 21.7$ Hz), 115.96, 112.56, 104.05,59.43, 14.51. ¹⁹F NMR (377 MHz, CDCl₃) δ -112.97.

EtOOC

Ethyl 3-(4-chlorophenyl)indolizine-1-carboxylate (6e):⁵ white solid was obtained with 94% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 26.7, 8.1 Hz, 2H), 7.41 (s, 4H), 7.26 (s, 1H), 7.15 – 6.98 (m, 1H), 6.67 (td, *J* = 6.9, 1.2 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.60, 136.23, 133.47, 129.41, 129.07,

124.79, 122.85, 122.18, 119.97, 116.13, 112.62, 104.22, 59.40, 14.47.

Ethyl 3-(2-chlorophenyl)indolizine-1-carboxylate (6f):⁵ white solid was obtained with 84% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 9.1 Hz, 1H), 7.66 (d, *J* = 7.0 Hz, 1H), 7.56 – 7.47 (m, 1H), 7.46 – 7.29 (m, 4H), 7.09 (ddd, *J* = 8.9, 6.7, 0.8 Hz, 1H), 6.69 (td, *J* = 6.9, 1.1 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.80, 135.81, 134.71, 132.95, 130.02, 129.85, 129.82, 127.04, 124.15, 123.19, 122.29, 119.70, 117.00, 112.19, 103.69, 59.40, 14.53. HRMS (ESI) calcd for C₁₇H₁₄CINO₂ [M+H]⁺: 300.0786; found: 300.0780.

Ethyl 3-(4-bromophenyl)indolizine-1-carboxylate (6g):⁵ white solid was obtained with 90% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 21.9, 8.1 Hz, 2H), 7.64 – 7.53 (m, 2H), 7.41 – 7.33 (m, 2H), 7.27 (d, *J* = 3.4 Hz, 1H), 7.05 (ddd, *J* = 9.0, 6.6, 0.9 Hz, 1H), 6.68 (td, *J* = 6.9, 1.2 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 164.69, 136.33, 132.10, 129.95, 129.76, 124.89, 122.92, 122.29, 121.68, 120.07, 116.20, 112.73, 104.31, 59.49, 14.54. HRMS (ESI) calcd for C₁₇H₁₄BrNO₂ [M+H]⁺: 344.0281; found: 344.0274.

EtOOC

Ethyl 3-(4-(trifluoromethyl)phenyl)indolizine-1-carboxylate (6h):⁵ white solid was obtained with 80% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 37.5, 8.1 Hz, 4H), 7.35 (s, 1H), 7.08 (dd, J = 9.1, 6.9 Hz, 1H), 6.72 (t, J = 7.0 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.62, 136.69, 134.71, 129.43 (q, $J_{C-F} = 32.7$ Hz), 128.17, 125.94 (q, $J_{C-F} = 3.7$ Hz), 124.60, 123.93 (q, $J_{C-F} = 273.0$ Hz), 122.91, 122.64, 120.19, 116.92, 112.98, 104.70, 59.58, 14.48. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.53. HRMS (ESI) calcd for C₁₈H₁₄F₃NO₂ [M+H]⁺: 334.1049; found: 334.1043.

Ethyl 3-pentylindolizine-1-carboxylate (6i):¹¹ pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 9.0 Hz, 1H), 7.84 (d, *J* = 7.0 Hz, 1H), 7.09 – 6.96 (m, 2H), 6.75 (t, *J* = 6.8 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.77 (t, *J* = 7.6 Hz, 2H), 1.84 – 1.71 (m, 2H), 1.46 – 1.34 (m, 7H), 0.93 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.20, 135.58, 125.74, 122.66, 121.08, 119.96, 113.58, 112.07, 102.72, 59.36, 31.63, 26.53, 25.67, 22.48, 14.68, 14.00.

Ethyl 3-cyclopropylindolizine-1-carboxylate (**6j**):⁵ pale yellow oil was obtained with 10% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (t, J = 7.4 Hz, 2H), 7.07 (dd, J = 8.9, 7.0 Hz, 1H), 6.98 (s, 1H), 6.78 (t, J = 6.8 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 1.87 – 1.77 (m, 1H), 1.40 (t, J = 7.1 Hz, 3H), 1.08 – 0.97 (m, 2H), 0.74 – 0.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.10, 135.69, 127.36, 123.31, 121.76, 119.78, 113.64, 112.06, 102.31, 59.34, 14.66, 5.94, 5.36.

1-(3-Phenylindolizin-1-yl)ethanone (**6k**):⁵ white solid was obtained with 92% isolated yield following Method B. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 9.0 Hz, 1H), 8.29 (d, *J* = 7.1 Hz, 1H), 7.58 – 7.47 (m, 4H), 7.42 (ddd, *J* = 8.5, 3.3, 1.6 Hz, 1H), 7.23 – 7.10 (m, 2H), 6.77 (td, *J* = 6.9, 1.2 Hz, 1H), 2.56 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 193.02, 135.83, 130.98, 129.10, 128.60, 128.12, 126.27, 123.84, 123.15, 120.99, 116.42, 113.55, 113.41, 27.96. HRMS (ESI) calcd for C₁₆H₁₃NO [M+H]⁺: 236.1073; found: 236.1066.

3-Phenylindolizine-1-carbonitrile (**6**):⁵ white solid was obtained with 46% isolated yield following Method B. ¹H NMR (400 MH/z, CDCl₃) δ 8.29 (d, *J* = 7.1 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 4H), 7.48 – 7.41 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 (s, 1H), 6.75 (td, *J* = 7.1, 1H), 7.54 – 7.49 (m, 2H), 7.54 – 7.41 (m, 2H), 7.54 – 7.41 (m, 2H), 7.54 – 7.41 (m, 2H), 7.54 – 7.54 – 7.55 (td, *J* = 7.1, 1H), 7.55 7.55 (td, J), 7.5

1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.35, 130.11, 129.21, 128.62, 128.56, 126.90, 123.68, 122.32, 118.17, 116.94, 116.20, 113.06, 82.10. HRMS (ESI) calcd for C₁₅H₁₀N₂ [M+H]⁺: 219.0917; found: 219.0914.

General computational calculation details

Completes Reference for Gaussian 09

Gaussian 09, Revision A.2, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

Absolute Calculation Energies, Enthalpies, and Free Energies

All the DFT calculations were carried out with the GAUSSIAN 09 series of programs.⁶ Density functional theory B3LYP⁷ with a standard 6-31+G(d) basis set (SDD basis set for I) was used for geometry optimizations. Harmonic frequency calculations were performed for all stationary points to confirm them as a local minima or transition structures and to derive the thermochemical corrections for the enthalpies and free energies. M11 functional,⁸ recently proposed by Truhlar group, is used to calculate the single point energies, which could give more accuracy energetic information.⁹ The solvent effects were considered by single point calculations on the gas-phase stationary points with a SMD continuum solvation model.¹⁰ The larger basis set 6-311+G(d, p) (SDD basis set for I) is used in the solvation single point calculations. The energies given in this paper are the M11 calculated Gibbs free energies in DCE solvent.

Geometry	E _(elec-B3LYP) ^a	$E_{(solv, M11)}^{b}$	$G_{\left(\text{corr-B3LYP}\right)}{}^{c}$	$H_{(corr-B3LYP)}^{d}$	IF ^e
R-3	-728.839058	-728.659059	0.186288	0.247151	-
3a-I	-740.304939	-740.093721	0.187539	0.251343	-
3a'	-728.620062	-728.508646	0.187386	0.248345	-
3 a	-728.3033841	-728.110082	0.178582	0.237468	-

^aThe electronic energy calculated by B3LYP in gas phase. ^bThe electronic energy calculated by M11 in DCE solvent. ^cThe thermal correction to Gibbs free energy calculated by B3LYP in gas phase. ^dThe thermal correction to enthalpy calculated by B3LYP in gas phase. ^eThe B3LYP calculated imaginary frequencies for the transition states.

B3LYP Geometries for All the Optimized Compounds and Transition States R-3

С	-1.22473900	1.27933500	0.10463100
С	-1.60107700	-0.04264100	0.74188700
Н	-2.00801500	0.10798200	1.76326600
С	-2.69322000	-0.78680600	-0.03759200
С	-1.90643200	2.58740200	0.28031200
Н	-2.98875300	2.46780000	0.17312600
Н	-1.71423400	3.02266600	1.27891800
Н	-1.55934600	3.31294700	-0.46431200
0	0.15117300	1.32896600	-0.05585300
0	-2.54023700	-1.80811100	-0.67187300
0	-3.87961400	-0.14913900	0.08020900
С	-4.98519000	-0.73553900	-0.63526900
Н	-4.77485400	-0.75306900	-1.70801900
Н	-5.16529500	-1.75520400	-0.28467000
С	-0.27019300	-0.74663300	0.74734600
С	0.67802300	0.08991000	0.28774300
С	2.12068900	-0.06779000	0.08256700
С	2.76751200	-1.26713300	0.43488900
С	2.88303600	0.97542800	-0.47109300
С	4.13831400	-1.41768200	0.23677300
Н	2.19594600	-2.08465700	0.86494700
С	4.25705800	0.82006600	-0.66822300
Н	2.39409200	1.90358600	-0.74685600
С	4.89058400	-0.37425300	-0.31629300
Н	4.62163700	-2.35107900	0.51371400
Н	4.83211000	1.63583300	-1.09894000
Н	-0.12863800	-1.77334300	1.05265600
Н	5.95982800	-0.49376500	-0.47049300
Н	-5.84124600	-0.09540600	-0.41927900

3a-I

С	0.64926600	-0.12735500	1.11675200
С	0.83840200	1.34650900	0.67870700
Н	0.93366400	1.92264300	1.61913800
С	2.06390500	1.71627000	-0.14418000
С	1.32975300	-0.60098400	2.37979100
Н	2.41384700	-0.51971400	2.28165000
Н	0.99732600	0.02730300	3.21777700
Н	1.06267200	-1.63803700	2.59512800
0	-0.72949500	-0.29541400	1.19553000
0	2.03391400	2.30076700	-1.20456500
0	3.19569900	1.37410600	0.50235000
С	4.42732100	1.63142300	-0.20239500
Н	4.44793300	1.05801300	-1.13264100
Н	4.52149000	2.69742300	-0.42416400
С	-0.49070100	1.63404200	0.03616500
С	-1.35391900	0.67388500	0.40241300
С	-2.77810900	0.45905400	0.14168600
С	-3.55058300	1.46654600	-0.46595500
С	-3.39407100	-0.75564000	0.48880500
С	-4.90223900	1.25777400	-0.72988100
Н	-3.09256100	2.41621700	-0.72779900
С	-4.75059100	-0.95831400	0.22578300
Н	-2.80527300	-1.53806600	0.95526500
С	-5.50886200	0.04391700	-0.38425800
Н	-5.48557700	2.04428800	-1.20144700
Н	-5.21330900	-1.90381900	0.49635100
Н	-0.68463500	2.48294900	-0.60259800
Ι	1.37305400	-1.54706700	-0.60692200
Н	-6.56428600	-0.11594700	-0.58860300
Н	5.21845500	1.30286000	0.47169700
3a'			
С	-1.16653300	1.24276700	0.32028500
С	-1.56226500	-0.11479600	0.79214800
Н	-1.95545200	0.00059800	1.82012500
С	-2.73269300	-0.80898300	0.01756100
С	-1.96622200	2.46297500	0.11620700
Н	-2.56436600	2.34423400	-0.79906700
Н	-2.68549800	2.59373100	0.93147000
Н	-1.32193500	3.33874600	0.01486500
0	0.09395400	1.27694000	0.08462400
0	-2.67487100	-1.96185100	-0.31619400
0	-3.75396700	0.02836300	-0.13896600
С	-4.95362300	-0.52662800	-0.76761100

Н	-4.70962100	-0.87888300	-1.77115900
Н	-5.33304800	-1.34838800	-0.15824800
С	-0.26010200	-0.84982500	0.75820800
С	0.70945500	-0.02225900	0.33899400
С	2.13668900	-0.08638600	0.08183200
С	2.79254300	-1.32986300	0.18524900
С	2.87365000	1.06274400	-0.26175300
С	4.16137500	-1.41567400	-0.04805500
Н	2.23481500	-2.22659700	0.43962900
С	4.24534300	0.96490400	-0.49411900
Н	2.38401500	2.02721200	-0.34516300
С	4.89130300	-0.26957700	-0.38782100
Н	4.66015900	-2.37690300	0.03106600
Н	4.80872200	1.85492200	-0.75780800
Н	-0.15204500	-1.89228800	1.01967400
Н	5.95951600	-0.34144000	-0.57016900
Н	-5.65971100	0.30104400	-0.79765500
3a			
С	-1.16445200	1.19819400	0.00005700
С	-1.51948100	-0.13484000	0.00012400
С	-2.84584400	-0.77036900	0.00024200
С	-1.90009700	2.49180000	0.00005200
Η	-2.97516000	2.31372700	0.00015400
Н	-1.63734600	3.08645300	0.88445500
Н	-1.63750100	3.08635900	-0.88446000
0	0.19206200	1.29185400	-0.00003400
0	-3.01784100	-1.97705600	0.00027500
0	-3.87303300	0.11690300	0.00018700
С	-5.19206900	-0.45853400	0.00022400
Η	-5.33986600	-1.07420700	-0.89101000
Η	-5.33996900	-1.07383600	0.89170100
С	-0.29474700	-0.88636500	0.00008300
С	0.72822800	0.01715000	-0.00003300
С	2.18343600	-0.09368400	-0.00012900
С	2.79793400	-1.36094400	-0.00045800
С	3.00024800	1.05218800	0.00010700
С	4.18661100	-1.47631800	-0.00053100
Н	2.18556600	-2.25844500	-0.00067300
С	4.39071100	0.93049800	0.00002500
Н	2.54171300	2.03577300	0.00035900
С	4.99182700	-0.33140200	-0.00029100
Н	4.64211000	-2.46330800	-0.00079000
Н	5.00592600	1.82680700	0.00021200

Н	-0.22711200	-1.96434900	0.00014600
Н	6.07467800	-0.42348400	-0.00035300
Н	-5.87638700	0.39066800	0.00001300

References

- 1 S. P. Bew, G. D. Hiatt-Gipson, J. A. Lovell, C. Poullain, Org. Lett., 2012, 14, 456.
- 2 M. L. Hossain, F. Ye, Y. Zhang, J. Wang, Tetrahedron, 2014, 70, 6957.
- 3 C. He, S. Guo, J. Ke, J. Hao, H. Xu, H. Chen, A. Lei, J. Am. Chem. Soc., 2012, 134, 5766.
- 4 V. L. Heasley, D. F. Shellhamer, L. E. Heasley, D. B. Yaeger, G. E. Heasley, *J. Org. Chem.*, 1980, **45**, 4649.
- 5 X.-C. Tan, Y. Liang, F.-P. Bao, H.-S. Wang, Y.-M. Pan, Tetrahedron, 2014, 70, 6717.
- 6 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.
- 7 (a) Becke, A. D. J. Chem. Phys., 1993, **98**, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, **37**, 785.
- 8 Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett., 2011, 2, 2810.
- 9 (a) Peverati, R.; Truhlar, D. G. *Phys. Chem. Chem. Phys.*, 2012, 14, 11363. (b) Lin, Y.-S.; Tsai, C.-W.; Li, G.-D.; Chai, J.-D. *J. Chem. Phys.*, 2012, 136, 154109. (c) Steckel, J. A. *J. Phys. Chem. A*, 2012, 116, 11643. (d) Zhao, Y.; Ng, H. T.; Peverati, R.; Truhlar, D. G. *J. Chem. Theory Comput.*, 2012, 8, 2824.
- 10 (a) Cances, E.; Mennunci, B.; Tomasi, J. J. Chem. Phys., 1997, 107, 3032. (b) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett., 1996, 255, 327. (c) Barone, V.; Cossi, M.; Tomasi, J. J. Comp. Chem., 1998, 19, 404.
- 11 L. Xiang, Y. Yang, X. Zhou, X. Liu, X. Li, X. Kang, R. Yan and G. Huang, *J. Org. Chem.*, 2014, **79**, 10641.

Copies of product NMR Spectra

S22

S23

¹⁹F NMR

 •

I.

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	 20	-1	40	-160	-180)	200	
										1	ri (ppm)								

S27

3i

3j

- 6.217

6a

¹H NMR

6b

6c

6d

¹H NMR

¹⁹F NMR

1	0	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f	-100 1 (ppm)	 -120	-140	-160	-180	-200	

6e

¹H NMR

 $\begin{array}{c} 8.299\\ 8.299\\ 7.5670\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.5524\\ 7.555\\ 7.555\\ 7.2355\\ 7.333\\ 7.333\\ 7.3355\\ 7.333\\ 7.332\\ 7.333\\ 7.333\\ 7.332\\ 7.333\\ 7.333\\ 7.332\\ 7.332\\ 7.332\\ 7.333\\ 7.33$

¹³C NMR

6g

6h

¹H NMR

f1 (ppm)

10	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200
						f1 (ppm)					

6i

6j

¹H NMR

61

¹H NMR

¹³C NMR

