Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Chemically and Electrochemically Induced Expansion and Contraction of a Ferrocene Rotor

Synøve Ø. Scottwell,^a Anastasia B. S. Elliott,^{a,b} Karl J. Shaffer,^a Ayman Nafady,^c C. John McAdam,^a Keith C. Gordon,^{a,b} and James D. Crowley^a*

^a Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand; Fax: +64 3 479 7906; Tel: +64 3 479 7731.

^b MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand

^c Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

*jcrowley@chemistry.otago.ac.nz

Contents

1 Experimental Procedures					
	1.1	neral	.4		
	1.2	Liga	nd Synthesis	5	
	1.2.1		Synthesis of 5-bromo-2,2'-bipyridine (S1)	8	
	1.2.2 1.2.3		Synthesis of 5-(trimethylsilyl)ethynyl-2,2'-bipyridine (S2)	9	
			Synthesis of 5-ethynyl-2,2'-bipyridine (S3)	10	
	1.2	2.4	Synthesis of 1,1'-diiodoferrocene (S4)	11	
	1.2	2.5	Synthesis of 1-(3-yl-ethynylpyridine)ferrocene (S9)	12	
	1.2	2.6	Synthesis of 1-(3-yl-ethynylpyridine)-1'-iodo-ferrocene (S6)	13	
	1.2	2.7	Synthesis of 1,1'-di(3-yl-ethynylpyridine)ferrocene (S5)	14	
	1.2	2.8	Synthesis of 1-(5-yl-ethynyl-2,2'-bipyridine)ferrocene (2a)	15	
	1.2	2.9	Synthesis of 1-(5-yl-ethynyl-2,2'-bipyridine)-1'-iodo-ferrocene (S7)	16	
	1.2	2.10	Synthesis of 1,1'-di(5-yl-ethynyl-2,2'-bipyridine)ferrocene (1a)	17	
	1.2	2.11	Synthesis of 1-(5-yl-ethynyl-2,2'-bipyridine)-1'-(3-yl-ethynylpyridine)ferrocene (S8)	18	
	1.2	2.12	Synthesis of 6,6'-dimesityl-2,2'-bipyridine (3)	20	
	1.3	Met	thylation	21	
	1.3	8.1	Synthesis of [1-(N-methyl-3-yl-ethynylpyridine)ferrocene]PF ₆ (2b)	21	
	1.3 eth	8.2 nynylp	Synthesis of [1-(5-yl-ethynyl-2,2'-bipyridine)-1'-(N-methyl-3-yl- yridine)ferrocene]PF ₆ (1b)	22	
	1.4	Сор	per(I) Complexation	23	
	1.4	l.1	$[Cu(6,6'-dimesityl-2,2'-bipyridine)(MeCN)_2]PF_6 ([Cu(3)(CH_3CN)_2]PF_6) \dots$	23	
	1.4 ([C	I.2 Ω(2a)([Cu(6,6'-dimesityl-2,2'-bipyridine)(1-(5-yl-ethynyl-2,2'-bipyridine)ferrocene)]PF ₆	24	
	1.4.3 ethynylp		$[Cu(6,6'-dimesityl-2,2'-bipyridine)(1-(5-yl-ethynyl-2,2'-bipyridine)-1'-(N-methyl-3-yl-byridine)ferrocene)](PF_6)_2 ([Cu(1b)(3)](PF_6)_2)$	25	
	1.4 bip	I.4 oyridin	$[Cu_2(6,6'-dimesityl-2,2'-bipyridine)_2(1,1'-di(5-yl-ethynyl-2,2'-ne)ferrocene)](PF_6)_2 ([Cu_2(1a)(3)_2](PF_6)_2)$	26	
	1.4	l.1	[Cu(6,6'-dimesityl-2,2'-bipyridine)(2,2':6',2''-terpyridine)](PF ₆) ₂ ([Cu(5)(3)](PF ₆) ₂)	27	
2	^{1}H	NMR	Stackplots	28	
	2.1	Rot	ors	28	
	2.2	Con	nplexes	32	
	2.3	Swi	tching	35	
3	Re	levant	Mass Spectra	39	
4	UV-Vis Spectra				

5	Elec	ctrochemistry		
	5.1	Representative Voltammograms	51	
	5.2	Spectroelectrochemistry Plots	55	
6	Com	putational Details	59	
7	X-ra	y Data	63	
	7.1	Crystallographic Data Tables	63	
	7.2	Crystal Structures and Relevant Notes	66	
8	Refe	erences	77	

1 Experimental Procedures

1.1 General

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. The solvents used were laboratory grade, with petrol referring to the fraction of petroleum ether boiling in the range 40-60 °C, and ether referring to diethyl ether. Dry tetrahydrofuran (THF), acetonitrile (CH₃CN), dichloromethane (CH₂Cl₂) and chloroform (CHCl₃) were obtained by passing them through an activated alumina column using a PureSolv TM solvent purification system (Innovative Technologies Inc., MA). Dry tetramethylethylenediamine (TMEDA) was obtained by distillation over CaH₂. 0.1 M Ammonium hydroxide/ethylenediaminetetraacetic acid (NH₄OH/EDTA) solution was made up by mixing 30 g EDTA with 900 mL water and 100 mL NH₄OH. Microwave-assisted reactions were performed in a CEM Focused Microwave Synthesis System, Discover S-Class (CEM Corporation, NC), at 300 W.

¹H and ¹³C NMR spectra were recorded on either a 400 MHz Varian/Agilent 400-MR or Varian 500 MHz AR spectrometer at 298 K. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to residual solvent peaks (CDCl₃: ¹H δ 7.26 ppm, ¹³C δ 77.16 ppm; *d*₆-acetone: ¹H δ 2.05 ppm; ¹³C δ 29.84 & 206.26 ppm; CD₃CN: ¹H δ 1.94 ppm, ¹³C δ 1.32 & 118.26 ppm). Coupling constants (*J*) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, q = quartet, t = triplet, dt = double triplet, d = doublet, dd = double doublet, s = singlet. IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer with an attached ALPHA-P measurement module. Microanalyses were conducted at the Campbell Microanalytical Laboratory at the University of Otago. Electrospray mass spectra (ESMS) were collected on a Bruker micrOTOF-Q spectrometer. Melting points were determined using a Leica VMHB melting bar. UV-visible absorption spectra were acquired with a Jasco V550 UV/VIS spectrophotometer.

1.2 Ligand Synthesis

Figure S1The ferrocene rotor molecules (1a-b) and the model systems (2a-b) studied.

Scheme S2 Synthetic strategy for the formation of the functionalised bipyridine intermediates. (i) $[Pd(PPh_3)_4]$, THF, reflux (5 h), r.t. (16 h); (ii) Triethylamine, $[Pd(PPh_3)_2Cl_2]$, CuI, ethynyltrimethylsilane, THF, reflux (2.5 days); (iii) K₂CO₃, methanol, r.t. (1 h).

Scheme S3 Synthetic strategy for the formation of the model ligand 2a. (i) Triethylamine, [Pd(PPh₃)₂Cl₂], CuI, THF, reflux (16 h).

Scheme S4 Synthetic strategy for the formation of ligand 3. (i) [Pd(PPh₃)₄], NaCO₃ (2 M), toluene, methanol, reflux (3 days).

Scheme S5 Synthetic strategy for the formation of the two ferrocene-based switches **1a** and **1b**. (i) *n*-BuLi, TMEDA, I₂, ether, r.t. (16 h), -78 °C (30 min); (ii) S3, [Pd(CH₃CN)₂Cl₂], [PH(^tBu)₃]BF₄, Cul, diisopropylamine, reflux (24 h); (iii) 3-ethynylpyridine, [Pd(CH₃CN)₂Cl₂], [PH(^tBu)₃]BF₄, Cul, diisopropylamine, reflux (24 h); (iv) 3-ethynylpyridine OR S3,

[Pd(CH₃CN)₂Cl₂], [PH(^tBu)₃]BF₄, CuI, diisopropylamine, reflux (24 h); (v) CH₃I, CH₂Cl₂, r.t. (2 days); (vi) AgPF₆, acetone, r.t. (10 min).

Scheme S6 Synthetic strategy for the formation of model 2b. (i) 3-bromopyridine, [Pd(CH₃CN)₂Cl₂], [PH(^tBu)₃]BF₄, Cul, diisopropylamine, reflux (24 h); (ii) CH₃I, CH₂Cl₂, r.t. (2 days); (iii) AgPF₆, acetone, r.t. (10 min).

1.2.1 Synthesis of 5-bromo-2,2'-bipyridine (S1)

The synthesis of this compound has previously been reported by Rieke in 72% yield.¹

Under a nitrogen atmosphere, a solution of 2-pyridylzinc(II) bromide (THF, 0.5 M, 50 mL, 25.0 mmol, 1.10 eq.) was added to a solution of THF (20 mL) containing 2,5-dibromopyridine (5.38 g, 22.7 mmol, 1.00 eq.) and tetrakis(triphenylphosphine)palladium(0) (0.53 g, 0.46 mmol, 0.02 eq.). The resulting suspension was refluxed for five hours, before stirring at room temperature overnight (16 hours). NH₄OH/EDTA (200 mL) and CH₂Cl2 (150 mL) were added and the mixture allowed to stir for four hours. The organic phase was washed with water (2 × 50 mL) and saturated aqueous NaCl $(2 \times 50 \text{ mL})$, then dried over Na₂SO₄ and excess solvent removed *in vacuo*. Column chromatography (silica gel, gradient 100% petrol, then 1:1 petrol /CH₂Cl₂, then 95:5 CH₂Cl₂/acetone) was used to obtain a colourless solid. The solid residue was dissolved in CH₃CN and vapour diffused diethyl ether to provide colourless crystals. Yield: 3.84 g, 72%. Mp 82 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, J = 2.4, 0.7 Hz, 1H, H_a), 8.67 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H, H_g), 8.37 (dt, J = 8.0, 1.1 Hz, 1H, H_d), 8.32 (dd, J = 8.5, 0.7 Hz, 1H, H_c), 7.93 (dd, J = 8.5, 2.4 Hz, 1H, H_b), 7.81 (ddd, J = 8.1, 7.5, 1.8 Hz, 1H, H_e), 7.33 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H, H_f); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 154.8, 150.3, 149.4, 139.6, 137.2, 124.1, 122.5, 121.3, 121.1; IR (ATR): v (cm⁻¹) 3089, 1549, 1431, 1363, 1001, 786, 733, 631; HRESI-MS (MeOH): $m/z = 234.9870 [S1+H]^+ (calc. for C_{10}H_7BrN_2H 234.9865), m/z = 256.9684 [S1+Na]^+$ (calc. for C₁₀H₇BrN₂Na 256.9685); Anal. Calc. for C₁₀H₇BrN₂: C, 51.09; H, 3.00; N, 11.92. Found: C, 51.09; H, 2.93; N, 11.65.

1.2.2 Synthesis of 5-(trimethylsilyl)ethynyl-2,2'-bipyridine (S2)

The synthesis of this compound has previously been reported by Ziessel in 77% yield.²

Triethylamine (3.56 mL, 25.5 mmol, 6.00 eq.) and dry THF (50 mL) were added to $[Pd(PPh_3)_2Cl_2]$ (0.090 g, 0.13 mmol, 0.03 eq.), Cul (0.081 g, 0.43 mmol, 0.10 eq.), and **S1** (1.00 g, 4.25 mmol, 1.00 eq.) under a nitrogen atmosphere. Ethynyltrimethylsilane (0.90 mL, 6.38 mmol, 1.50 eq.) was hence added and the resulting solution refluxed for 2.5 days. The reaction was quenched with NH₄OH/EDTA (200 mL), then extracted with CH₂Cl₂ (4 x 50 mL). The organic extracts were washed with NH₄OH/EDTA (2 x 50 mL), water (2 x 50 mL) and saturated aqueous NaCl (2 x 50 mL), then dried over Na₂SO₄ and the solvent removed *in vacuo*. Column chromatography (silica gel, gradient 100% petrol to 100% CH₂Cl₂) was used to obtain a colourless solid. Yield: 0.975 g, 91%. Mp 60 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 1.3 Hz, 1H, H_a), 8.68 (dd, *J* = 4.8, 0.8 Hz, 1H, H_g), 8.41 (d, *J* = 8.0 Hz, 1H, H_d), 8.37 (d, *J* = 8.2 Hz, 1H, H_c) 7.87 (dd, *J* = 8.3, 2.1 Hz, 1H, H_b), 7.83 (dt, *J* = 7.7, 1.8 Hz, 1H, H_e), 7.32 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H, H_f), 0.28 (s, 9H, H_h); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 155.0, 152.1, 149.3, 139.8, 137.0, 124.0, 121.5, 120.2, 120.2, 101.9, 99.2, 0.1; IR (ATR): v (cm⁻¹) 2959, 2158, 1455, 1248, 858, 835, 795, 740, 642; HRESI-MS (MeOH): *m/z* = 235.1142 [**S2**+H]⁺ (calc. for C₁₅H₁₇N₂Si 253.1156); Anal. Calc. for C₁₅H₁₆N₂Si: C, 71.38; H, 6.39; N, 11.10. Found: C, 71.39; H, 6.23; N, 11.18.

1.2.3 Synthesis of 5-ethynyl-2,2'-bipyridine (S3)

The synthesis of this compound has previously been reported by Ziessel in 83% yield.²

S2 (0.54 g, 2.1 mmol, 1.00 eq.) and K₂CO₃ (0.59 g, 4.2 mmol, 2.00 eq.) were combined in methanol (50 mL) and stirred for one hour at room temperature. The suspended K₂CO₃ was filtered out through Celite, before the solvent was removed *in vacuo*. The resulting colourless solid was purified by passing it through a short plug (silica gel, gradient 100% CH₂Cl₂ to 95:5 CH₂Cl₂/acetone). Yield: 0.376 g, 98%. Mp 96 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (dd, *J* = 2.0, 0.7 Hz, 1H, H_a), 8.69 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H, H_g), 8.41 (dt, *J* = 8.0, 1.0 Hz, 1H, H_d), 8.40 (dd, *J* = 8.2, 0.8 Hz, 1H, H_c), 7.91 (dd, *J* = 8.2, 2.1 Hz, 1H, H_b), 7.83 (dt, *J* = 7.6, 1.8 Hz, 1H, H_e), 7.33 (ddd, *J* = 7.5, 4.8, 1.2 Hz 1H, H_f), 3.29 (s, 1H, H_h); ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 155.5, 152.4, 149.4, 140.2, 137.1, 124.2, 121.6, 120.4, 119.3, 81.5, 80.8; IR (ATR): v (cm⁻¹) 2094, 1585, 1543, 1456, 1433, 1366, 857, 795, 744, 522; HRESI-MS (MeOH) *m/z* = 181.0769 [**S3**+H]⁺ (calc. for C₁₂H₉N₂ 181.0760), *m/z* = 203.0592 [**S3**+Na]⁺ (calc. for C₁₂H₈N₂•0.5H₂O: C, 79.58; H, 4.51; N, 15.47. Found: C, 79.43; H, 4.51; N, 15.42.

1.2.4 Synthesis of 1,1'-diiodoferrocene (S4)

The synthesis of this compound has previously been reported by Long in 19% yield.³

n-Butyllithium in hexanes (1.6 M, 100 mL, 160 mmol, 2.20 eq.) and TMEDA (24 mL, 160 mmol, 2.20 eq.) were added sequentially to dry ether (50 mL) under a nitrogen atmosphere, then stirred for 20 minutes. This was then added to a solution of ferrocene (13.5 g, 72.7 mmol, 1.00 eq.) in dry ether (100 mL) and stirred at room temperature overnight (16 hours). The resultant suspension of red dilithiated ferrocene was cooled to -78 °C, and a solution of iodine (40.6 g, 160 mmol, 2.20 eq.) in dry ether (300 mL) was slowly added. The mixture was stirred at -78 °C for 30 minutes, then allowed to reach room temperature and stirred for a further 30 minutes. The reaction mixture was filtered through a Buchner funnel to remove any precipitates before the solvent was removed *in vacuo*. The crude product was extracted into *n*-hexane (200 mL) and washed with 0.5 M FeCl₃ solution (~15 x 200 mL) until the aqueous layer no longer turned green. The oxidative purification was monitored via ¹H NMR. The organic fraction was then passed through a silica plug, eluting with petrol, and the solvent removed *in vacuo* to give a deep red oil. Yield: 10.562 g, 33%. ¹H NMR (400 MHz, CDCl₃) δ 4.39 (s, 4H, H_a), 4.19 (s, 4H, H_b).

1.2.5 Synthesis of 1-(3-yl-ethynylpyridine)ferrocene (S9)

Ethynylferrocene (0.50 g, 2.38 mmol, 1.00 eq.), 3-bromopyridine (0.46 mL, 4.76 mmol, 2.00 eq.), Cul (0.091 g, 0.48 mmol, 0.20 eq.), [Pd(CH₃CN)₂Cl₂] (0.037 g, 0.14 mmol, 0.06 eq.), and [PH(^tBu)₃]BF₄ (0.083 g, 0.29 mmol, 0.12 eq.) were combined under an argon atmosphere. Diisopropylamine (50 mL) was added, and the solution was refluxed for 24 hours. CH₂Cl₂ (50 mL) and NH₄OH/EDTA (50 mL) were added, and the aqueous layer extracted with CH₂Cl₂ (3 x 50 mL). The organic phase was washed with saturated aqueous NaCl (100 mL), dried over Na₂SO₄, and the solvent removed *in vacuo*. Column chromatography (silica gel, gradient 100% CH₂Cl₂, then 95:5 CH₂Cl₂/acetone, then 9:1 CH₂Cl₂/acetone) was used to obtain an orange solid. Yield: 0.571 g, 84%. Mp 98 °C; ¹H NMR (400 MHz, *d*₆-acetone) δ 8.67 (s, 1H, H_d), 8.53 (d, *J* = 3.8 Hz, 1H, H_g), 7.85(dt, *J* = 7.9, 1.8 Hz, 1H, H_e), 7.38 (dd, *J* = 7.8, 4.9 Hz, 1H, H_f), 4.55 (t, *J* = 1.8 Hz, 2H, H_c), 4.34 (t, *J* = 1.8 Hz, 2H, H_b), 4.27 (s, 5H, H_a); ¹³C NMR (125 MHz, *d*₆-acetone) δ 152.6, 149.1, 138.7, 124.1, 121.8, 92.6, 83.0, 72.3, 70.8, 70.0, 65.2; IR: v (cm⁻¹) 2205, 1405, 804, 702, 483; HRESI-MS (MeOH): *m/z* = 288.0464 [**S9**+H]⁺ (calc. for C₁₇H₁₄NFe 288.0470); UV-Vis (CH₂Cl₂) λ_{max} (ε / L mol⁻¹ cm⁻¹): 302 (12700), 354 (3100), 434 (800); Anal. Calc. for C₁₇H₁₃NFe•0.25H₂O: C, 70.01; H, 4.67; N, 4.80. Found: C, 69.98; H, 4.60; N, 4.85.

1.2.6 Synthesis of 1-(3-yl-ethynylpyridine)-1'-iodo-ferrocene (S6)

The synthesis of this compound has previously been reported by Long in 72% yield.⁴

S4 (1.00 g, 2.28 mmol, 1.00 eq.), 3-ethynylpyridine (0.26 g, 2.51 mmol, 1.10 eq.), Cul (0.087 g, 0.46 mmol, 0.20 eq.), [Pd(CH₃CN)₂Cl₂] (0.036 g, 0.14 mmol, 0.06 eq.), and [PH(^tBu)₃]BF₄ (0.080 g, 0.27 mmol, 0.12 eq.) were combined under an argon atmosphere. Diisopropylamine (20 mL) was added, and the solution was refluxed for 24 hours. CH₂Cl₂ (50 mL) and NH₄OH/EDTA (50 mL) were added, and the aqueous layer extracted with CH₂Cl₂ (3 x 50 mL). The organic phase was washed with saturated aqueous NaCl (100 mL), dried over Na₂SO₄, and the solvent removed *in vacuo*. Column chromatography (silica gel, gradient 100% CH₂Cl₂, then 9:1 CH₂Cl₂/acetone, then 4:1 CH₂Cl₂/acetone) was used to obtain the desired mono-substituted product as an orange solid (0.383 g, 41%), as well as the doubly-substituted byproduct (**S5**), also as an orange solid (0.240 g, 27%).Mp 102 °C; ¹H NMR (400 MHz, *d*₆-acetone) δ 8.71 (s, 1H, H_c), 8.55 (d, *J* = 4.4 Hz, 1H, H_f), 7.89 (dt, *J* = 7.7, 1.4 Hz, 1H, H_d), 7.39 (dd, *J* = 7.9, 4.9 Hz, 1H, H_e), 4.52 (t, *J* = 2.0 Hz, 2H, H_b or H_b), 4.51 (t, *J* = 1.7 Hz, 2H, H_b or H_b), 4.38 (t, *J* = 1.9 Hz, 2H, H_a or H_g), 4.34 (t, *J* = 1.9 Hz, 2H, H_a or H_g); ¹³C NMR (125 MHz, *d*₆-acetone) δ 152.7, 149.3, 138.9, 124.1, 121.7, 91.3, 84.3, 77.4, 75.0, 72.9, 71.8, 67.7, 41.7; IR: v (cm⁻¹) 2208, 1403, 1022, 800, 698, 482; HRESI-MS (MeOH) *m/z* = 413.9415 [**S6**+H]⁺ (calc. for C₁₇H₁₃FeIN 413.9437); Anal. Calc. for C₁₇H₁₂FeIN•0.3(CH₃)₂CO: C, 49.95; H, 3.23; N, 3.25. Found: C, 50.21; H, 3.07; N, 3.48.

Figure S11 ¹H NMR spectrum (400 MHz, *d*₆-acetone) of **S6**.

Figure S12 ¹³C NMR spectrum (125 MHz, d_6 -acetone) of S6.

1.2.7 Synthesis of 1,1'-di(3-yl-ethynylpyridine)ferrocene (S5)

The synthesis of this compound has previously been reported by Lindner in 30% yield,⁵ and more recently by Long in 23% yield.⁴

The synthesis of **S5** was inadvertent and it was isolated as a byproduct of the reaction to form **S6**. Mp 194 °C; ¹H NMR (400 MHz, d_6 -acetone) δ 8.58 (s, 2H, H_c), 8.47 (d, J = 4.8 Hz, 2H, H_f), 7.71 (dt, J = 7.8, 1.7 Hz, 2H, H_d), 7.26 (dd, J = 7.9, 4.9 Hz, 2H, H_e), 4.63 (t, J = 1.7 Hz, 4H, H_b), 4.45 (t, J = 1.7 Hz, 4H, H_a); ¹³C NMR (125 MHz, d_6 -acetone) δ 152.5, 149.0, 138.6, 124.0, 121.6, 91.1, 84.2, 73.9, 72.0, 67.5; IR: v (cm⁻¹) 2205, 1486, 1403, 1165, 1019, 799, 699, 497, 489, 433; HRESI-MS (MeOH) m/z = 389.0754 [**S5**+H]⁺ (calc. for C₂₄H₁₇FeN₂ 389.0736), m/z = 411.0579 [**S5**+Na]⁺ (calc. for C₂₄H₁₆FeN₂Na 411.0555); UV-Vis (CH₂Cl₂) λ_{max} (ϵ / L mol⁻¹ cm⁻¹): 308 (21100), 456 (1500); Anal. Calc. for C₂₄H₁₆FeN₂•0.1H₂O: C, 73.90; H, 4.19; N, 7.18. Found: C, 73.92; H, 4.13; N, 7.24.

Figure S13 ¹H NMR spectrum (400 MHz, d_6 -acetone) of S5.

Figure S14 ¹³C NMR spectrum (125 MHz, d_6 -acetone) of **S5**.

1.2.8 Synthesis of 1-(5-yl-ethynyl-2,2'-bipyridine)ferrocene (2a)

The synthesis of this compound has previously been reported by Lang in 68% yield.⁶

Ethynylferrocene (0.30 g, 1.428 mmol, 1.10 eq.), S1 (0.305 g, 1.298 mmol, 1.00 eq.), Cul (0.025 g, 0.130 mmol, 0.10 eq.), and [PdCl₂(PPh₃)₂] (0.027 g, 0.039 mmol, 0.03 eq.) were combined under a nitrogen atmosphere. Dry triethylamine (2.2 mL, 15.58 mmol, 12.00 eq.) and dry THF (50 mL) were added and the solution refluxed overnight (16 hours). CH₂Cl₂ (50 mL) and NH₄OH/EDTA (100 mL) were added, and the aqueous layer extracted with CH_2Cl_2 (2 x 50 mL). The organic phase was washed with saturated aqueous NaCl (2 x 50 mL), dried over Na₂SO₄, and the solvent removed in vacuo. Column chromatography (silica gel, gradient 100% CH₂Cl₂, then 99:1 CH₂Cl₂/acetone, then 98:2 CH₂Cl₂/acetone) was used to obtain the product as an orange solid (0.420 g, 89%). Mp 163 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 1.3 Hz, 1H, H_d), 8.69 (d, J = 4.3 Hz, 1H, H_i), 8.41 (d, J = 8.0 Hz, 1H, H_g), 8.38 (d, J = 8.2 Hz, 1H, H_f), 7.89 (dd, J = 8.3, 2.1 Hz, 1H, H_e), 7.82 (dt, J = 7.9, 1.8 Hz, 1H, H_h), 7.31 $(ddd, J = 7.4, 4.8, 1.0 Hz, 1H, H_i), 4.55 (t, J = 1.9 Hz, 2H, H_c), 4.29 (t, J = 1.9 Hz, 2H, H_b), 4.27 (s, 5H, H_s);$ ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 154.3, 151.6, 149.4, 139.2, 137.1, 123.9, 121.4, 121.2, 120.4, 93.3, 83.0, 71.7, 70.2, 69.3, 64.5; IR: v (cm⁻¹) 1587, 1467, 1449, 821, 798, 755, 504, 486; HRESI-MS (MeOH) $m/z = 365.0728 [2a+H]^+$ (calc. for C₂₂H₁₇FeN₂ 365.0736), $m/z = 387.0550 [2a+Na]^+$ (calc. for $C_{22}H_{16}FeN_2Na$ 387.0555); UV-Vis (CHCl₃) λ_{max} (ϵ / L mol⁻¹ cm⁻¹): 317 (36500), 368 (6300), 447 (1900); Anal. Calc. for C₂₂H₁₆FeN₂•0.25H₂O: C, 71.66; H, 4.51; N, 7.60. Found: C, 71.54; H, 4.41; N, 7.33.

1.2.9 Synthesis of 1-(5-yl-ethynyl-2,2'-bipyridine)-1'-iodo-ferrocene (S7)

54 (0.663 g, 1.513 mmol, 1.00 eq.), 53 (0.300 g, 1.665 mmol, 1.10 eq.), Cul (0.058 g, 0.303 mmol, 0.20 eq.), [Pd(CH₃CN)₂Cl₂] (0.024 g, 0.091 mmol, 0.06 eq.), and [PH(^tBu)₃]BF₄ (0.053 g, 0.182 mmol, 0.12 eq.) were combined under an argon atmosphere. Diisopropylamine (20 mL) was added, and the solution was refluxed for 24 hours. CH₂Cl₂ (50 mL) and NH₄OH/EDTA (50 mL) were added, and the aqueous layer extracted with CH_2Cl_2 (3 x 50 mL). The organic phase was washed with saturated aqueous NaCl (100 mL), dried over Na₂SO₄, and the solvent removed in vacuo. Column chromatography (silica gel, gradient 100% CHCl₃, then 95:5 CHCl₃/acetone, then 4:1 CHCl₃/acetone) was used to obtain the desired mono-substituted product as an orange solid (0.309 g, 42%). Mp 106 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 2.0 Hz, 1H, H_c), 8.69 (d, J = 4.8 Hz, 1H, H_i), 8.41 (d, J = 8.0 Hz, 1H, H_f), 8.38 (d, J = 8.3 Hz, 1H, H_e), 7.91 (dd, J = 8.3, 2.1 Hz, 1H, H_d), 7.82 (dt, J = 8.0, 1.8 Hz, 1H, H_g), 7.31 (ddd, J = 7.4, 5.2, 1.0 Hz, 1H, H_h), 4.51 (t, J = 2.0 Hz, 2H, H_b or H_k), 4.47 (t, J = 1.9 Hz, 2H, H_b or H_k), 4.30 (t, J = 1.9 Hz, 2H, H_a or H_i), 4.25 (t, J = 1.9 Hz, 2H, H_a or H_i); 13 C NMR (125 MHz, CDCl₃) δ 155.7, 154.5, 151.6, 149.4, 139.2, 137.1, 123.9, 121.4, 121.0, 120.4, 91.9, 84.2, 76.6, 74.3, 72.4, 71.0, 70.2, 67.0; IR: v (cm⁻¹) 2205, 1585, 1571, 1543, 1448, 1431, 1017, 846, 793, 742, 478; HRESI-MS (MeOH) m/z = 490.9730 [**57**+H]⁺ (calc. for C₂₂H₁₆FeIN₂ 490.9702), m/z = 512.9538 [**57**+Na]⁺ (calc. for C₂₂H₁₅FeIN₂Na 512.9522); Anal. Calc. for C₂₂H₁₅FeN₂I: C, 53.91; H, 3.08; N, 5.72. Found: C, 53.83; H, 3.04; N, 5.64.

1.2.10 Synthesis of 1,1'-di(5-yl-ethynyl-2,2'-bipyridine)ferrocene (1a)

The synthesis of this compound has previously been reported by Lindner in 19% yield.⁷

S4 (0.310 g, 0.708 mmol, 1.00 eq.), S3 (0.281 g, 1.558 mmol, 2.20 eq.), Cul (0.027 g, 0.142 mmol, 0.20 eq.), [Pd(CH₃CN)₂Cl₂] (0.011 g, 0.042 mmol, 0.06 eq.), and [PH(^tBu)₃]BF₄ (0.025 g, 0.084 mmol, 0.12 eq.) were combined under an argon atmosphere. Diisopropylamine (20 mL) was added, and the solution was refluxed for 24 hours. CH₂Cl₂ (50 mL) and NH₄OH/EDTA (50 mL) were added, and the aqueous layer extracted with CH₂Cl₂ (5 x 50 mL). The organic phase was washed with saturated aqueous NaCl (200 mL), dried over Na₂SO₄, and the solvent removed in vacuo. Column chromatography (silica gel, gradient 100% CHCl₃, then 95:5 CHCl₃/acetone, then 4:1 CHCl₃/acetone) was used to obtain the desired mono-substituted product as an orange solid (0.120 g, 31%). Mp >230 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 2H, H_c), 8.57 (d, J = 4.3 Hz, 2H, H_i), 8.24 (d, J = 8.2 Hz, 2H, H_f), 8.20 (d, J = 8.3 Hz, 2H, H_e), 7.73 (dd, J = 8.3, 2.1 Hz, 2H, H_d), 7.69 (dt, J = 7.8, 1.6 Hz, 2H, H_e), 7.23 (dd, J = 6.9, 5.2 Hz, 1H, H_h), 4.62 (t, J = 1.8 Hz, 4H, H_b), 4.39 (t, J = 1.9 Hz, 4H, H_a); ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 154.1, 151.4, 149.2, 138.9, 136.9, 123.7, 121.3, 120.9, 120.3, 91.4, 84.5, 73.1, 71.1, 67.2; IR: v (cm⁻¹) 2206, 1586, 1570, 1538, 1449, 1431, 1367, 1021, 793, 739, 510, 490; HRESI-MS (MeOH) $m/z = 565.1116 [1a+Na]^+$ (calc. for C₃₄H₂₂FeN₄Na 565.1087); UV-Vis (CHCl₃) λ_{max} (ϵ / L mol⁻ ¹ cm⁻¹): 314 (74000), 337 (52700), 372 (15100), 432 (4000); Anal. Calc. for C₃₄H₂₂FeN₄•0.75H₂O: C, 73.46; H, 4.26; N, 10.08. Found: C, 73.49; H, 3.98; N, 10.20.

1.2.11 Synthesis of 1-(5-yl-ethynyl-2,2'-bipyridine)-1'-(3-yl-ethynylpyridine)ferrocene (S8)

<u>Method A:</u> **S7** (0.200 g, 0.408 mmol, 1.00 eq.), 3-ethynylpyridine (0.046 g, 0.449 mmol, 1.10 eq.), Cul (0.016 g, 0.082 mmol, 0.20 eq.), $[Pd(CH_3CN)_2Cl_2]$ (0.00635 g, 0.024 mmol, 0.06 eq.), and $[PH(^tBu)_3]BF_4$ (0.014 g, 0.049 mmol, 0.12 eq.) were combined under an argon atmosphere. Diisopropylamine (20 mL) was added, and the solution was refluxed for 24 hours. CH_2Cl_2 (50 mL) and $NH_4OH/EDTA$ (50 mL) were added, and the aqueous layer extracted with CH_2Cl_2 (3 x 50 mL). The organic phase was washed with saturated aqueous NaCl (100 mL), dried over Na_2SO_4 , and the solvent removed *in vacuo*. Column chromatography (silica gel, gradient 100% CH_2Cl_2 , then 95:5 CH_2Cl_2 /acetone, then 4:1 CH_2Cl_2 /acetone) was used to obtain the product as an orange solid (0.113 g, 60%).

<u>Method B:</u> **S6** (0.500 g, 1.211 mmol, 1.00 eq.), **S3** (0.262 g, 1.453 mmol, 1.20 eq.), CuI (0.046 g, 0.242 mmol, 0.20 eq.), [Pd(CH₃CN)₂Cl₂] (0.019 g, 0.073 mmol, 0.06 eq.), and [PH(^tBu)₃]BF₄ (0.042 g, 0.145 mmol, 0.12 eq.) were combined under an argon atmosphere. Diisopropylamine (40 mL) was added, and the solution was refluxed for 24 hours. CH_2Cl_2 (50 mL) and $NH_4OH/EDTA$ (50 mL) were added, and the aqueous layer extracted with CH_2Cl_2 (3 x 50 mL). The organic phase was washed with saturated aqueous NaCl (100 mL), dried over Na₂SO₄, and the solvent removed *in vacuo*. Column chromatography (silica gel, gradient 100% CH_2Cl_2 , then 95:5 $CH_2Cl_2/acetone$, then 4:1 $CH_2Cl_2/acetone$) was used to obtain the product as an orange solid (0.248 g, 44%). Although the yield was slightly lower using method B, the product was easier to separate from the reaction mixture.

Mp 133 °C; ¹H NMR (400 MHz, d_6 -acetone) δ 8.66 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H, H_i), 8.59 (dd, J = 2.1, 0.8 Hz, 1H, H_c), 8.54 (d, J = 1.5 Hz, 1H, H_i), 8.41 (dt, J = 7.9, 0.9 Hz, 1H, H_f), 8.35 (dd, J = 4.8, 1.6 Hz, 1H, H_o), 8.32 (dd, J = 8.2, 0.8 Hz, 1H, H_e), 7.90 (dt, J = 7.6, 1.8 Hz, 1H, H_g), 7.80 (dd, J = 8.3, 2.2 Hz, 1H, H_d), 7.67 (dt, J = 7.9, 1.8 Hz, 1H, H_m), 7.39 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H, H_h), 7.17 (ddd, J = 7.9, 4.8, 0.8 Hz, 1H, H_n), 4.62 (t, J = 1.9 Hz, 2H, H_b or H_k), 4.61 (t, J = 1.9 Hz, 2H, H_b or H_k), 4.44 (t, J = 1.8 Hz, 2H, H_a or H_j); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 154.3, 152.1, 151.4, 149.4, 148.0, 139.0, 138.1, 137.1, 123.9, 123.0, 121.4, 121.0, 120.9, 120.4, 91.7, 90.6, 84.1, 83.7, 73.2, 73.2, 71.3, 71.2, 66.8, 66.8; IR: v (cm⁻¹) 2208, 1673, 1586, 1468, 794, 744, 702, 496, 439; HRESI-MS (MeOH) m/z = 466.0979 [**S**8+H]⁺ (calc. for C₂₉H₂₀FeN₃ 466.1001), m/z = 488.0802 [**S**8+Na]⁺ (calc. for C₂₉H₁₉FeN₃Na 488.0821); UV-Vis (acetone) λ_{max} ($\varepsilon/$ L mol⁻¹ cm⁻¹): 371 (8500), 451 (2300); Anal. Calc. for C₂₉H₁₉FeN₃•0.25CH₃CN: C, 74.50; H, 4.19; N, 9.57. Found: C, 74.66; H, 4.27; N, 9.73.

1.2.12 Synthesis of 6,6'-dimesityl-2,2'-bipyridine (3)

The synthesis of this compound has previously been reported by Schmittel in 72% yield.⁸

Under a nitrogen atmosphere, 6,6'-dibromo-2,2'-bipyridine (0.20 g, 0.64 mmol, 1.00 eq.) and tetrakis(triphenylphosphine)palladium(0) (0.006 g, 5.2 µmol, 0.008 eq.) were dissolved in degassed boiling toluene. A solution of mesitylboronic acid (0.25 g, 1.52 mmol, 2.40 eq.) in methanol (5 mL) and 2 M Na₂CO₃ (8 mL, 16.0 mmol, 25.1 eq.) were added, and the mixture refluxed for four hours. An additional 0.1 g of mesitylboronic acid was then added, and heating was continued for a further three days. After cooling, the solvent layers were separated, and the organic layer washed with a saturated aqueous solution of Na_2CO_3 containing a small amount of ammonia. The aqueous layer was extracted with CH_2Cl_2 (2 x 50 mL), which in turn was washed with the Na_2CO_3 solution. The organic layers were combined, dried over Na₂SO₄ and the solvent removed in vacuo. Column chromatography (silica, CH₂Cl₂) was used to isolate the white product (0.199 g, 80%). Mp 211 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 7.9 Hz, 2H, H_f), 7.80 (t, J = 7.8 Hz, 2H, H_e), 7.21 (d, J = 7.6 Hz, 2H, H_d), 6.98 (s, 4H, H_b), 2.35 (s, 6H, H_a), 2.12 (s, 12H, H_c); ¹³C NMR (125 MHz, CDCl₃) δ 159.2, 156.4, 138.2, 137.6, 137.0, 136.1, 128.6, 124.8, 119.3, 21.3, 20.6; IR: v (cm⁻¹) 2915, 1561, 1438, 851, 815, 631; HRESI-MS (MeOH): $m/z = 393.2329 [3+H]^+$ (calc. for C₂₈H₂₈N₂H 393.23), $m/z = 415.2158 [3+Na]^+$ (calc. for C₂₈H₂₈N₂Na 415.53); Anal. Calc. for C₂₈H₂₈N₂: C, 85.67; H, 7.19; N, 7.14. Found: C, 85.43; H, 7.28; N, 7.28.

1.3 Methylation

Methyl iodide (0.867 mL, 13.93 mmol, 20.00 eq.) was added to a solution of **S9** (0.2 g, 0.697 mmol, 1.00 eq.) in CH₂Cl₂ (2 mL) and the mixture stirred at room temperature for two days. The solvent and excess methyl iodide was removed *in vacuo*, then the residue taken up in acetone. AgPF₆ (0.176 g, 0.697 mmol, 1.00 eq.) was added, the resultant AgI precipitate filtered out through celite, and the solvent again removed *in vacuo*. The crude product was recrystallized from MeOH/H₂O to give deep red crystals. Yield: 0.130 g, 42% (quantitative by crude NMR). Mp 170 °C; ¹H NMR (400 MHz, d_6 -acetone) δ 9.28 (s, 1H, H_d), 9.07 (d, *J* = 6.3 Hz, 1H, H_g), 8.71 (d, *J* = 8.7 Hz, 1H, H_e), 8.25 (t, *J* = 7.0 Hz, 1H, H_f), 4.67 (s, 3H, H_h), 4.64 (t, *J* = 1.9 Hz, 1H, H_c), 4.45 (t, *J* = 1.9 Hz, 1H, H_b), 1.30 (s, 5H, H_a); ¹³C NMR (125 MHz, d_6 -acetone) δ 148.2, 147.1, 144.7, 129.0, 126.2, 99.3, 79.4, 72.8, 71.1, 71.0, 62.7, 49.4; IR: v (cm⁻¹) 3104, 2217, 1514, 1210, 816, 671, 555, 506, 487; HRESI-MS (MeOH) *m/z* = 302.0604 [**2b**-PF₆]⁺ (calc. for C₁₈H₁₆FeN 932.0627); UV-Vis (CH₂Cl₂) λ_{max} (ϵ /L mol⁻¹ cm⁻¹): 314 (3600), 508 (600); Anal. Calc. for C₁₈H₁₆FeNPF₆: C, 48.35; H, 3.61; N, 3.13. Found: C, 48.63; H, 3.39; N, 3.12.

1.3.2 Synthesis of [1-(5-yl-ethynyl-2,2'-bipyridine)-1'-(N-methyl-3-yl-ethynylpyridine)ferrocene]PF₆ (1b)

Under an argon atmosphere, methyl iodide (0.124 mL, 2.149 mmol, 20.00 eq.) was added to a solution of S8 (0.05 g, 0.107 mmol, 1.00 eq.) in CH_2Cl_2 (2 mL) and the mixture stirred at room temperature for two days. The solvent and excess methyl iodide was removed in vacuo, then the residue taken up in acetone. $AgPF_6$ (0.027 g, 0.107 mmol, 1.00 eq.) was added, the resultant AgI precipitate filtered out through celite, and the solvent again removed in vacuo. The product was isolated as a deep red solid. Yield: 0.061 g, 91%. Mp >230 °C; ¹H NMR (400 MHz, d_6 -acetone) δ 9.14 (s, 1H, H_i), 8.81 (d, J = 6.1 Hz, 1H, H_o), 8.73 (ddd, J = 4.7, 1.7, 0.9 Hz, 1H, H_i), 8.56 (dd, J = 2.2, 0.8 Hz, 1H, H_c), 8.49 (d, J = 8.0 Hz, 1H, H_m), 8.44 (dt, J = 8.0, 1.0 Hz, 1H, H_f), 8.33 (dd, J = 8.2, 0.8 Hz, 1H, H_e), 7.99-7.95 (m, 2H, H_{i/n}), 7.83 (dd, J = 8.2, 2.2 Hz, 1H, H_d), 7.47 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H, H_h), 4.72 (t, J = 1.9 Hz, 2H, H_b or H_k), 4.69 (t, J = 1.9 Hz, 2H, H_b or H_k), 4.58 (t, J = 1.9 Hz, 2H, H_a or H_i), 4.51 (t, J = 1.9 Hz, 2H, H_b or H_i), 4.51 (t, J = 1.9 (t, J = 1.9 Hz, 2H, H_b or H_i), 4.51 (t, J = 1.9 (t, 1.9 Hz, 2H, H_a or H_i), 4.51 (s, 3H, H_p); ¹³C NMR (125 MHz, d_6 -acetone) δ 156.0, 155.1, 151.9, 150.4, 147.9, 146.7, 144.3, 139.7, 138.1, 128.9, 126.2, 125.2, 121.7, 120.8, 110.9, 97.5, 91.8, 84.9, 80.9, 74.2, 73.9, 72.7, 72.1, 68.3, 65.8, 49.3; IR: v (cm⁻¹) 3081, 2209, 1297, 1133, 1025, 822, 556, 492; HRESI-MS (MeOH) m/z = 480.1159 [**1b**-PF₆]⁺ (calc. for C₃₀H₂₂FeN₃ 480.1159); UV-Vis (acetone) λ_{max} (ε/ L mol⁻¹ cm⁻¹): 454 (3100); Anal. Calc. for C₃₀H₂₂FeN₃PF₆•H₂O: C, 56.01; H, 3.76; N, 6.53. Found: C, 55.71; H, 3.84; N, 6.43.

1.4 Copper(I) Complexation

1.4.1 [Cu(6,6'-dimesityl-2,2'-bipyridine)(MeCN)₂]PF₆ ([Cu(3)(CH₃CN)₂]PF₆)

The synthesis of this compound has previously been reported by Schmittel in quantitative yield.⁸

To a solution of $[Cu(MeCN)_4]PF_6$ (24 mg, 0.064 mmol, 1.00 eq.) in CD₃CN (0.75 mL) was added a solution of **3** (25 mg, 0.064 mmol, 1.00 eq.) in CD₃CN (0.75 mL). The mixture was stirred for 15 minutes, the resulting yellow solution subjected to ¹H NMR spectroscopy and mass spectrometry, and the complex was found to form in quantitative yield. ¹H NMR (400 MHz, CD₃CN) δ 8.34 (d, *J* = 8.1 Hz, 2H, H_f), 8.15 (t, *J* = 7.8 Hz, 2H, H_e), 7.52 (d, *J* = 7.6 Hz, 2H, H_d), 6.94 (s, 4H, H_b), 2.28 (s, 6H, H_a), 1.91 (s, 12H, H_c). HRESI-MS (MeOH): *m/z* = 496.1739 [Cu(**3**)(CH₃CN)]⁺ (calc. for C₃₀H₃₁CuN₃ 496.1809), *m/z* = 473.1610 [Cu(**3**)+H₂O]⁺ (calc. for C₂₈H₃₀OCuN₂ 473.1649), *m/z* = 455.1491 [Cu(**3**)]⁺ (calc. for C₂₈H₂₈CuN₂ 455.1543).

1.4.2 [Cu(6,6'-dimesityl-2,2'-bipyridine)(1-(5-yl-ethynyl-2,2'-bipyridine)ferrocene)]PF₆ ([Cu(2a)(3)]PF₆)

[Cu(MeCN)₄]PF₆ (21 mg, 0.055 mmol, 1.00 eq.) was dissolved in acetone (3 mL) and **3** (21 mg, 0.055 mmol, 1.00 eq.), also dissolved in acetone (3 mL), was added. The mixture was stirred for 15 minutes to give a yellow solution. **2a** (20 mg, 0.055 mmol, 1.00 eq.) was dissolved in acetone (3 mL) and added to this solution. The mixture was stirred for a further 15 minutes, then filtered through a cotton wool plug and vapour diffused (acetone/petrol) in order to obtain dark orange crystals (48 mg, 91%). Mp >230 °C; ¹H NMR (400 MHz, CDCl₃) 8.46 (d, *J* = 8.0 Hz, 2H, H_k), 8.22 (t, *J* = 7.8 Hz, 2H, H_i), 8.11 (s, 1H, H_d), 8.09 (d, *J* = 5.7 Hz, 1H, H_j), 7.96-7.91 (m, 2H, H_{e/h}), 7.88-7.81 (m, 2H, H_{f/g}), 7.52 (d, *J* = 7.5 Hz, 2H, H_m), 7.37 (t, *J* = 5.6 Hz, 1H, H_i), 6.19 (s, 2H, H_q or H_o), 6. 11 (s, 2H, H_q or H_o), 4.55 (t, *J* = 1.8 Hz, 2H, H_c). 4.33 (t, *J* = 1.8 Hz, 2H, H_b), 4.26 (s, 5H, H_a), 1.87 (s, 6H, H_p), 1.80 (s, 6H, H_r or H_n), 1.73 (s, 6H, H_r or H_n); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 152.1, 150.5, 149.5, 148.6, 147.9, 138.8, 138.5, 138.0, 137.4, 137.2, 134.7, 134.6, 127.5, 127.4, 127.1, 125.3, 123.0, 120.9, 120.3, 116.5, 96.3, 81.3, 71.9, 70.2, 69.8, 63.3, 20.7, 20.2, 2.0; IR: v (cm⁻¹) 2206, 1559, 1456, 1374, 829, 731, 555; HRESI-MS (MeOH): *m/z* = 819.2242 [Cu(**2a**)(**3**])⁺ (calc. for C₅₀H₄₄CuFeN₄ 819.2208); UV-vis (CHCl₃) λ_{max} (ε/ L mol⁻¹ cm⁻¹): 267 (49700), 316 (51700), 475 (10500); Anal. Calc. for C₅₀H₄₄CuFeN₄PF₆: C, 62.21; H, 4.59; N, 5.80. Found: C, 62.29; H, 4.61; N, 5.73.

1.4.3 [Cu(6,6'-dimesityl-2,2'-bipyridine)(1-(5-yl-ethynyl-2,2'-bipyridine)-1'-(N-methyl-3-ylethynylpyridine)ferrocene)](PF₆)₂ ([Cu(1b)(3)](PF₆)₂)

[Cu(MeCN)₄]PF₆ (7 mg, 0.016 mmol, 1.00 eq.) was dissolved in acetone (1 mL) and **3** (6 mg, 0.016 mmol, 1.00 eq.), also dissolved in acetone (1 mL), was added. The mixture was stirred for 15 minutes to give a yellow solution. 1b (10 mg, 0.016 mmol, 1.00 eq.) was dissolved in acetone (1 mL) and added to this solution. The mixture was stirred for 15 minutes, then filtered through a cotton wool plug and the solvent removed in vacuo to give the reddish-orange product (20 mg, 100%). Mp 162 °C; ¹H NMR (400 MHz, d_6 -acetone) δ 9.29 (s, 1H, H_t), 9.08 (d, J = 6.6 Hz, 1H, H_w), 8.74 (d, J = 8.0 Hz, 2H, H_i), 8.63 (d, J = 9.3 Hz, 1H, H_u), 8.49 (s, 1H, H_c), 8.42 (d, J = 5.2 Hz, 1H, H_i), 8.38 (t, J = 7.9 Hz, 2H, H_k), 8.19 (t, J = 7.1 Hz, 1H, H_v). 8.16 (t, J = 7.8 Hz, 2H, H_{e/f}), 8.09-8.05 (m, 2H, H_{d/g}), 7.71 (d, J = 7.5 Hz, 2H, H_l), 7.58 (t, J = 5.3 Hz, 1H, H_h), 6.21 (s, 2H, H_n or H_p), 6.14 (s, 2H, H_n or H_p), 4.73 (s, 2H, H_b or H_s), 4.71 (s, 2H, H_b or H_s), 4.63 (s, 2H, H_a or H_r), 4.54 (s, 3H, H_a or H_r and H_x), 1.85 (s, 12H, H_m or H_q), 1.80 (s, 6H, H_o); ¹³C NMR (125 MHz, d_{c} -acetone) δ 159.3, 153.3, 151.4, 151.1, 150.3, 149.5, 147.1, 139.7, 139.4, 138.5, 138.2, 138.1, 136.4, 135.7, 135.5, 129.1, 129.0, 128.2, 128.0, 127.9, 126.6, 125.8, 123.2, 121.9, 121.4, 121.1, 97.7, 94.5, 83.2, 80.1, 74.5, 74.3, 73.7, 73.4, 66.3, 64.4, 49.5, 20.8, 20.4, 20.4; IR: v (cm⁻¹) 2920, 2217, 1611, 1436, 831, 556; HRESI-MS (MeOH): m/z = 1080.2277 $[Cu(1b)(3)PF_6]^+$ (calc. for $C_{58}H_{50}CuFeN_5PF_6$ 1080.2350), m/z = 467.6242 $[Cu(1b)(3)]^{2+}$ (calc. for $C_{58}H_{50}$ CuFeN₅ 467.6351); UV-Vis (acetone) λ_{max} (ϵ / L mol⁻¹ cm⁻¹): 463 (8500); Anal. Calc. for C₅₈H₅₀CuFeN₅P₂F₁₂: C, 56.80; H, 4.11; N, 5.71. Found: C, 56.73; H, 4.44; N, 5.78.

[Cu(MeCN)₄]PF₆ (69 mg, 0.184 mmol, 2.00 eq.) was dissolved in acetone (2.5 mL) and **3** (72 mg, 0.184 mmol, 2.00 eq.), also dissolved in acetone (2.5 mL), was added. The mixture was stirred for 15 minutes to give a yellow solution. **1a** (50 mg, 0.092 mmol, 1.00 eq.) was dissolved in acetone (5 mL) and added to this solution. The mixture was stirred for 15 minutes, then filtered through a cotton wool plug and the solvent removed *in vacuo* to give the reddish-orange product (160 mg, 99%). Mp 174 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.0 Hz, 4H, H_j), 8.23 (t, *J* = 7.9 Hz, 4H, H_k), 8.11 (s, 2H, H_c), 8.08-8.04 (m, 4H, H_{d/i}), 8.00 (d, *J* = 7.7 Hz, 4H, H_{e/f}), 7.92 (t, *J* = 8.0 Hz, 2H, H_g), 7.51 (d, *J* = 7.4 Hz, 4H, H_i), 7.32 (t, *J* = 5.5 Hz, 2H, H_h), 6.15 (s, 4H, H_n or H_p), 6.11 (s, 4H, H_n or H_p), 4.55 (s, 4H, H_b), 4.41 (s, 4H, H_a), 1.85 (s, 12H, H_o), 1.76 (s, 12H, H_m or H_q), 1.74 (s, 12H, H_m or H_q); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 152.2, 150.8, 149.5, 149.0, 147.8, 139.0, 138.2, 137.3, 137.2, 134.7, 134.6, 128.5, 127.6, 127.5, 127.1, 125.1, 122.7, 121.4, 121.1, 120.4, 94.8, 82.4, 74.0, 72.1, 65.3, 20.8, 20.3, 20.3; IR: v (cm⁻¹) 2203, 1591, 1561, 1458, 1434, 831, 555; HRESI-MS (MeOH): *m/z* = 727.2211 [Cu₂(**1a**)(**3**)₂]²⁺ (calc. for C₉₀H₇₈Cu₂FeN₈ 727.2134); UV-Vis (CHCl₃) λ_{max} (ε/ L mol⁻¹ cm⁻¹): 306 (63200), 476 (12600); Anal. Calc. for C₄₉H₄₆CuFeN₄PF₆: C, 61.96; H, 4.51; N, 6.42. Found: C, 61.83; H, 4.39; N, 6.55.

1.4.1 [Cu(6,6'-dimesityl-2,2'-bipyridine)(2,2':6',2"-terpyridine)](PF₆)₂ ([Cu(5)(3)](PF₆)₂)

CuCl₂ (6.9 mg, 0.051 mmol, 1.00 eq.), AgPF₆ (26 mg, 0.102 mmol, 2.00 eq.), 2,2':6',2"-terpyridine (12 mg, 0.051 mmol, 1.00 eq.), and **3** (20 mg, 0.051 mmol, 1.00 eq.) were combined in acetone (5 mL) The mixture was stirred for 15 minutes to give a pale blue solution, then filtered through a cotton wool plug to remove the AgCl precipitate. Vapour diffusion of petroleum ether into the resulting acetone solution gave x-ray quality crystals of the blue product (44 mg, 88%). Mp >230 °C; IR: v (cm⁻¹) 3085, 2923, 1449, 1021, 833, 777, 555; HRESI-MS (MeOH): m/z = 344.1222 [Cu(**5**)(**3**)]²⁺ (calc. for C₄₃H₃₉CuN₅ 344.1245); UV-Vis (acetone) λ_{max} (ϵ /L mol⁻¹ cm⁻¹): 342 (13200), 654 (200); Anal. Calc. for C₄₃H₃₉CuN₅P₂F₁₂•1.5H₂O: C, 51.32; H, 4.21; N, 6.96. Found: C, 51.18; H, 4.05; N, 7.20.

2 ¹H NMR Stackplots

2.1 Rotors

substituted ligand **S9**, and c) the di-substituted ligand **S5**.

asymmetrically substituted ligand S8, and c) the pyridine-substituted ligand S9.

the methylated ligand **1b**, and c) the methylated ligand **2b**.

2.2 Complexes

Figure S43 Stacked ¹H NMR spectra (CDCl₃, 298 K) of a) the mono-substituted ligand **2a**, b) the Cu(I) complex [Cu(**2a**)(**3**)]PF₆, c) the Cu(I) complex [Cu(**1a**)(**3**)₂](PF₆)₂, and d) the di-substituted ligand **1a**.

Figure S46 Stacked ¹H NMR spectra (CDCl₃, 298 K) of a) the mono-substituted ligand 2a, b) the Cu(I) complex [Cu(2a)(3)]PF₆, c) [Cu(2a)(3)]PF₆ after adding 1 eq. of cyclam, d) [Cu(2a)(3)]PF₆ after adding 1 eq. of Cu(I), and e) [Cu(2a)(3)]PF₆ after adding a further 1 eq. of cyclam.

Figure S47 Stacked ¹H NMR spectra (CDCl₃, 298 K) of a) the di-substituted ligand **1a**, b) the Cu(I) complex $[Cu(1a)(3)_2](PF_6)_2$, c) $[Cu(1a)(3)_2](PF_6)_2$ after adding 1 eq. of cyclam, d) $[Cu(1a)(3)_2](PF_6)_2$ after adding 1 eq. of Cu(I), and e) $[Cu(1a)(3)_2](PF_6)_2$ after adding a further 1 eq. of cyclam.

3 Relevant Mass Spectra

Figure S49 The calculated (red trace) and experimental (black trace) isotope patterns for a) [2a+H]⁺, b) [2a+Na]⁺, and c) [(2a)₂+Na]⁺.

Figure S51 The calculated (red trace) and experimental (black trace) isotope patterns for a) [1a+H]⁺, and b) [1a+Na]⁺.

Figure S52 Full mass spectrum (MeOH) of S8 with relevant peaks annotated.

Figure S53 The calculated (red trace) and experimental (black trace) isotope patterns for a) [S8+H]⁺, b) [S8+Na]⁺, and c) [(S8)₂+Na]⁺.

m/z

Figure S55 The calculated (red trace) and experimental (black trace) isotope patterns for [1b]⁺.

Figure S57 The calculated (red trace) and experimental (black trace) isotope patterns for [S9+H]⁺.

Figure S59 The calculated (red trace) and experimental (black trace) isotope patterns for a) [S5+H]⁺, b) [S5+Na]⁺, and c) [(S5)₂+Na]⁺.

Figure S60 Full mass spectrum (MeOH) of model 2b with relevant peak annotated.

Figure S61 The calculated (red trace) and experimental (black trace) isotope patterns for [2b]⁺.

Figure S62 Full mass spectrum (MeOH) of complex $[Cu(2a)(3)]PF_6$ with relevant peaks annotated.

Figure S63 The calculated (red trace) and experimental (black trace) isotope patterns for [Cu(2a)(3)]⁺.

Figure S64 Full mass spectrum (MeOH) of complex $[Cu_2(1a)(3)_2](PF_6)_2$ with relevant peaks annotated.

Figure S65 The calculated (red trace) and experimental (black trace) isotope patterns for a) $[Cu_2(1a)(3)_2]^{2+}$, and b) $[Cu_2(1a)(3)_2(PF_6)]^+$.

Figure S66 Full mass spectrum (MeOH) of complex $[Cu(1b)(3)](PF_6)_2$ with relevant peaks annotated.

Figure S67 The calculated (red trace) and experimental (black trace) isotope patterns for a) $[Cu(1b)(3)]^{2+}$, and b) $[Cu(1b)(3)(PF_6)]^+$.

4 UV-Vis Spectra

Figure S68 UV-Vis spectra of ligand 2a, and its Cu(I) complexes $[Cu(2a)(3)]PF_6$ in acetone (~1x10⁻⁵ M). The inset shows the acetone solutions of the relevant compounds (~1x10⁻⁴ M).

Figure S69 UV-Vis spectra of ligand 1a, and its Cu(I) complex [Cu₂(1a)(3)₂](PF₆)₂ in acetone (~1x10⁻⁵ M).

Figure S70 UV-Vis spectra of ligand S8, its methylated counterpart 1b, and the Cu(I) complex $[Cu(1b)(3)](PF_6)_2$ in acetone ($-1x10^{-5}$ M).

Figure S71 UV-Vis spectrum of Cu(II) complex [Cu(5)(3)](PF₆)₂ in acetone (~1x10⁻⁵ M).

5 Electrochemistry

Cyclic voltammetric (CV) experiments in acetone or CH_2CI_2 were performed at 20 °C on solutions degassed with argon. A three-electrode cell was used with Cypress Systems 1.4 mm diameter glassy carbon working, Ag/AgCl reference and platinum wire auxiliary electrodes. The solution was ~10⁻³ M in electroactive material and contained 0.1 M Bu₄NPF₆ as the supporting electrolyte. Voltammograms were recorded with the aid of a Powerlab/4sp computer-controlled potentiostat. Potentials are referenced to the reversible formal potential (taken as $E^{\circ} = 0.00$ V) for the decamethylferrocene [Fc*]^{+/0} process.⁹ Under the same conditions, E° calculated for [FcH]^{+/0} was 0.49 V (acetone) and 0.55 V (CH₂Cl₂).¹⁰ Bulk electrolysis experiments were undertaken in a three-compartment cell in which the working and auxiliary compartments were separated by two fine frits to minimize mixing of the solutions. The experimental reference electrode was a AgCl-coated Ag wire prepared by anodic electrolysis of the wire in 1 M HCl. Spectroelectrochemical experiments were performed in acetone/0.1 M Bu₄NPF₆ solution in an OTTLE cell (pathlength 0.5 mm) with Pt working and auxiliary, and Ag reference electrodes.

Composingle	<i>E</i> ° (V) (a	cetone)ª	<i>E</i> ° (V) (CH ₂ Cl ₂) ^a			
Compounds	Cu ^{II/I}	Fc ^{+/0}	Cu ^{II/I}	Fc ^{+/0}		
2a	-	0.64	-	0.68		
[Cu(2a)(3)]PF ₆	0.61	0.68	0.72	0.79		
[Cu(5)(3)](PF ₆) ₂	0.00	-	insol.	-		
1a	-	insol.	-	0.78		
$[Cu_2(1a)(3)_2](PF_6)_2$	0.64	0.85	0.81	0.85		
			· · · · · · · /0			

Table S1 Electrochemical data for the mono- and di-armed ferrocene systems (**2a** and **1a**), their Cu(I) complexes, and the
Cu(II) complex $[Cu(5)(3)](PF_6)_2$.

^a $1x10^{-3}$ M in analyte, 0.1 M Bu₄NPF₆, referenced to $[Fc^*]^{+/0} = 0.00$ V.

5.1 Representative Voltammograms

Figure S72 CVs (100 mV s⁻¹) of the model ligand 2a, its Cu(I) complex $[Cu(2a)(3)]PF_6$, and the Cu(II) complex $[Cu(5)(3)](PF_6)_2$ in acetone.

Figure S73 CV (black trace, 100 mV s⁻¹) and DPV (red trace) of the complex [Cu(**2a**)(**3**)]PF₆ in acetone, where the DPV shows the partial resolution of the ferrocene centred and Cu(I) centred oxidations.

Figure S74 CVs (100 mV s⁻¹) of the model ligand 2a, its Cu(I) complex $[Cu(2a)(3)]PF_6$, the Cu(II) complex $[Cu(5)(3)](PF_6)_2$, and $[Cu(2a)(3)]PF_6$ in the presence of terpyridine in acetone.

Figure S75 CVs (100 mV s⁻¹) of the di-arm ligand 1a, and its Cu(I) complex [Cu₂(1a)(3)₂](PF₆)₂ in CH₂Cl₂.

Figure S76 CVs (100 mV s⁻¹) of complex $[Cu_2(1a)(3)_2](PF_6)_2$ in acetone and CH_2Cl_2 , illustrating the increased peak resolution attained in acetone.

Figure S77 CVs (100 mV s⁻¹) of the Cu(I) complex $[Cu_2(1a)(3)_2](PF_6)_2$, the Cu(II) complex $[Cu(5)(3)](PF_6)_2$, and $[Cu_2(1a)(3)_2](PF_6)_2$ in the presence of terpy in acetone.

5.2 Spectroelectrochemistry Plots

Figure S78 UV-Vis spectra of a) complex $[Cu(2a)(3)]PF_6$ as it is fully oxidised over time (time = 0 s in black, each cycle 108 s apart). The oxidation can be split into two separate processes: b) the oxidation of the Cu(I) to Cu(II), and c) the oxidation of the Fc to Fc⁺.

Figure S79 UV-Vis spectra of ligand 2a in the presence of $[Cu(5)(3)](PF_6)_2$, complex $[Cu(2a)(3)]PF_6$ in the presence of terpyridine, and the complex $[Cu(2a)(3)]PF_6$ in the presence of terpyridine after the oxidation of the Cu(I) to Cu(II), showing the electrochemically induced switching of the model system from the complex $[Cu(2a)(3)]PF_6$ to the free ligand 2a plus complex $[Cu(5)(3)](PF_6)_2$. Inset is the colour change seen during bulk electrolysis of a 1 mM solution, wherein the red colour of the complex $[Cu(2a)(3)]PF_6$ fades to the yellow of the free ligand 2a after + 0.5 V has been passed through the solution for ~5 minutes. The colour change is reversed on application of -0.5 V, as the system is reduced back to the Cu(I) complex $[Cu(2a)(3)]PF_6$.

Figure S80 UV-Vis spectra of a) complex $[Cu_2(1a)(3)_2](PF_6)_2$ as it is fully oxidised over time (time = 0 s in black, each cycle 108 s apart). The oxidation can be split into two separate processes: b) the oxidation of the Cu(I) to Cu(II), and c) the oxidation of the Fc to Fc⁺.

Figure S81 UV-Vis spectra of complex $[Cu_2(1a)(3)_2](PF_6)_2$ in the presence of terpyridine, and the complex $[Cu_2(1a)(3)_2](PF_6)_2$ in the presence of terpyridine after the oxidation of the Cu(I) to Cu(II), showing the electrochemically induced switching of the model system from the complex $[Cu_2(1a)(3)_2](PF_6)_2$ to the free ligand 1a plus complex $[Cu(5)(3)](PF_6)_2$. The free ligand 1a was not soluble enough in acetone to allow a separate plot of the free ligand and $[Cu(5)(3)](PF_6)_2$, however, the ligand does stay in solution during the bulk electrolysis due to the presence of the electrolyte keeping the ligand from aggregating and precipitating. Inset is the colour change seen during bulk electrolysis of a 0.1 mM solution, wherein the red colour of the complex $[Cu_2(1a)(3)_2](PF_6)_2$ fades to the yellow of the free ligand 1a after + 0.5 V has been passed through the solution for ~5 minutes. The colour change is reversed on application of -0.5 V, as the system is reduced back to the Cu(I) complex $[Cu_2(1a)(3)_2](PF_6)_2$. A time-lapse video of the reversible process is available in the ESI (see publisher's website).

6 Computational Details

Computational modelling was performed with the Gaussian 09 software package¹¹ using the CAM-B3LYP¹² functional and 6-31G(d) basis set. A DMF solvent field was implemented using an integral equation formalism polarisable continuum model (IEF-PCM) self-consistent reaction field (SCRF)¹³ with the default solvent parameters provided by Gaussian. Ligands **1a** and **1b** were modelled in both the open and closed forms while the Cu complexes [Cu₂(**1a**)(**3**)₂](PF₆)₂ and [Cu(**1b**)(**3**)](PF₆)₂ were modelled only in the open form. Simulated Raman spectra were generated utilising GaussSum v2.1.6¹⁴ software, with scaling factors of between 0.95 and 0.96. The mean absolute deviation (MAD) between experimental and simulated Raman bands in the alkyne systems were reasonable at between 7 and 13 cm⁻¹. The GaussView¹⁵ v5.0.8 and Molden¹⁶ software packages allowed visualisation of the molecular orbitals and vibrational modes respectively. The potential energy surface scan of the ferrocene dihedral angle (α) was accomplished by freezing the dihedral angle at various values and allowing the rest of the molecule to relax to its lowest energy configuration. The structure at which $\alpha = 180^{\circ}$ was taken to be the zero energy point (as this could be calculated for all systems) and the energy of the other dihedrals was calculated relative to this to allow Figure S81, Figure S83, Figure S85, and Figure S87 to be produced.

Figure S82 Relative energy of ligand 1a across a range of possible dihedral angles.

Figure S83 Energy minimised structures of the ligand 1a with the dihedral angle between the two "arms" constrained to a) 0° and b) 180°.

Figure S84 Relative energy of complex $[Cu_2(1a)(3)_2](PF_6)_2$ across a range of possible dihedral angles.

Figure S85 Energy minimised structure of the complex $[Cu_2(1a)(3)_2](PF_6)_2$ with the dihedral angle between the two "arms" constrained to 180°.

Figure S86 Relative energy of methylated ligand 1b across a range of possible dihedral angles.

Figure S87 Energy minimised structures of the methylated ligand 1b with the dihedral angle between the two "arms" constrained to a) 0° and b) 180°.

Figure S88 Relative energy of complex $[Cu(1b)(3)](PF_6)_2$ across a range of possible dihedral angles.

Figure S89 Energy minimised structure of the complex $[Cu(1b)(3)](PF_6)_2$ with the dihedral angle between the two "arms" constrained to 180°.

7 X-ray Data

7.1 Crystallographic Data Tables

, , ,							
Compound	2a		2b		[Cu(5)(3)](PF ₆) ₂		
CCDC	1046341		1046342		1046336		
Empirical formula	$C_{22}H_{16}FeN_2$		$C_{18}H_{16}F_6FeNP$		$C_{43}H_{39}CuF_{12}N_5P_2$		
Formula weight	364.22		447.14		979.27		
Temperature	100.01(13) K		100.01(10) K		100.01(10) K		
Wavelength	1.54184 Å		1.54184 Å		1.54184 Å		
Crystal system	Orthorhombic		Monoclinic		Monoclinic		
Space group	Pna2 ₁		<i>P</i> 12 ₁ 1		P12 ₁ /n1		
Unit cell dimensions	a = 23.8585(13) Å α = 90°		a = 7.3960(2) Å	α = 90.0°	a = 12.70025(10) Å	α = 90°	
	b = 6.8313(4) Å $\beta = 90^{\circ}$		b = 10.9122(2) Å	β = 104.382(3)°	b = 21.30927(15) Å	β = 93.2975(6)°	
	c = 10.0250(6) Å γ = 90°		c = 11.2342(3) Å	γ = 90.0°	c = 15.21998(10) Å	γ = 90°	
Volume	1633.92(16) ų		878.26(4) ų		4112.21(5) ų		
Z	4		2		4		
Density (calculated)	1.481 Mg/m ³		1.691 Mg/m ³		1.582 Mg/m ³		
Absorption coefficient	7.426 mm ⁻¹		8.351 mm ⁻¹		2.331 mm ⁻¹		
F(000)	752		452		1996		
Crystal size	0.175 x 0.091 x 0.029 mm ³		0.2002 x 0.1101 x 0.0638 mm ³		0.5591 x 0.3735 x 0.3089 mm ³		
Theta range for data collection	3.71 to 76.73°		4.06 to 76.60°		3.57 to 76.90°		
Index ranges	-29<=h<=21, -8<=k<=4, -12<=l<=11		-8<=h<=9, -13<=k<=13, -14<=l<=13		-15<=h<=14, -26<=k<=26, -12<=l<=19		
Reflections collected	4765		9675		34019		
Independent reflections	2572 [R(int) = 0.0350]		3563 [R(int) = 0.0482]		8565 [R(int) = 0.0258]		
Completeness	98.0% (theta = 76.73°)		98.9% (theta = 76.60°)		98.7% (theta = 76.90°)		
Max. and min. transmission	1.00000 and 0.65066		1.00000 and 0.65316		1.00000 and 0.66150		
Data / restraints / parameters	2572 / 1 / 226		3563 / 1 / 245		8565 / 0 / 574		
Goodness-of-fit on F ²	1.177		1.054		1.033		
Final R indices [I>2sigma(I)]	R1 = 0.0389, wR2 = 0.1055		R1 = 0.0355, wR2 = 0.0890		R1 = 0.0449, wR2 = 0.1197		
R indices (all data)	R1 = 0.0450, wR2 = 0.1087		R1 = 0.0386, wR2 = 0.0910		R1 = 0.0465, wR2 = 0.1234		
Largest diff. peak and hole	e 0.517 and -0.325 e.Å ⁻³		0.785 and -0.440 e.Å ⁻³		1.131 and -0.789 e.Å ⁻³		

Compound	1a		$[Cu_2(1a)(3)_2](ClO_4)_2$		S7		
CCDC	1046340		1046337		1046339		
Empirical formula	$C_{34}H_{22}FeN_4$		$C_{90}H_{78}N_8O_8FeCu_2Cl_2$		$C_{22}H_{15}FeIN_2$		
Formula weight	542.41		1653.46	1653.46		490.11	
Temperature	99.98(14) K		100(2) K		100(2) K		
Wavelength	1.54184 Å		1.54184 Å		1.54184 Å		
Crystal system	Monoclinic		Monoclinic		Monoclinic		
Space group	P2 ₁ /n		P12 ₁ /n1		<i>P</i> 12 ₁ / <i>c</i> 1		
Unit cell dimensions	a = 15.622(5) Å	α = 90.0°	a = 18.1611(2) Å	α = 90°	a = 5.82160(10) Å	α = 90°	
	b = 9.169(5) Å	β = 102.084(5)°	b = 52.0625(9) Å	$\beta = 106.0870(10)^{\circ}$	b = 15.6040(4) Å	β = 91.300(2)°	
	c = 17.531(5) Å	γ = 90.0°	c = 20.5495(3) Å	γ = 90°	c = 19.8079(4) Å	γ = 90°	
Volume	2455.5(17) ų		18669.0(5) ų		1798.89(7) ų		
Z	4		8		4		
Density (calculated)	1.467 Mg/m ³		1.177 Mg/m ³		1.810 Mg/m ³		
Absorption coefficient	0.647 mm ⁻¹		2.716 mm ⁻¹		20.242 mm ⁻¹		
F(000)	1120		6848		960		
Crystal size	0.2697 x 0.1400 x 0.0396 mm ³		0.4910 x 0.4185 x 0.2881 mm ³		0.4125 x 0.2212 x 0.1068 mm ³		
Theta range for data collection	1.59 to 26.64°		3.00 to 68.25°		3.61 to 77.40°		
Index ranges	-19<=h<=19, -7<=k<=11, -22<=l<=20		-21<=h<=21, -62<=k<=62, -24<=l<=24		-7<=h<=7, -19<=k<=19, -24<=l<=23		
Reflections collected	20754		217551		22565		
Independent reflections	5100 [R(int) = 0.0736]		34176 [R(int) = 0.0989]		3773 [R(int) = 0.1027]		
Completeness	98.9% (theta = 26.64°)		100.0% (theta = 68.25°)		98.8% (theta = 77.40°)		
Max. and min. transmission	1.00000 and 0.65112		0.5084 and 0.3490		1.00000 and 0.10736		
Data / restraints / parameters	5100 / 0 / 325		34176 / 186 / 2023		3773 / 0 / 235		
Goodness-of-fit on F ²	1.051		1.071		1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0698, wR2 = 0.1822		R1 = 0.1085, wR2 = 0.2930		R1 = 0.0513, wR2 = 0.1417		
R indices (all data)	R1 = 0.0801, wR2 = 0.1907		R1 = 0.1182, wR2 = 0.3008		R1 = 0.0533, wR2 = 0.1451		
Largest diff. peak and hole	1.439 and -0.782	e.Å ⁻³	3.286 and -1.694 e	Å ⁻³	2.333 and -1.266 e.Å ⁻³		

7.2 Crystal Structures and Relevant Notes

All structures were collected on an Agilent Technologies SuperNova diffractometer with an Atlas detector using Cu Kα radiation at low temperature (100 K). SADABS¹⁷ was used for absorption correction. The structures was solved by direct methods using either SIR-97¹⁸ or X-Seed¹⁹ and refined against F² using anisotropic thermal displacement parameters for all non-hydrogen atoms using SHELXL-97²⁰ software. Hydrogen atoms were placed in calculated positions and refined using a riding model.

Due to the extent of disordered solvent in the crystal lattice of $[Cu_2(1a)(3)_2](PF_6)_2$, the SQUEEZE routine within PLATON was implemented. SQUEEZE details are listed below, beneath the relevant structures.

Figure S90 Mercury ball-and-stick plot of 2a.

Figure S95 Mercury ball-and-stick plot of $[Cu(5)(3)](PF_6)_2$. Counterions omitted for clarity.

Figure S96 Vertical stacking observed within the packing of $[Cu(5)(3)](PF_6)_2$, with the relevant centroid-H distance labelled. Counterions omitted for clarity.

Figure S97 H- π interaction observed within the packing of [Cu(5)(3)](PF₆)₂, with the relevant centroid-H distance labelled. Counterions omitted for clarity.

Figure S98 Mercury ball-and-stick plot of 1a.

Figure S99 Hydrogen bonding between adjacent molecules within the packing of 1a, with the N-H bonds labelled.

Figure S100 H- π and π - π stacking within the packing of **1a**, with the centroid-centroid and centroid-H distances labelled.

Figure S101 Mercury ball-and-stick plot of [Cu₂(1a)(3)₂](PF₆)₂. Selected bond lengths (Å) and angles (°): Cu1-N104: 2.045(5), Cu1-N105: 2.010(4), Cu1-N106: 1.993(4), Cu1-N107: 2.045(4), Cu2-N100: 2.066(5), Cu2-N101: 2.006(6), Cu2-N102: 2.020(5), Cu2-N103: 2.054(7), N104-Cu1-N105: 82.1(2), N106-Cu1-N107: 80.5(2), N104-Cu1-N106: 125.8(2), N105-Cu1-N107: 132.8(2), N100-Cu2-N101: 82.0(2), N102-Cu2-N103: 80.4(2), N100-Cu2-N102: 124.1(2), N101-Cu2-N103: 131.5(2)). Counterions omitted for clarity. [Cu₂(1a)(3)₂](PF₆)₂ was subject to Platon Squeeze, details of which follow.

PLATON SQUEEZE details for $[Cu_2(1a)(3)_2](PF_6)_2$

Details

		/						
Void number	1	2	3	4	5	6	7	8
Average x	0.000	0.096	0.158	0.500	0.239	0.260	0.739	0.760
Average y	0.000	0.250	0.750	0.500	0.044	0.544	0.456	0.956
Average z	1.000	0.614	0.639	0.500	0.454	0.046	0.954	0.546
Volume	786	1167	1167	786	11	11	11	11
Electron count	239	396	393	240	2	2	2	2

The packing of the crystal shows sizeable solvent channels (Figure S101) containing significant amounts of diffuse electron density, accounted for by disordered solvent which could not be modelled adequately as discrete molecules. This includes a minimum of 5 highly disordered acetonitrile molecules that could be located in the asymmetric unit, but were too disordered to refine. As such, PLATON SQUEEZE was employed to calculate the contribution to the diffraction from the solvent channels and thereby produced a set of solvent-free diffraction intensities.

SQUEEZE estimated 8 voids with a total contribution of approximately 1276 electrons per unit cell. Due to this being a monoclinic space group with 4 asymmetric units per unit cell, this amounts to approximately 1276/4 = 319 electrons per asymmetric unit. This can be accounted for by 10 molecules of acetonitrile (10x22 = 220) and 10 molecules of water (10x10 = 100) per asymmetric unit.

Figure S102 Mercury plot of the calculated solvent voids within the unit cell of $[Cu_2(1a)(3)_2](PF_6)_2$. The total void space is estimated to be approximately 3408.92 Å³, and takes up 18.3% of the unit cell.

Figure S103 The asymmetric unit of $[Cu_2(1a)(3)_2](PF_6)_2$ consists of two discrete molecules (coloured blue and orange respectively) helically entwined, with the central Fe-Fe distance being 5.189 Å. A variety of H- π interactions stabilise this supramolecular helix. Counterions and hydrogens omitted for clarity.

Figure S104 Mercury ball-and-stick plot of S7. Significant bowing of the bipyridine substituent is observed due to the intramolecular interaction of the iodine with the π density of the bipyridine.

Figure S105 Hydrogen bonding between adjacent molecules within the packing of S7, with the N-H bonds labelled.

Figure S106 H- π and I- π interactions within the packing of S7, with the centroid-H and centroid-I distances labelled.

Figure S107 Mercury ball-and-stick plot of 2b. Counterion omitted for clarity.

Figure S108 Anion- π interactions observed within the packing of **2b**, with the centroid-F distances labelled.

8 References

- 1. S.-H. Kim and R. D. Rieke, *Tetrahedron*, 2010, **66**, 3135-3146.
- 2. V. Grosshenny, F. M. Romero and R. Ziessel, *J. Org. Chem.*, 1997, **62**, 1491-1500.
- 3. M. S. Inkpen, S. Du, M. Driver, T. Albrecht and N. J. Long, *Dalton Trans.*, 2013, **42**, 2813-2816.
- 4. M. S. Inkpen, T. Albrecht and N. J. Long, *Organometallics*, 2013, **32**, 6053-6060.
- 5. E. Lindner, R. Zong and K. Eichele, *Phosphorus, Sulfur Silicon Relat. Elem.*, 2001, **168-169**, 543-546.
- 6. R. Packheiser, B. Walfort and H. Lang, *Organometallics*, 2006, **25**, 4579-4587.
- 7. E. Lindner, R. Zong, K. Eichele and M. Strobele, J. Organomet. Chem., 2002, 660, 78-84.
- 8. M. Schmittel, A. Ganz, W. A. Schenk and M. Hagel, Z. Naturforsch., B Chem. Sci., 1999, 54, 559-564.
- 9. I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A. F. Masters and L. Phillips, J. Phys. Chem. B, 1999, **103**, 6713-6722.
- 10. F. Barrière and W. E. Geiger, J. Am. Chem. Soc., 2006, **128**, 3980-3989.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, (2009) Gaussian, Inc., Wallingford, CT, USA.
- 12. T. Yanai, D. P. Tew and N. C. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51-57.
- 13. J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev. (Washington, DC, U. S.)*, 2005, **105**, 2999-3093.
- 14. N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, *J. Comput. Chem.*, 2008, **29**, 839-845.
- 15. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter*, 1988, **37**, 785-789.
- 16. G. Schaftenaar and J. H. Noordik, *J. Comput.-Aided Mol. Des.*, 2000, **14**, 123-134.
- 17. G. M. Sheldrick, *SADABS: Program for Absorption Correction*, University of Goettingen, Goettingen, Germany, 1996.
- 18. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115-119.
- 19. L. J. Barbour, *Journal of Supramolecular Chemistry*, 2001, **1**, 189-191.
- 20. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.