Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic supplementary information for

A new protocol for nickel-catalyzed regio- and stereoselective hydrocyanation of allene and its derivatives

Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan E-mail: araisgr@chiba-u.jp

List of Contents

- 1. Experimental procedure for all the reactions: S2-S23
- 2. ¹H and ¹³C NMR charts for all new compounds: S24-

Scheme S1. Syntheses of 1b and 1c

S3a, **S3b** were synthesized by the reported procedure¹.

4-methyl-N-(octa-2,3-dien-1-yl)-N-phenylbenzenesulfonamide (1b)

To a solution of TsNHPh (216 mg, 0.87 mmol) in THF (3.0 mL) was added PPh₃ (274 mg, 1.04 mmol) and the mixture was cooled to 0 °C. Then DMEAD (azodicarboxylic acid bis(2-methoxyethyl) ester, 245 mg, 0.87 mmol) and a solution of **S3a** in THF (1.4 mL) was slowly added and the reaction was warmed to room temperature. After stirring 19 h, the solvent was removed under reduced pressure and the residue was filtrated through a short pad of silica and concentrated in vacuo. The crude product was purified by column chromatography (Hex/AcOEt = 15/1) to afford **1b** as a colorless solid (250 mg, 81%).

TsN Ph Colorless solid. ¹H NMR (CDCl₃, 600 MHz) δ : 0.81 (t, 3H, J = 7.2 Hz), 1.08-1.23 (m, 4H), 1.70-1.76 (m, 2H), 2.42 (s, 3H), 4.06 (ddd, 1H, J = 13.8, 7.2, 2.4 Hz), 4.25 (ddd, 1H, J = 13.8, 6.6, 3.0 Hz), 4.99-5.05 (m, 2H), 7.04-7.06 (m, 2H), 7.24-7.31 (m, 5H), 7.49 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 13.8, 21.5, 22.0, 27.9, 30.9, 50.6, 86.8, 92.5, 127.67, 127.70, 128.7, 129.0, 129.4, 135.6, 139.0, 143.3, 205.5; IR (ATR) v: 3058, 2952, 2922, 2850, 1964, 1340, 1157 cm⁻¹; HRMS (ESI) m/z calcd for C₂₁H₂₅NNaO₂S [M+Na]⁺ 378.1504, found 378.1510; mp. 66-67 °C.

4-methyl-N-phenyl-N-(4-phenylbuta-2,3-dien-1-yl)benzenesulfonamide (1c) To a solution of TsNHPh (694 mg, 2.8 mmol) in THF (12 mL) was added PPh₃ (881 mg, 3.4 mmol) and the mixture was cooled to 0 °C. Then DMEAD (azodicarboxylic acid bis(2-methoxyethyl) ester, 787 mg, 3.4 mmol) and a solution of **S3b** in THF (2 mL) was slowly added and the reaction was warmed to room temperature. After stirring 3 h, the solvent was removed under reduced pressure and the residue was filtrated through a pad column and concentrated in vacuo. The crude solid was dissolved in small amount of CH₂Cl₂, and then hexane was added to the solution. The precipitation was filtrated and dried under reduced pressure to afford 1c as a colorless solid (664 mg, 61%).

TsN Ph Colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ : 2.41 (s, 3H), 4.13 (ddd, ¹H, J = 14.4, 7.6, 2.0 Hz), 4.46 (ddd, 1H, J = 14.4, 6.0, 2.8 Hz), 5.52 (ddd, 1H, J = 7.6, 7.2, 6.0 Hz), 6.04 (ddd, 1H, J = 7.2, 2.8, 2.0 Hz), 6.82-6.85 (m, 2H), 7.07-7.09 (m, 2H), 7.12-7.16 (m, 3H), 7.24 (d, 2H, J = 8.0 Hz), 7.29-7.32 (m, 3H), 7.50 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 21.5, 50.3, 91.2, 96.0, 126.8, 127.1, 127.7, 127.9, 128.4, 129.0, 129.1, 129.4, 133.2, 135.3, 138.9, 143.5, 206.5; IR (ATR) v: 3031, 1951, 1343, 1213 cm⁻¹; HRMS (ESI) m/z calcd for C₂₃H₂₁NNaO₂S [M+Na]+ 398.1191, found 398.1200; mp. 94-96 °C.

Scheme S2. Syntheses of 1d-j²

deca-1,2-dien-1-ylbenzene (1d)

Colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ : 0.87 (t, 3H, J = 7.2 Hz), 1.24-1.31 (m, 6H), 1.33-1.38 (m, 2H), 1.45-1.51 (m, 2H), 2.12 (ddt, 2H, J = 6.6, 6.6, 3.6 Hz), 5.56 (dt, 1H, J = 6.6, 6.6 Hz), 6.12 (dt, 1H, J = 6.6, 3.6 Hz), 7.16-7.20 (m, 1H), 7.29-7.31 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.1, 22.6, 28.8, 29.1, 29.2, 29.2, 31.8, 94.5, 95.1, 126.55, 126.57, 128.5, 135.2, 205.1; IR (ATR) v: 2954, 2924, 2853, 1949 cm⁻¹; HRMS (APPI) m/z calcd for C₂₆H₂₂ [M]+214.1716, found 214.1712. (49%, 127 mg)

(4,4-dimethylpenta-1,2-dien-1-yl)benzene (1e)

(CAS-Reg# 69248-81-3) Spectral data were identical to the literature data.²

¹H NMR (CDCl₃, 400 MHz) δ: 1.13 (s, 9H), 5.57 (d, 1H, *J* = 6.4 Hz), 6.18 (d, 1H, *J* = 6.4 Hz), 7.16-7.21 (m, 1H), 7.29-7.32 (m, 4H). (88%, 181 mg)

(3-cyclohexylpropa-1,2-dien-1-yl)benzene (1f)

(CAS-Reg# 67647-93-2) Spectral data were identical to the literature Ph data.²

¹H NMR (CDCl₃, 400 MHz) δ: 1.15-1.33 (m, 5H), 1.61-1.65 (m, 1H), 1.71-1.76 (m, 2H), 1.82-1.86 (m, 2H), 2.10-2.14 (m, 1H), 5.56 (dd, 1H, *J* = 6.4 Hz), 6.15 (dd, 1H, *J* = 6.4, 3.2 Hz), 7.15-7.19 (m, 1H), 7.29-7.31 (m, 4H). (28%, 96 mg)

1-(3-cyclohexylpropa-1,2-dien-1-yl)-4-methoxybenzene (1g)

C₁₆H₂₀O [M]+228.1509, found 228.1502. (41%, 112 mg)

Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ: 1.11-1.35 (m, 5H), 1.61-1.67 (m, 1H), 1.70-1.76 (m, 2H), 1.81-1.86 (m, 2H), 2.06-2.15 (m, 1H), 3.80 (s, 3H), 5.54 (dd, 1H, J = 6.4, 6.4 Hz), 6.12 (dd, 1H, J = 6.4, 2.4 Hz), 6.85 (d, 2H, J = 9.2 Hz), 7.22 (d, 2H, J = 9.2 Hz); 13 C NMR (CDCl₃, 150 MHz) & 26.00, 26.02, 26.1, 33.1, 33.2, 37.7, 55.2, 94.7, 101.0, 114.0, 127.4, 127.5, 158.8, 203.3; IR (ATR) v: 2923, 2850, 1244 cm⁻¹; HRMS (APPI) m/z calcd for

1-(3-cyclohexylpropa-1,2-dien-1-yl)-4-(trifluoromethyl)benzene (1h)

Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ: 1.14-1.26 (m, 3H), 1.27-1.34 (m, 2H), 1.64-1.66 (m, 1H), 1.71-1.76 (m, 2H), 1.83-1.85 (m, 2H), 2.12-2.18 (m, 1H), 5.63 (dd, 1H, J = 6.6, 6.6

Hz), 6.18 (dd, 1H, J = 6.6, 3.0 Hz), 7.37 (d, 2H, J = 8.4 Hz), 7.53 (m, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ: 25.99, 26.01, 26.04, 33.07, 33.15, 37.5, 94.7, 101.6, 124.3, (q, J = 270 Hz), 125.5 (q, J = 2.7 Hz), 126.5, 128.4 (q, J = 31.7 Hz), 139.2, 205.1; IR (ATR) v: 2925, 2852, 1947, 1321 cm⁻¹; HRMS (APPI) m/z calcd for C₁₆H₁₇F₃ [M]+ 266.1277, found 266.1277;. (69%, 221 mg)

1-bromo-4-(3-cyclohexylpropa-1,2-dien-1-yl)benzene (1i)

Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ: 1.11-1.36 (m, 5H), 1.63-1.66 (m, 1H), 1.71-1.76 (m, 2H), 1.81-1.84 (m, 2H), 2.08-2.17 (m, 1H), 5.26 (dd, 1H, J = 6.4, 6.4 Hz), 6.09 (dd, 1H, J = 6.4, 2.8

Hz), 7.15 (dt, 1H, J = 8.4, 2.0 Hz), 7.40 (dt, 1H, J = 8.4, 2.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) & 25.96, 25.98, 26.0, 33.05, 33.11, 37.5, 94.6, 101.5, 120.1, 127.9, 131.6, 134.3, 204.2; IR (ATR) v: 2922, 2849, 1946, 1487, 829 cm⁻¹; HRMS (APPI) m/z calcd for C₁₅H₁₇Br [M]+276.0508, found 276.0499. (40%, 135 mg)

1-methyl-2-(nona-1,2-dien-1-yl)benzene (1j)

Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ : 0.88 (t, 3H, J = 6.8 Hz), Me 1.27-1.39 (m, 6H), 1.44-1.50 (m, 2H), 2.12 (ddt, 2H, J=6.8, 6.8, 3.2 Hz), 2.36 (s, 3H), 5.52 (dt, 1H, J = 6.8, 6.8 Hz), 6.30 (dt, 1H, J = 6.8, 3.2 Hz), 7.06-7.16 (m, 3H), 7.37 (d, 1H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ: 14.1, 19.8, 22.6, 28.8, 28.9, 29.2, 31.7, 91.7, 94.2, 126.0, 126.5, 127.0, 130.4, 133.2, 134.7, 205.8; IR (ATR) v: 2955, 2924, 2854, 1946 cm⁻¹; HRMS (APPI) m/z calcd for C₁₆H₂₃ [M+H]⁺ 215.1794, found 215.1791. (39%, 100 mg)

Scheme S3. Synthesis of 1k³

3-(3-cyclohexylpropa-1,2-dien-1-yl)-1-tosyl-1*H*-indole (1k)

T_S 2.11-2.18 (m, 1H), 2.34 (s, 3H), 5.57 (dd, 1H, J = 6.0, 6.0 Hz), 6.32 (dd, 1H, J = 6.0, 3.2 Hz), 7.20-7.24 (m, 3H), 7.32 (dd, 1H, J = 8.0 Hz), 7.46 (s, 1H), 7.76 (d, 2H, J = 8.4 Hz), 7.89 (d, 1H, J = 8.0 Hz), 7.97 (d, 1H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.6, 26.0, 26.0, 26.1, 32.77, 32.83, 37.7, 86.3, 100.3, 113.6, 116.7, 120.8, 123.1, 123.3, 124.9, 126.8, 129.3, 129.9, 135.1, 135.6, 144.9, 205.2; IR (ATR) v: 2923, 2850, 1957, 1371, 1172 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₂₆NO₂S [M+H]⁺ 392.1684, found 392.1696. (69%, 150 mg)

Yellow amorphous. ¹H NMR (CDCl₃, 400 MHz) δ: 1.16-1.28 (m, 5H), 1.62-1.65 (m, 1H), 1.71-1.76 (m, 2H), 1.81-1.89 (m, 2H),

Scheme S4. Hydrocyanation of 1b

(E)-N-(2-cyanooct-3-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (2ba)
(E)-N-(4-cyanooct-2-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (2bb)
(E)-N-(3-cyanooct-3-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (2bc)
(E)-N-(3-cyanooct-2-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide (2bd)
Above products were obtained as an inseparable mixture.

(**2ba**:**2bb**:**2bc**:**2bd**=0.24:1.00:0.12:0.084). The yields were estimated by ¹H NMR.

¹H NMR (CDCl₃, 400 MHz) δ : 0.82-0.92 (m, (1.0 + 0.24 + 0.12 + 0.084) x 3H), 1.15-1.41 (m, (1.0 + 0.24 + 0.12 + 0.084) x 4H), 1.44-1.51 (m, (1.0 + 0.084) x 2H), 2.02-2.08 (m, (0.24 + 0.084) x 2H), 2.13 (dt, 0.12 x 2H, J= 7.2, 7.2 Hz), 2.43-2.48 (m, 0.12 x 2H), 2.43 (s, (1.0 + 0.24 + 0.12 + 0.084) x 3H), 3.11 (dt, 1.0 x 1H, J= 6.4, 6.4 Hz), 3.47 (dt, 0.24 x 1H, J = 8.0, 6.8 Hz), 3.68 (t, 0.12 x 2H, J= 7.2 Hz), 3.72 (dd, 0.24 x 2H, J= 13.6, 8.0 Hz), 3.77 (dd, 0.24 x 2H, J= 13.6, 8.0 Hz), 4.16 (dd, 1.0 x 1H, J= 14.8, 6.8 Hz), 4.21 (dd, 1.0 x 1H, J= 14.8, 6.4 Hz), 4.30 (d, 0.084 x 2H, J= 6.4 Hz), 5.31 (dd, 0.24 x 1H, J= 15.2, 6.8 Hz), 5.39 (dd, 1.0 x 1H, J= 15.2, 6.4 Hz), 5.73 (dddd, 1.0 x 1H, J= 15.2, 6.8, 6.4, 1.2 Hz), 5.84 (dt, 0.24 x 1H, J= 15.2, 6.8 Hz), 6.24 (t, 0.084 x 1H, J= 6.4 Hz), 6.39 (t, 0.12 x 1H, J= 7.2 Hz), 7.00-7.13 (m, (1.0 + 0.24 + 0.12 + 0.084) x 2H), 7.19-7.37 (m, (1.0 + 0.24 + 0.12 + 0.084) x 5H), 7.35-7.52 (m, (1.0 + 0.24 + 0.12 + 0.084) x 2H)

Scheme S5. Hydrocyanation of 1c

(E)-N-(2-cyano-4-phenylbut-3-en-1-yl)-4-methyl-N-phenylbenzenesulfonam ide (2ca)

2ca was obtained together with **2cc** and **2cd**. The yield was estimated by ¹H NMR. Then **2ca** was partially separated by recrystallization from hexane/CH₂Cl₂.

Colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ : 2.43 (s, 3H), 3.73 (dt, 1H, J = 8.0, 7.2 Hz), 3.85 (dd, 1H, J = 13.6, 7.2 Hz), 3.89 (dd, 1H, J = 13.6, 8.0 Hz), 6.03 (dd, 1H, J = 16.0, 7.2 Hz), 6.74 (dd, 16.0, 1.2 Hz), 7.06-7.09 (m, 2H), 7.25 (d, 2H, J = 8.0 Hz), 7.29-7.34 (m, 8H), 7.47 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.6, 35.2, 53.1, 118.1, 119.5, 126.7, 127.8, 128.6, 128.68, 128.72, 129.1, 129.4, 129.6, 134.6, 135.3, 135.5, 139.0, 144.1; IR (ATR) v: 3057, 2246, 1350, 1161 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₂₂N₂NaO₂S [M+Na]⁺ 425.1300, found 425.1311; mp. 108-110 °C. (91%, 58 mg)

Scheme S6. Hydrocyanation of 1d-k

(E)-2-styryloctanenitrile (2da)

This reaction was performed with 0.24 mmol of **1d** and **2da** was obtained as inseparable mixture with **2dc** (8%) and **2dd** (3%). The yield was estimated by ¹H NMR. $\bigwedge_{6 \text{ CN}} Ph$ Colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ : 0.88 (t, 3H, J = 6.6 Hz), 1.21-1.38 (m, 8H), 1.43-1.58 (m, 2H), 1.75-1.79 (m, 2H), 3.42 (dt, 1H, J =7.2, 7.2 Hz), 6.04 (dd, 1H, J = 16.2, 6.6 Hz), 6.72 (d, 1H, J = 16.2 Hz), 7.27-7.29 (m, 1H), 7.34 (dd, 2H, J = 7.2, 7.2 Hz), 7.37-7.39 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ : 14.1, 22.6, 26.8, 29.0, 29.0, 31.7, 33.3, 34.4, 120.2, 123.3, 126.5, 128.2, 128.7, 133.1, 135.8; IR (ATR) v: 2925, 2856, 2240, 1449 cm⁻¹; HRMS (APPI) m/z calcd for C₁₇H₂₃N [M]+ 241.1825, found 241.1820. (69%, 40.2 mg)

(E)-2-(tert-butyl)-4-phenylbut-3-enenitrile (2ea)

This reaction was performed with 0.24 mmol of **1e** using sealed tube and **2ea** was obtained together with **2ed** (6%). These yields were calculated by ¹H NMR. Then **2ea** was partially separated by recrystallization from *n*-pentane.

Colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ : 1.12 (s, 9H), 3.18 (dd, 1H, J Ph = 7.2, 0.8 Hz), 6.12 (dd, 1H, J = 15.6, 7.6 Hz), 6.71 (d, 1H, J = 15.6 Hz), 7.26-7.30 (m, 1H), 7.35 (dd, 2H, J = 7.2 Hz), 7.39-7.40 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ : 27.3, 34.7, 46.7, 119.4, 120.7, 126.5, 128.2, 128.7, 130.0, 135.8; IR

(ATR) v: 2962, 2867, 2232 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₉NNa [M+Na]⁺ 222.1253, found 222.1251; mp. 56 °C. (79%, 37.8 mg)

(E)-2-cyclohexyl-4-phenylbut-3-enenitrile (2fa)

This reaction was performed with 0.24 mmol of **1f** and **2fa** was obtained together with **2fc** (6%) and **2fd** (5%). These yields were estimated by ¹H NMR. Then **2fa** was partially purofied by recrystallization from *n*-hexane.

Colorless solid. ¹H NMR (CDCl₃, 600 MHz) δ : 1.15-1.31 (m, 5H), Ph 1.65-1.70 (m, 2H), 1.79-1.85 (m, 3H), 1.89-1.91 (m, 1H), 3.30 (dd, 1H, J = 6.0, 6.0 Hz), 6.40 (dd, 1H, J = 15.6, 6.6 Hz), 6.70 (d, 1H, J = 15.6 Hz), 7.26-7.29 (m, 1H), 7.34 (dd, 2H, J = 7.2, 7.2 Hz), 7.38-7.39 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ : 25.8, 25.8, 25.9, 29.4, 31.0, 40.9, 41.1, 119.3, 122.1, 126.5, 128.1, 128.7, 133.9, 135.8; IR (ATR) v: 2923, 2854, 2233, 1449 cm⁻¹; HRMS (APPI) m/z calcd for C₁₆H₁₉N [M]+225.1512, found 225.1507; mp. 77-78 °C. (74%, 40.1 mg)

(E)-2-cyclohexyl-4-(4-methoxyphenyl)but-3-enenitrile (2ga)

This reaction was performed with 0.29 mmol of **1g** and **2ga** was obtained together with **2gc** (5%) and **2gd** (6%). The yield was estimated by ¹H NMR. Then **2ga** was partially separated by recrystallization from *n*-pentane.

Colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ : 1.15^{-1.29} (m, 5H), 1.63^{-1.70} (m, 2H), 1.78^{-1.84} (m, 3H), 1.89^{-1.91} (m, 1H), 3.27 (dd, 1H, J = 6.0, 6.0 Hz), 3.82 (s, 3H), 5.90 (dd, 1H, J = 15.6, 7.2 Hz), 6.63 (d, 1H, J = 15.6 Hz), 6.87 (d, 2H, J = 9.0 Hz), 7.31 (d, 2H, J = 9.0 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 25.9, 26.0, 29.6, 31.0, 40.9, 41.2, 55.3, 114.1, 119.6, 119.8, 127.7, 128.6, 133.3, 159.6; IR (ATR) v: 2954, 2929, 2853, 2234 cm⁻¹; HRMS (APPI) m/z calcd for C₁₇H₂₁NO [M]+255.1618, found 255.1608; mp. 60⁻61 °C. (77%, 57.4 mg)

(E)-2-cyclohexyl-4-(4-(trifluoromethyl)phenyl)but-3-enenitrile (2ha)

This reaction was performed with 0.24 mmol of **1h** and **2ha** was obtained together with **2hc** (6%) and **2hd** (4%). The yield was estimated by ¹H NMR. Then **2ha** was partially separated by recrystallization from *n*-pentane.

Colorless solid. ¹H NMR (CDCl₃, 400 MHz) δ : 1.15-1.34 (m, 5H), 1.70-1.72 (m, 2H), 1.80-1.90 (m, 4H), 3.35 (dd, 1H, J = 6.0, 6.0Hz), 6.15 (dd, 1H, J = 15.6, 9.6 Hz), 6.75 (d, 1H, J = 15.6 Hz), 7.48 (d, 2H, J = 8.0 Hz), 7.59 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 25.77, 25.79, 25.9, 29.5, 31.0, 40.8, 41.1, 118.9, 124.0 (q, J = 270 Hz), 124.9, 125.6 (q, J = 3.9Hz), 126.7, 130.0 (q, J = 18 Hz), 132.6, 139.2; IR (ATR) v: 2925, 2855, 2243 cm⁻¹; HRMS (APPI) m/z calcd for C₁₇H₁₈F₃N [M]⁺ 293.1386, found 293.1376; mp. 60-61 °C. (76%, 53.6 mg)

(E)-4-(4-bromophenyl)-2-cyclohexylbut-3-enenitrile (2ia)

This reaction was performed with 0.34 mmol of **1i** and **2ia** was obtained together with **2ic** (6%) and **2id** (4%). The yield was estimated by ¹H NMR. Then **2ia** was partially separated by recrystallization from pentane.

Colorless solid. ¹H NMR (CDCl₃, 600 MHz) δ : 1.15-1.31 (m, 5H), 1.66-1.71 (m, 2H), 1.79-1.84 (m, 3H), 1.88-1.90 (m, 1H), 3.30 (ddd, 1H, J = 16.2 Hz), 7.25 (d, 2H, J = 8.4 Hz), 7.46 (d, 2H, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ : 25.8, 25.8, 25.9, 29.6, 31.0, 40.8, 41.1, 119.1, 122.0, 122.9, 128.0, 131.8, 132.7, 134.7; IR (ATR) v: 2929, 2854, 2234 cm⁻¹; HRMS (ESI) m/z calcd for C₁₆H₁₇BrNNa [M+Na]⁺ 326.0515, found 326.0506; mp. 80-82 °C. (75%, 77.8 mg)

(E)-2-(2-methylstyryl)octanenitrile (2ja)

This reaction was performed with 0.20 mmol of **1j** and **2ja** was obtained as inseparable mixture with **2jc** (8%) and **2jd** (4%). The yield was estimated by ¹H NMR. Then **2ja** was partially separated by column chromatography.

Colorless oil. ¹H NMR (CDCl₃, 600 MHz) δ : 0.89 (t, 3H, J = 7.2 Hz), 1.24-1.39 (m, 6H), 1.43-1.61 (m, 2H), 1.75-1.81 (m, 2H), 2.36 (s, 3H), 3.44 (dt, 1H, J = 7.6, 6.8 Hz), 5.91 (dd, 1H, J = 16.0, 6.8 Hz), 6.93 (d, 1H, J = 16.0 Hz), 7.15-7.20 (m, 3H), 7.37-7.39 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.0, 19.7, 22.5, 26.7, 26.7, 31.5, 33.3, 34.6, 120.3, 124.7, 125.7, 126.1, 128.1, 130.4, 131.1, 135.0, 135.7; IR (ATR) v: 2926, 2858, 2239 cm⁻¹; HRMS (APPI) m/z calcd for C₁₇H₂₃N [M]+241.1825, found 241.1822. (78%, 36.9 mg)

(E)-2-cyclohexyl-4-(1-tosyl-1H-indol-3-yl)but-3-enenitrile (2ka)

This reaction was performed with 0.29 mmol of **1k** and **2ka** was obtained together with **2kc** (8%) and **2kd** (5%). The yield was estimated by ¹H NMR. Then **2ka** was partially separated by column chromatography.

Colorless amorphous. ¹H NMR (CDCl₃, 400 MHz) δ: 1.15-1.33 (m, 5H), 1.64-1.93 (m, 6H), 2.34 (s, 3H), 3.33 (dd, 1H, *J* = 6.0, 6.8 Hz), 6.11 (dd, 1H, *J* = 16.0, 6.8 Hz), 6.28 (d, 1H, *J* = 16.0 Hz), 7.20-7.25

(m, 3H), 7.27-7.31 (m, 1H), 7.62 (s, 1H), 7.68 (d, 1H, J = 7.2 Hz), 7.78 (d, 2H, 8.4 Hz), 8.00 (d, 2H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 150 MHz) δ : 21.5, 25.8, 25.8, 25.9, 29.6, 31.0, 40.8, 41.5, 113.8, 119.0, 119.2, 120.1, 123.2, 123.6, 124.4, 124.6, 125.1, 126.8, 128.6, 129.9, 134.9, 135.4, 145.2; IR (ATR) v: 2026, 2853, 2238, 1370, 1172 cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₂S [M+H]⁺ 419.1793, found 419.1796. (78%, 95.4 mg)

References

- a) Y. Imada, M. Nishida, K. Kutsuwa, S. Murahashi, T. Naota, Org. Lett. 2005, 7, 5837.
 b) G. E. Keck, R. R. Webb, Tetrahedron Lett., 1982, 23, 3051.
- 2) M. L. Hosain, F. Ye, Y. Zhang, J. Wang, J. Org. Chem., 2013, 78, 1236.
- 3) K. Tanaka, T. Kobayashi, H. Mori, S. Katsumura, J. Org. Chem., 2004, 69, 5906.

Scheme S7. Synthesis of cyclopropylallenes (3a-j, l)⁴

(3-cyclopropylpropa-1,2-dien-1-yl)benzene (3a) (CAS-Reg#

200417-79-4) (37%, 1.84 g)

1-(3-cyclopropylproopa-1,2-dien-1-yl)-4-methoxybenzene (3b)

Meo

¹H-NMR (CDCl₃, 400 MHz) δ: 0.40-0.50 (m, 2H), 0.69-0.79 (m, 2H), 1.30-1.38 (m, 1H), 3.80 (s. 3H), 5.41 (dd, 1H, *J* = 6.8, 6.8 Hz), 6.16 (d, 1H, *J* = 6.8 Hz), 6.84 (d, 2H, *J* = 8.8 Hz), 7.20 (d,

2H, J = 8.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 6.8, 7.0, 9.6, 55.3, 95.6, 99.4, 114.1, 127.2, 127.7, 158.7, 204.0; IR (ATR) v: 2928, 1717, 1599, 1510, 1253, 1161, 1023 cm⁻¹; HRMS (APPI) Calcd for C₁₃H₁₅O, [M+H] + 187.1117, found 187.1117; yellow oil (25%, 250 mg)

1-(3-cyclopropylpropa-1,2-dien-1-yl)-4-(trifluoromethyl)benzene (3c)

8.0 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ: 7.0, 7.0, 9.2, 95.4, 100.2, 125.5, 126.7, 128.5, 138.9, 205.9 ; IR (ATR) ν: 3007, 1948, 1615, 1321, 1119, 1106, 1065, 844 cm⁻¹; HRMS (APPI) Calcd for C₁₃H₁₁F₃, [M] + 224.0807, found 224.0803; Yellow oil (23%, 225 mg)

1-(tert-butyl)-4-(3-cyclopropylpropa-1,2-dien-1-yl)benzene (3d)

FaC

¹H-NMR (CDCl₃, 400 MHz) δ: 0.42-0.44 (m, 2H), 0.70-0.74 (m, 2H), 1.29-1.30 (m, 10H), 5.42 (dd, 1H, *J* = 6.4, 6.4 Hz), 6.17 (d, 1H, *J* = 6.4 Hz), 7.21 (d, 2H, *J* = 8.4 Hz), 7.30 (d, 2H, *J* = 8.4 Hz);

¹³C-NMR (CDCl₃, 100 MHz) δ: 6.8, 7.1, 31.3, 34.5, 95.9, 99.2, 125.5, 126.3, 131.9, 149.8, 204.6; IR (ATR) ν: 2961, 1947, 1514, 1268, 1018, 875, 836 cm⁻¹; HRMS (APPI) Calcd for C₁₆H₂₀, [M] + 212.1560, found 212.1556; Yellow oil (23%, 228.9 mg)

1-bromo-2-(3-cyclopropylpropa-1,2-dien-1-yl)benzene (3e)

¹H-NMR (CDCl₃, 400 MHz) δ: 0.39-0.50 (m, 2H), 0.69-0.82 (m, 2H), 1.31-1.39 (m, 1H),

5.45 (dd, 1H, J = 6.8, 6.8 Hz), 6.64 (d, 1H, J = 6.8 Hz), 7.00 (dd, 1H, J = 7.6, 7.6 Hz), 7.21 (dd, 1H, J = 7.6, 7.6 Hz), 7.42 (d, 1H, J = 7.6 Hz), 7.48 (d, 1H, J = 7.6 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 6.9, 7.0,

9.3, 95.2, 99.7, 122.4, 127.3, 128.0, 128.2, 132.9, 134.2, 205.9; IR (ATR) v: 3003, 1947, 1473, 1019, 740 cm⁻¹; HRMS (APPI) Calcd for C₁₂H₁₁Br, [M] + 234.0039, found 234.0036; Yellow oil (11%, 108.4 mg)

1-bromo-3-(3-cyclopropylpropa-1,2-dien-1-yl)benzene (3f)

¹H-NMR (CDCl₃, 400 MHz) δ : 0.36-0.49 (m, 2H), 0.70-0.80 (m, 2H), 1.30-1.36 (m, 1H), 5.43 (dd, 1H, J = 6.4, 6.4 Hz), 6.10 (d, 1H, J = 6.4Hz), 7.09-7.17 (m, 2H), 7.26 (d, 1H, J = 7.6 Hz), 7.41 (s, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ : 7.0, 9.4, 95.1, 100.0, 122.7, 125.2,

129.3, 129.6, 129.9, 137.2, 205.1; IR (ATR) v: 3080, 3003, 1947, 1588, 1564, 1474, 883, 784, 679 cm⁻¹; HRMS (APPI) Calcd for $C_{12}H_{11}Br$, [M] + 234.0039, found 234.0036; Yellow oil (20%, 201.2 mg)

1-bromo-4-(3-cyclopropylpropa-1,2-dien-1-yl)benzene (3g)

¹H-NMR (CDCl₃, 400 MHz) δ: 0.38-0.50 (m, 2H), 0.72-0.81 (m, 2H), 1.30-1.39 (m, 1H), 5.43 (dd, 1H, *J* = 6.8, 6.8 Hz), 6.13 (d, 1H, *J* = 6.8 Hz), 7.14 (d, 2H, *J* = 8.4 Hz), 7.40 (d, 2H, *J* = 8.4 Hz);

¹³C-NMR (CDCl₃, 100 MHz) δ: 7.0, 7.1, 9.3, 95.3, 99.9, 120.3, 128.1, 131.5, 133.9, 204.9; IR (ATR) ν: 3079, 3003, 1946, 1487, 1068, 1009, 828 cm⁻¹; HRMS (APPI) Calcd for C₁₂H₁₂Br, [M+H] + 235.0117, found 235.0111; Yellow oil (41%, 823.6 mg)

2-(3-cyclopropylpropa-1,2-dien-1-yl)naphthalene (3h)

¹H-NMR (CDCl₃, 400 MHz) δ: 0.45-0.53 (m, 2H), 0.72-0.81 (m, 2H), 1.36-1.43 (m, 1H), 5.51 (dd, 1H, *J* = 6.8, 6.8 Hz), 6.38 (d, 1H, *J* = 6.8 Hz), 7.40-7.50 (m, 3H), 7.65 (s, 1H), 7.75-7.80 (m, 3H);

¹³C-NMR (CDCl₃, 100 MHz) δ: 6.9, 7.1, 9.5, 96.6, 99.7, 124.6, 125.4, 125.5, 126.1, 127.6, 127.7, 128.1, 132.4, 132.6, 133.7, 205.4 ; IR (ATR) ν: 3054, 3003, 1944, 1629, 1597, 1508, 1248 cm⁻¹; HRMS (APPI) Calcd for C₁₆H₁₄, [M] + 206.1090, found 206.1085; Colorless solid (mp: 45-48 °C, 27%, 269 mg)

2-(3-cyclopropylpropa-1,2-dien-1-yl)thiophene (3i)

¹H-NMR (CDCl₃, 400 MHz) δ : 0.43-0.51 (m, 2H), 0.74-0.78 (m, 2H), 1.30-1.38 (m, 1H), 5.47 (dd, 1H, J = 6.4, 6.4 Hz), 6.41 (d, 1H, J = 6.4 Hz), 6.89 (d, 1H, J = 3.6 Hz), 6.94 (dd, 1H, J = 4.8, 3.6 Hz), 7.13 (d,

1H, J = 4.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 6.8, 7.4, 9.5, 90.6, 99.9, 124.2, 124.4,

127.4, 139.5, 204.0; IR (ATR) v: 3079, 3002, 1653, 1428, 1256 cm⁻¹; HRMS (APPI) Calcd for C₁₀H₁₀S, [M] + 162.0498, found 162.0494; Yellow oil (14%, 143.4 mg)

Scheme S8. Synthesis of 3j^{1, 2, 3, 4}

N-allyl-N-(2-(3-cyclopropylpropa-1,2-dien-1-yl)phenyl)-4-methylbenzenesu lfonamide (3j)

¹H-NMR (CDCl₃, 400 MHz) δ: 0.42-0.75 (m, 4H), 1.25-1.34 (m, 1H), 2.44 (s, 3H), 3.89-4.02 (m, 1H), 4.21-4.41 (m, 1H), 4.99 (d, 2H, J = 10.4 Hz), 5.42)dd, 1H, J = 6.8, 6.8 Hz), 5.68-5.82 (m, 1H), 6.50-6.70

(m, 2H), 7.00-7.11 (m, 1H), 7.21-7.31 (m, 3H), 7.49-7.67 (m, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ : 7.2, 7.4, 8.4, 9.6, 9.7, 21.9, 55.2, 73.1, 86.1, 92.5, 99.7, 119.6, 120.0, 127.2, 127.2, 128.2, 128.4, 128.8, 129.0, 129.3, 129.6, 129.9, 130.1, 132.5, 132.8, 135.8, 136.2, 136.3, 137.4, 139.7, 143.9, 144.0, 206.0; IR (ATR) ν : 3429, 3067, 3012, 2250, 1944, 1697, 1597, 1490, 1343, 1161, 1090 cm⁻¹; HRMS (ESI) Calcd for C₂₂H₂₃NNaO₂S, [M+Na]⁺ 388.1347, found 388.1348; Yellow oil (2.12 g)

Scheme S9. Synthesis of 3k⁸

I to II : To a THF (23.4 mL) solution of ethynylbenzene (0.51 mL 4.7 mmol) was added n-buthyllithium (3.6 ml, 1.55 M in THF, 5.6 mmol) at -78 °C under argon. The resulting solution was allowed to stir for an additional 30 min at same temperature. To this solution was added cyclopropanecarboxaldehyde (0.2 mL, 7.0 mmol) at -78 °C. The mixture was stirred for an additional 30 min, then warmed to 0 °C over 2 h. After acetic anhydride (2.2 mL, 23.4 mmol) was added, the mixture was allowed to be stirred

for 1 h at 0 °C. The reaction was quenched with saturated aqueous ammonium chloride, and the mixture was extracted with AcOEt. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. After removal of the solvent under reduced pressure, the residue (1.24 g) was used directly in the next step without further purification.

(4-cyclopropylbuta-2,3-dien-2-yl)benzene (3k)

¹H-NMR (CDCl₃, 400 MHz) δ : 0.39-0.43 (m, 2H), 0.69-0.73 (m, 2H), 1.27-1.36 (m, 1H), 2.08 (dd, 3H, J = 2.8, 0.8 Hz), 5.29 (dd, 1H, J = 6.8, 2.8 Hz), 7.17 (dd, 1H, J = 8.4, 8.4 Hz), 7.30 (dd, 2H, J = 8.4, 8.4 Hz), 7.39 (dd, 2H, J = 8.4, 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 6.9, 6.9,

9.7, 17.3, 97.4, 102.0, 125.6, 126.4, 128.2, 137.5, 203.6; IR (ATR) v: 3734, 3669, 3081, 3003, 1943, 1597, 1492, 1442, 1370, 1258 cm⁻¹; HRMS (APPI) Calcd for $C_{13}H_{14}$, [M] + 170.1090, found 170.1088: Yellow oil (597.5 mg)

(3-cyclopropylpropa-1,2-dien-1-yl)cyclohexane (31)

¹H-NMR (CDCl₃, 400 MHz) δ: 0.27-0.41 (m, 2H), 0.62-0.70 (m, 2H), 1.01-1.11 (m, 2H), 1.13-1.32 (m, 4H), 1.60-1.64 (m, 1H), 1.69-1.76 (m, 4H), 1.89-1.98 (m, 1H), 5.04 (ddd, 1H, *J* = 6.4, 6.4, 2.8

Hz), 5.16 (ddd, 1H, J = 6.4, 6.4, 1.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 6.4, 6.9, 9.5, 26.0, 26.2, 33.1, 37.4, 95.9, 99.0, 201.8; IR (ATR) ν : 2922, 2850, 1447, 1017, 889 cm⁻¹; HRMS (APPI) Calcd for C₁₂H₁₉, [M+H] + 163.1481, found 163.1479; Colorless oil (23%, 180 mg)

Scheme S10. Synthesis of 3m^{4,7}

N-(4-cyclopropylbuta-2,3-dien-1-yl)-N,4-dimethylbenzenesulfonamide (3m) TsN μ Me 1H-NMR (CDCl₃, 400 MHz) δ: 0.26-0.34 (m, 2H), 0.66-0.73 (m, 2H), 1.14-1.23 (m, 1H), 2.42 (s, 3H), 2.73 (s, 3H), 3.63 (d, 2H, J = 6.0 Hz), 5.00-5.06 (m, 2H), 7.31 (d, 2H, J = 8.0 Hz), 7.66 (d, 2H, J = 8.0 Hz); 143.3, 204.9; IR (ATR) ν: 3004, 1597, 1451, 1338, 1158, 1089, 1019 cm⁻¹; HRMS (ESI) Calcd for C₁₅H₂₀N1O₂S, [M+H]⁺ 278.1215, found 278.1220; Colorless oil (20%, 133.4 mg)

(3E,5E)-2-methyl-6-phenylhexa-3,5-dienenitrile (4a)

CN ¹H-NMR (CDCl₃, 400 MHz) δ : 1.46 (d, 3H, J = 6.8 Hz), 3.44 (qd, 1H, J = 6.8, 6.0 Hz), 5.67 (dd, 1H, J = 10.4, 6.4 Hz), 6.52 (dd, 1H, J =15.2, 10.4 Hz), 6.60 (d, 1H, J = 15.6 Hz), 6.74 (dd, 1H, J = 15.6, 10.4 Hz), 7.23-7.27 (m, 1H), 7.33 (dd, 2H, J = 7.2, 7.2 Hz), 7.40 (d, 2H, J = 7.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 19.0, 28.1, 120.8, 126.5, 126.9, 127.6, 127.9, 128.6, 132.8, 134.1, 136.7; IR (ATR) v: 3025, 2984, 2937, 2240, 2216, 985, 747, 691 cm⁻¹; HRMS (APPI) Calcd for C₁₃H₁₃NNa, [M+H]⁺ 184.1121, found 184.1115; Colorless oil (72%, 28.4 mg)

(3E,5E)-6-(4-methoxyphenyl)-2-methylhexa-3,5-dienenitrile (4b)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.45 (d, 3H, J = 6.8 Hz), 3.43 (dq, 1H, J = 6.8, 6.0 Hz), 3.82 (s, 3H), 5.61 (dd, 1H, J = 14.8, 6.0 Hz), 6.48 (dd, 1H, J = 15.2, 9.6 Hz), 6.54 (d, 1H, J = 15.2 Hz), 6.61 (dd, 1H, J = 15.2, 9.6 Hz), 6.86 (d, 2H, J = 8.4 Hz),

7.33 (d, 2H, *J* = 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ: 19.0, 28.1, 55.3, 114.1, 120.9, 124.9, 126.4, 127.7, 129.5, 133.0, 133.6, 159.5; IR (ATR) ν: 2935, 2240, 1603, 1509, 1247, 1174, 1030, 984, 831 cm⁻¹; HRMS (APPI) Calcd for C₁₄H₁₅ON, [M] + 213.1148, found 213.1141; Colorless solid (mp: 52-55 °C; 49%, 17.6 mg)

(3E,5E)-2-methyl-6-(4-(trifluoromethyl)phenyl)hexa-3,5-dienenitrile (4c)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.47 (d, 3H, J = 6.8 Hz), 3.43-3.50 (m, 1H), 5.74 (dd, 1H, J = 15.6, 6.4 Hz), 6.51-6.58 (m, 1H), 6.62 (d, 1H, J = 15.6 Hz), 6.81 (dd, 1H, J = 15.6, 10.4 Hz), 7.48 (d, 2H, J = 8.4 Hz), 7.57 (d, 2H, J = 8.4 Hz);

¹³C-NMR (CDCl₃, 100 MHz) δ: 18.9, 28.1, 120.6, 125.6, 125.6, 126.6, 129.3, 129.4, 132.2, 132.4, 140.1; IR (ATR) v: 2989, 2243, 1613, 1415, 1321, 1163, 1118, 1106, 1065, 985, 839 cm⁻¹; HRMS (APPI) Calcd for C₁₄H₁₂NF₃, [M] +251.0916, found 251.0908; Yellow oil (65%, 49.0 mg)

(3E,5E)-6-(4-(tert-butyl)phenyl)-2-methylhexa-3,5-dienenitrile (4d)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.31 (s, 9H), 1.44 (d, 3H, *J* = 7.2 Hz), 3.38-3.45 (m, 1H), 5.62 (dd, 1H, *J* = 15.2, 6.4 Hz), 6.49 (dd, 1H, *J* = 15.2, 10.4 Hz), 6.57 (d, 1H, *J* = 15.2 Hz), 6.70 (dd, 1H,

J = 15.2, 10.4 Hz), 7.28-7.38 (m, 4H); ¹³C-NMR (CDCl₃, 100 MHz) δ: 18.9, 28.1, 31.2, 34.6, 120.8, 125.6, 126.1, 126.2, 127.1, 132.9, 133.9, 151.1; IR (ATR) ν: 2961, 2242, 1459, 1363, 1269, 985, 835, 732 cm⁻¹; HRMS (APPI) Calcd for C₁₇H₂₁N, [M] + 239.1169, found 239.1660; Yellow oil (74%, 41.7 mg)

(3E,5E)-6-(2-bromophenyl)-2-methylhexa-3,5-dienenitrile (4e)

CN ¹H-NMR (CDCl₃, 400 MHz) δ : 1.47-1.48 (d, 3H, J = 7.6 Hz), 3.45 (dq, 1H, J = 7.6, 6.0 Hz), 5.72 (dd, 1H, J = 15.2, 6.0 Hz), 6.58 (dd, 1H, J = 15.2, 10.4 Hz), 6.69 (dd, 1H, J = 10.4, 15.2 Hz), 6.96 (d, 1H, J = 15.2 Hz), 7.10 (dd, 1H, J = 7.2, 7.2 Hz), 7.22-7.29 (m, 1H), 7.55 (dd, 2H, J = 7.2, 7.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 18.8, 28.1, 120.7, 124.0, 126.5, 127.5, 128.9, 129.1, 129.5, 132.6, 132.6, 133.1, 136.4; IR (ATR) v: 2934, 2242, 1465, 1437, 984, 747 cm⁻¹; HRMS (APPI) Calcd for C₁₃H₁₂NBr, [M] + 261.0148, found 261.0138; Colorless oil (60%, 25.0 mg)

(3E,5E)-6-(3-bromophenyl)-2-methylhexa-3,5-dienenitrile (4f)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.45 (d, 3H, *J* = 7.2 Hz), 3.44 (dq, 1H, *J* = 7.2, 6.4 Hz), 5.69 (dd, 1H, *J* = 16.0, 6.4 Hz), 6..46-6.54 (m, 2H), 6.72 (dd, 1H, *J* = 16.0, 10.8 Hz), 7.18 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.29 (d, 1H, *J* = 7.6 Hz), 7.35-7.38 (m, 1H), 7.54 (dd, 1H, *J* = 1.6, 1.6 Hz);

¹³C-NMR (CDCl₃, 100 MHz) δ: 18.9, 28.1, 120.6, 122.8, 125.1, 128.3, 128.8, 129.1, 130.1, 130.7, 132.3, 132.3, 138.8; IR (ATR) ν: 2985, 2243, 1588, 1471, 984, 731 cm⁻¹; HRMS (APPI) Calcd for C₁₃H₁₂NBr, [M] + 261.0148, found 261.0142; Colorless oil (67%, 33.6 mg)

(3E,5E)-6-(4-bromophenyl)-2-methylhexa-3,5-dienenitrile (4g)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.45 (d, 3H, J = 6.8 Hz), 3.43 (dq, 1H, J = 6.8, 6.4 Hz), 5.68 (dd, 1H, J = 15.2, 6.4 Hz), 6.46-6.55 (m, 2H), 6.71 (dd, 1H, J = 15.2, 10.8 Hz), 7.24 (d, 2H, J = 8.4 Hz), 7.43 (d, 2H, J = 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ :

18.9, 28.1, 120.6, 121.7, 127.6, 127.9, 128.3, 131.7, 132.4, 132.7, 135.6; IR (ATR) v: 2986, 2241, 1486, 1071, 984, 827, 731 cm⁻¹; HRMS (APPI) Calcd for $C_{13}H_{12}NBr$, [M+H] + 261.0148, found 261.0140; Colorless solid (mp: 35-39 °C, 68%, 61.8 mg)

(3E,5E)-2-methyl-6-(naphthalen-2-yl)hexa-3,5-dienenitrile (4h)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.46 (d, 3H, J = 7.2 Hz), 3.42-3.48 (m, 1H), 5.69 (dd, 1H, J=15.2, 6.4 Hz), 6.56 (dd, 1H, J = 15.2, 9.6 Hz), 6.75 (d, 1H, J = 15.2, 9.6 Hz), 7.42-7.49 (m, 2H), 7.59 (dd, 1H, J = 8.4, 1.6 Hz), 7.74 (s, 1H), 7.77-7.83 (m, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ : 19.0, 28.2, 120.8, 123.3, 126.1, 126.4, 126.8, 127.2, 127.7, 127.8, 128.0, 128.3, 132.8, 133.1, 133.5, 134.2; IR (ATR) v: 2996, 2239, 2215, 1507, 1454 cm⁻¹; HRMS (APPI) Calcd for C₁₇H₁₅N, [M] + 233.1199, found 233.1190; Colorless solid (mp: 117-122 °C, 76%, 51.1 mg)

(3E,5E)-2-methyl-6-(thiophen-2-yl)hexa-3,5-dienenitrile (4i)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.45 (d, 3H, J = 6.8 Hz), 3.40-3.46 (m, 1H), 5.63 (dd, 1H, J = 15.2, 6.0 Hz), 6.45 (dd, 1H, J = 15.2, 10.4 Hz), 6.73 (d, 1H, J = 15.2 Hz), 6.97-7.00 (m, 2H), 7.18 (d, 1H,

J = 5.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ: 18.9, 28.1, 120.7, 124.9, 126.5, 126.8, 127.4, 127.6, 129.7, 132.2, 142.0; IR (ATR) ν: 3022, 2984, 2936, 2241, 1593, 1452, 1210 cm⁻¹; HRMS (APPI) Calcd for C₁₁H₁₁NS, [M] + 189.0607, found 189.0601; Yellow oil (50%, 38.1 mg)

N-allyl-N-(2-((1*E*,3*E*)-5-cyanohexa-1,3-dien-1-yl)phenyl)-4-methylbenzenes ulfonamide (4j)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.47 (d, 3H, J = 7.6 Hz), 2.44 (s, 3H),
3.44 (qd, 1H, J = 7.6, 6.4 Hz), 3.91-4.10 (brs, 1H), 4.17-4.33 (m,
1H), 4.95 (dd, 1H, J = 15.6, 1.2 Hz), 4.99 (dd, 1H, J = 9.6, 1.2 Hz),
5.65-5.79 (m, 2H), 6.40 (dd, 1H, J = 15.6, 9.6 Hz), 6.64-6.86 (m,

3H), 7.13 (dd, 1H, J = 7.6, 7.6 Hz), 7.28 (d, 2H, J = 8.8 Hz), 7.30 (d, 1H, J = 8.8 Hz), 7.58 (d, 2H, J = 8.8 Hz), 7.62 (d, 1H, J = 8.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 18.9, 21.6, 28.1, 54.8, 119.4, 120.8, 125.9, 127.8, 128.1, 128.3, 128.5, 128.5, 129.5, 129.6, 132.3, 133.1, 136.0, 136.9, 137.6, 143.6; IR (ATR) v: 3024, 2242, 1597, 1481, 1450, 1343, 1162, 1091, 989 cm⁻¹; HRMS (ESI) Calcd for C₂₃H₂₄N₂NaO₂S, [M+Na]+ 415.1456, found 415.1449; Yellow oil (44%, 112 mg)

(3E,5E)-2-methyl-6-phenylhepta-3,5-dienenitrile (4k)

Me CN ¹H-NMR (CDCl₃, 400 MHz) δ : 1.42 (d, 3H, J = 7.2 Hz), 2.17 (s, 3H), Ph 3.41 (qd, 1H, J = 7.2, 6.4 Hz), 5.61 (dd, 1H, J = 14.8, 6.4 Hz), 6.38 (d, 1H, J = 11.2 Hz), 6.73 (ddd, 1H, J = 14.8, 11.2, 1.6 Hz), 7.29-7.34 (m, 3H), 7.42 (d, 2H, J = 7.6 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 16.1, 19.0, 28.2, 120.9, 124.9, 125.6, 127.3, 127.8, 128.2, 129.1, 138.1, 142.5; IR (ATR) v: 3065, 2985, 2937, 2237, 1467, 1437, 1024, 963 cm⁻¹; HRMS (APPI) Calcd for C₁₄H₁₆N, [M+H] + 198.1277, found 198.1273; Colorless oil (97%, 104.0 mg)

(3E,5E)-6-cyclohexyl-2-methylhexa-3,5-dienenitrile (41)

 $(CN) = 7.2 \text{ Hz}, 1.68 \cdot 1.75 \text{ (m, 4H)}, 1.96 \cdot 2.05 \text{ (m, 1H)}, 3.31 \cdot 3.39 \text{ (m, 1H)}, 5.43 \text{ (dd, 1H, } J = 15.6, 6.4 \text{ Hz}), 5.72 \text{ (dd, 1H, } J = 15.6, 6.4 \text{ Hz})$

Hz), 5.94 (dd, 1H, J = 15.2, 10.8 Hz), 6.29 (ddd, 1H, J = 15.2, 10.4, 0.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 19.0, 25.9, 26.2, 28.0, 32.7, 40.7, 120.9, 125.1, 126.0, 133.3, 142.7; IR (ATR) v: 2923, 2850, 2241, 1655, 1448, 986 cm⁻¹; HRMS (APPI) Calcd for C₁₃H₂₀N, [M+H] + 190.1590, found 190.1584; Colorless oil (52%, 73.4 mg)

N-((2E,4E)-6-cyanohepta-2,4-dien-1-yl)-N,4-dimethylbenzenesulfonamide (4m)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.41 (d, 3H, J = 7.2 Hz), 2.44 (s, Me CN 3H), 2.67 (s, 3H), 3.34-3.42 (m, 1H), 3.67 (d, 2H, J = 6.0 Hz), 5.51-5.64 (m, 2H), 6.13 (dd, 1H, J = 15.2, 6.4 Hz), 6.31 (dd, 1H, J = 15.2, 6.4 Hz), 7.32 (d, 2H, J = 8.0 Hz), 7.67 (d, 2H, J = 8.0 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 18.7, 21.5, 27.9, 34.4, 51.9, 120.6, 127.4, 128.3, 129.0, 129.7, 131.3, 132.1, 134.3, 143.5; IR (ATR) v: 2934, 1598, 1452, 1335, 1157, 1089 cm⁻¹; HRMS (ESI) Calcd for C₁₆H₂₀N₂NaO₂S, [M+Na]⁺ 327.1143, found 327.1154; Yellow oil (50%, 21.7 mg)

(10%, 3.3 mg)

(54 mg)

Scheme S12. Synthesis of 6a-g¹¹

1-(cyclopropylidenemethyl)-4-(trifluoromethyl)benzene (6e) (CAS-Reg# 243449-23-2) (33%, 660 mg)

2-(cyclopropylidenemethyl)naphthalene (6f) (CAS-Reg# 68854-50-2) (41%, 325.8 mg)

2-(cyclopropylidenemethyl)thiophene (6g)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.29-1.33 (m, 4H), 6.94 (dd, 1H, J = 1.6, 1.6 Hz), 6.98-7.00 (m, 2H), 7.15 (d, 1H, J = 4.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) & 2.9, 4.4, 112.7, 123.9, 124.1, 124.4, 127.2, 144.1; IR (ATR)

v: 3069, 3046, 2975, 1786, 1660, 1523, 1411, 1215, 1040 cm⁻¹; HRMS (APPI) Calcd for C₈H₉S, [M+H]+137.0419, found137.0418; Yellow oil (48%, 964.3 mg)

(E)-2-methyl-4-phenylbut-3-enenitrile

112528-98-0) (63%, 28.4 mg)

(E)-4-(4-(tert-butyl)phenyl)-2-methylbut-3-enenitrile (7b)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.32 (s, 9H), 1.49 (d, 3H, J = 7.2 Hz), 3.49 (qd, 1H, J=7.2, 6.4 Hz), 6.02 (dd, 1H, J=16.0, 6.4 Hz), 6.67 (d, 1H, J=16.0 Hz), 7.30 (d, 2H, J=8.0 Hz), 7.35 (d, 2H, J = 8.0 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ: 19.1, 28.4, 31.2, 34.6,

121.0, 123.5, 125.6, 126.2, 132.2, 132.9, 151.4; IR (ATR) v: 3734, 2962, 2242, 1783, 1509, 1456, 1363, 1269, 1109, 966, 814 cm⁻¹; HRMS (APPI) Calcd for C₁₅H₁₉N, [M] +213.1512, found 213.1507; Colorless oil (67%, 28.8 mg)

(E)-4-(3-bromophenyl)-2-methylbut-3-enenitrile (7c)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.50 (d, 3H, J = 6.8 Hz), 3.47-3.54 (m, 1H), 6.03-6.10 (m, 1H), 6.64 (dd, 1H, J = 15.6, 6.8 Hz), 7.21 (dd, 1H, J = 8.0, 8.0 Hz), 7.27 (dd, 1H, J = 7.2, 7.2 Hz), 7.39 (dd, 1H, J = 7.2, 7.2 Hz), 7.51 (d, 1H, J = 7.2 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 18.9, 28.3,

120.5, 122.8, 125.3, 125.8, 129.3, 130.2, 131.1, 137.7; IR (ATR) v[:] 2985, 2242, 1561, 1473, 1072, 961, 883 cm⁻¹; HRMS (APPI) Calcd for C₁₁H₁₀NBr, [M] +234.9991, found 234.9986; Colorless oil (72%, 31.2 mg)

(E)-4-(4-bromophenyl)-2-methylbut-3-enenitrile (7d)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.50 (d, 3H, J = 7.2 Hz), 3.50 (qd, 1H, J = 7.2, 6.4 Hz), 6.05 (dd, 1H, J = 16.0, 6.4 Hz), 6.64 (d, 1H, J = 16.0 Hz), 7.23 (d, 2H, J = 8.0 Hz), 7.45 (d, 2H, J = 8.0 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 18.9, 28.3, 120.6, 122.1, 125.0,

128.0, 131.3, 131.8, 134.5; IR (ATR) v: 2991, 2939, 2243, 1487, 1072, 1008, 965, 807 cm⁻¹; HRMS (APPI) Calcd for C₁₁H₁₀NBr, [M] +234.9991, found 234.9987; Colorless solid (mp: 36-40 °C, 76%, 34.1 mg)

(E)-2-methyl-4-(4-(trifluoromethyl)phenyl)but-3-enenitrile (7e)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.53 (d, 3H, J = 7.2 Hz), 3.54 (qd, J = 7.2, 5.6 Hz), 6.16 (dd, 1H, J = 16.0, 5.6 Hz), 6.75 (d, 1H, J = 16.0 Hz), 7.47 (d, 2H, J = 8.0 Hz), 7.59 (d, 2H, J = 8.0 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ :18.8, 28.3, 120.4, 125.6, 125.6,

126.7, 126.9, 131.1, 139.1; IR (ATR) v: 2991, 2245, 1617, 1416, 1263, 1164, 1119, 1107,

1065, 1016 cm⁻¹; HRMS (APPI) Calcd for C₁₂H₁₀NF₃, [M] +225.0760, found 225.0755; Colorless oil (79%, 47.3 mg)

(E)-2-methyl-4-(naphthalen-2-yl)but-3-enenitrile (7f)

CN ¹H-NMR (CDCl₃, 400 MHz) δ : 1.53 (d, 3H, J = 6.8 Hz), 3.52-3.59 (qd, 1H, J = 6.8, 6.0 Hz), 6.16 (dd, 1H, J = 15.6, 6.0 Hz), 6.86 (d, 1H, J = 15.6 Hz), 7.44-7.50 (m, 2H), 7.55 (d, 1H, J = 8.4 Hz), 7.75 (s, 1H), 7.79-7.82 (m, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ : 19.1, 28.5, 120.9, 123.2, 124.5, 126.2, 126.4, 126.9, 127.7, 128.0, 128.4, 132.6, 133.0, 133.2, 133.4; IR (ATR) v: 2994, 2237, 1964, 1709, 1508, 1460 cm⁻¹; HRMS (APPI) Calcd for C₁₅H₁₃N, [M] +207.1043, found 207.1037; Colorless solid (mp: 85-88 °C, 93%, 38.3 mg)

(E)-2-methyl-4-(thiophen-2-yl)but-3-enenitrile (7g)

^{CN} ¹H-NMR (CDCl₃, 400 MHz) δ : 1.48 (d, 3H, J = 7.2 Hz), 3.44 (qd, 1H, J = 7.2, 6.0 Hz), 5.89 (d, 1H, J = 16.0, 6.0 Hz), 6.82 (d, 1H, J = 16.0Hz), 6.96-7.00 (m, 2H), 7.19 (d, 1H, J = 4.8 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 18.9, 28.1, 120.6, 123.5, 125.0, 125.6, 126.7, 127.5, 140.3; IR (ATR) v: 2986, 2938, 2242, 1783, 1645, 1591, 1487, 1452, 1433, 1205, 1040 cm⁻¹; HRMS (APPI) Calcd for C₉H₉NS, [M] +163.0450, found163.0445; Colorless oil (75%, 35.2 mg)

Scheme S13. Synthesis of 9a-e¹²

(2-cyclopropylidenevinyl)benzene (9a) (CAS-Reg# 42311-14-8) (12%, 16.4 mg)

1-(2-cyclopropylidenevinyl)-4-(trifluoromethyl)benzene (9b)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.70-1.82 (m, 4H), 6.29 (ddd, 1H, J = 6.8, 3.6, 3.6 Hz), 7.35 (d, 2H, J = 8.4 Hz), 7.51 (d, 2H, J = 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 9.3, 80.2, 95.6, 125.4, 125.4, 126.5, 131.7, 140.0, 190.7; IR (ATR) v: 2993, 2009, 1613, 1320, 1161, 1104,

1064, 846 cm⁻¹; HRMS (ESI) Calcd for C₁₂H₉CsF₃, [M+Cs]+342.9711, found 342.9700; Colorless oil (25%, 89.0 mg)

1-(*tert*-butyl)-4-(2-cyclopropylidenevinyl)benzene (9c)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.30 (s, 9H), 1.61-1.74 (m, 4H), 6.23 (ddd, 1H, J = 6.8, 3.6, 3.6 Hz), 7.21 (d, 2H, J = 8.4 Hz), 7.30 (d, 2H, J = 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 8.7, 31.4, 34.6, 80.0, 96.4, 125.6, 126.3, 133.0, 149.6, 189.9; IR (ATR) v: 2961, 2009, 1699, 1514, 1362,

1268, 841 cm⁻¹; HRMS (ESI) Calcd for C₁₅H₁₈Cs, [M+Cs]+331.0463, found 331.0466; Yellow oil (5%, 9.5 mg)

1-bromo-4-(2-cyclopropylidenevinyl)benzene (9d)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.66-1.78 (m, 4H), 6.22 (ddd, 1H, J = 6.8, 3.6, 3.6 Hz), 7.13 (d, 2H, J = 8.4 Hz), 7.38 (d, 2H, J = 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 8.9, 80.3, 95.7, 119.8, 128.0, 131.5, 133.0, 189.9; IR (ATR) v: 2985, 2008, 1475, 1008, 831 cm⁻¹; HRMS (ESI) Calcd for

C11H9BrCs, [M+Cs]+352.8942, found 352.8947; yellow oil (5%, 25.6 mg)

2-(2-cyclopropylidenevinyl)naphthalene (9e)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.69-1.82 (m, 4H), 6.46 (ddd, 1H, J = 7.2, 3.6, 3.6 Hz), 7.38-7.48 (m, 3H), 7.76 (s, 1H), 7.73-7.82 (m, 3H);
¹³C-NMR (CDCl₃, 100 MHz) δ: 8.9, 80.2, 96.9, 124.8, 124.9, 125.3, 126.1, 127.6, 127.7, 128.0, 132.4, 133.4, 133.7, 190.3; IR (ATR) ν:

3045, 2006, 1597, 1508, 902, 822 cm⁻¹; HRMS (ESI) Calcd for C₁₅H₁₂Cs, [M+Cs]+324.9994, found 324.9981; Colorless solid (mp: 63-65 °C, 13%, 124.1 mg)

Scheme S14. Synthesis of 9f¹³⁻¹⁵

(2-cyclopropylideneethene-1,1-diyl)dibenzene (9f) (CAS-Reg# Ph 1403484-23-0) Ph (40%, 187.6 mg)

(E)-1-styrylcyclopropanecarbonitrile (10a)

Ph CN 1 H-NMR (CDCl₃, 400 MHz) δ : 1.15-1.25 (m, 2H), 1.55-1.65 (m, 2H), 5.51 (d, 1H, J = 15.6 Hz), 6.80 (d, 1H, J = 15.6 Hz), 7.25-7.33 (m, 5H); 13 C-NMR (CDCl₃, 100 MHz) δ : 12.5, 16.8, 121.3, 126.1, 126.2, 127.9, 128.7, 130.8, 135.8; IR (ATR) v: 3025, 2234, 1448, 1071, 963, 806 cm⁻¹; HRMS (ESI) Calcd for C₁₂H₁₁CsN, [M+Cs]⁺ 301.9946, found 301.9939; Colorless oil (63%, 12.2 mg)

(E)-1-(4-(trifluoromethyl)styryl)cyclopropanecarbonitrile (10b)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.26 (dd, 2H, J = 7.2, 5.6 Hz), 1.66 (dd, 2H, J = 7.2, 5.6 Hz), 5.59 (d, 1H, J = 15.6 Hz), 6.84 (d, 1H, J = 15.6 Hz), 7.42 (d, 2H, J = 8.4 Hz), 7.56 (d, 2H, J = 8.4 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 12.7, 17.1, 120.9, 125.6, 125.7, 126.3, 129.1, 129.4, 139.2; IR (ATR) v: 3016, 2240, 1326, 1103, 1067, 967 cm⁻¹; HRMS (ESI) Calcd for C₁₃H₁₀CsF₃N, [M+Cs]+369.9820, found 369.9826; Colorless solid (mp: 91-93 °C, 76%, 35.9 mg)

(E)-1-(4-(tert-butyl)styryl)cyclopropanecarbonitrile (10c)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.15-1.21 (m, 2H), 1.31 (s, 9H), 1.58-1.62 (m, 2H), 5.48 (d, 1H, J = 16.0 Hz), 6.78 (d, 1H, J = 16.0 Hz), 7.26 (d, 2H, J = 8.4 Hz), 7.33 (d, 2H, J = 8.4 Hz); ¹³C-NMR

(CDCl₃, 100 MHz) δ: 12.5, 16.8, 31.2, 34.6, 121.5, 125.4, 125.6, 125.8, 129.7, 130.6, 133.0; IR (ATR) ν: 2961, 2235, 963, 828 cm⁻¹; HRMS (ESI) Calcd for C₁₆H₁₉CsN, [M+Cs]+358.0572, found 358.0562; Colorless solid (mp: 65-69 °C, 65%, 4.6 mg)

(E)-1-(4-bromostyryl)cyclopropanecarbonitrile (10d)

¹H-NMR (CDCl₃, 400 MHz) δ : 1.20-1.23 (m, 2H), 1.61-1.65 (m, 2H), 5.50 (d, 1H, J = 16.0 Hz), 6.74 (d, 1H, J = 16.0 Hz), 7.19 (d, 2H, J = 8.0 Hz), 7.43 (d, 2H, J = 8.0 Hz); ¹³C-NMR (CDCl₃, 100 MHz) δ : 12.6,16.9, 121.1, 121.7, 127.1, 127.6, 129.7, 131.8, 134.8; IR (ATR) v: 3016, 2237, 1488, 1068, 957 cm⁻¹; HRMS (ESI) Calcd for C₁₂H₁₀BrCsN, [M+Cs]+379.9051, found 379.9043; Colorless solid (mp: 105-107 °C, 82%, 23.6 mg)

(E)-1-(2-(naphthalen-2-yl)vinyl)cyclopropanecarbonitrile (10e)

¹H-NMR (CDCl₃, 400 MHz) δ: 1.24 (dd, 2H, *J* = 6.8, 5.2 Hz), 1.63

(dd, 2H, J = 6.8, 5.2 Hz), 5.63 (d, 1H, J = 15.6 Hz), 6.96 (d, 1H, J = 15.6 Hz), 7.43-7.50 (m, 3H), 7.72-7.80 (m, 4H); ¹³C-NMR (CDCl₃, 100 MHz) δ : 12.7, 16.9, 121.3, 123.0, 126.0, 126.2, 126.4, 126.5, 127.6, 128.0, 128.3, 130.8, 133.0, 133.2, 133.5; IR (ATR) v: 3054, 2236, 969, 954, 818 cm⁻¹; HRMS (ESI) Calcd for C₁₆H₁₃CsN, [M+Cs]+352.0102, found 352.0092; Colorless solid (mp: 93-95 °C, quant, 31.6 mg)

(10f)

Ph CN

1-(2,2-diphenylvinyl)cyclopropanecarbonitrile

(CAS-Reg# 260261-08-3) (17%, 7.9 mg)

References

- 4) M. L. Hossain, F. Ye, Yan Zhang, J. Wang, J. Org. Chem. 2013, 78, 1236.
- 5) T. Zhang, Z. Qi, X. Zhang, L. Wu, X. Li, Chem. Eur. J. 2014, 20, 3283.
- 6) S. K. Padhi, K. Kobayashi, S. Masuno, K. Tanaka, Inorg. Chem. 2011, 50, 5321
- 7) K. Hirano, A. T. Biju, I. Piel, F. Glorius, J. Am. Chem. Soc. 2009, 131, 14190.
- 8) P. Garcia, Y. Harrak, L. Diab, P. Cordier, C. Ollivier, V. Gandon, M. Malacria, L. Fensterbank, C. Aubert. Org. Lett. 2011, 13, 2952.
- 9) M. A. Kacprzynski, S. A. Kazane, T. L. May, A. H. Hoveyda, Org. Lett., 2007, 9, 3187
- 10) H. Ito, T. Nakamura, T. Taguchi, Y. Hanazawa, Tetrahedron, 1995, 51, 4507
- 11) J. A. Stafford, J. E. McMurry, Tetrahedron Lett. 1988, 29, 2531
- 12) K. N. Sedenkova, E. B. Averina, Y. K. Grishin, V. B. Rybakov, T. S. Kuznetzova, N. S. Zefirov, *Eur. J. Org. Chem.* **2010**, 4145.
- 13) F. Romanov-Michailidis, L. Guénée, A. Alexakis, Angew. Chem. Int. Ed. 2013, 52, 9266.
- 14) J. Liu, Y. An, H.-Y. Jiang, Z. Chen, Tetrahedron Lett. 2008, 49, 490.
- 15) W. Yuan, X. Dong, Y. Wei, M. Shi, Chem. Eur. J. 2012, 18, 10501.

GSYA-131115-12-

2013-11-15 15:29: 1H single_puise.exp 399.78 MHz

399.78 MHz 4,19 KHz 7,29 Hz 16384 5998.60 Hz 4 2.7312 sec 2.0000 sec 6.00 usec

201 3.00 us 21.2 c CDCL3 0.00 ppm 0.12 Hz 20

D:\CEAIfIfHf+f_\umako\GSYA-131115-12-70.1

GSYA-131112-12-

2013-11-12 12:28;

4.28

GSYA-150123-18

2015-01-23 12:15

H ngle_pulse.exp 399.78 MHz 4.19 KHz 7.29 Hz 16384 5998.60 Hz

4 2.7312 sec 2.0000 sec 5.75 usec

241 3.75 US 21.0 C CDCL3 0.00 ppm 0.12 Hz 18

77.324

28.145

18.858

1111 132.396 132.224 129.421 129.259 129.259 126.561 126.569

120.573

140.119

D30EA/ffH/ff_thorn13\1301-1320/GSHH_13_0x_s_tm_c.1

95,631

80.204 77.324 77.000 76.685

9.276

139.957

Bing Stand Har horivothers	e_Proton_ft-1-1.jdf	· · ·			
∇					
ST. CN					
. ²⁴ 10d					
,			:		
		÷ .			
					*
					,
		-			
2.01	5			006	
ĴĴĴ	<u>ت</u> ر			ŢŢ	
	11				
!M	W			N	l
7		, , , , , , , , , , , , , , , , , , , 	• • • • • • • • • • • • • • • • • • • •		
711×1	,		3		U
22222222222222222222222222222222222222	1 - 136			\$~%2~2~2~2~2 () [))	. 8
666 1111	5.5			<u>666666666</u>	0.0
, 1 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		·		·	
D:\@ÂlftfHf(f_\hori\others\GSHH_Br_	TM_13C.2				
				,	
Br					
10d					
	,				
,					
,		M			
	in a star in the second star and star star in a star in the second star and the second star and the second star An an	and a stand to state of the state	ningen en syn an de generale an de ser en ser e Ner en ser en	i prosta de la contra de la contr La contra de la contr La contra de la contr	
	וויין וויידייייייייייייייייייייייייייייי	80 70	التتارينية (1111) 60 50	۲۰٬۲۰٬۳۰٬۳۰٬۰۰۰ ۲۱۱٬۰۰۰ 40 30	<u>۲۲</u> ۲۱,۱۰۰,۱۰۰,۱۰۰,۱۰۰,۱۰۰,۱۰۰,۱۰۰,۱۰۰ 20 10 ۰
1/7/ //					
757 - 5885 - 545 - 110 - 777 - 777 -					03 - 21 -
	•	27.2			5.5

Diveraphy fif hori 15/1581~ OSHH 15 88 re_Proton_ft-1-1.als

