Electronic Supplementary Information for

Synthesis and Properties of 2'-O,4'-C-Spirocyclopropylene Bridged Nucleic Acid (scpBNA), an Analogue of $2^{\prime}, 4^{\prime}$-BNA/LNA Bearing a Cyclopropane Ring Takao Yamaguchi, Masahiko Horiba, and Satoshi Obika* Contents

1. General S2
2. Synthesis of scpBNA monomer and phosphoramidite S2-S11
Figure S1 to Figure S30. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of synthesized compounds. S12-S41
3. Synthesis, purification and characterization of oligonucleotides S42
Table S1. Yields and MALDI-TOF MS data for the oligonucleotides S42
Figure S31. MALDI-TOF MS spectra and HPLC charts of all new oligonucleotides. S43-S46
4. UV melting experiments S47Figure S32. UV melting curves for the duplexes formed between representativeoligonucleotides and ssRNA.S47
Figure S33. UV melting curves for the duplexes formed between representative oligonucleotides and ssDNA.S47
5. Nuclease resistance study S48
Figure S34. Nuclease resistance of 5'-(TTTTTTTTX)-3' against Crotalus admanteus venom phosphodiesterase (CAVP). S48-S49
6. Figure S35. Energy-minimized structures of $2^{\prime}, 4^{\prime}$-BNA/LNA and scpBNA. S50
7. Mismatch discrimination and thermodynamic data of scpBNA S51Table S2. T_{m} values (${ }^{\circ} \mathrm{C}$) of duplexes formed between ONs and ssRNA with or withoutone base mismatchS51
Table S3. T_{m} values $\left({ }^{\circ} \mathrm{C}\right)$ of duplexes formed between ONs and ssDNA with or without one base mismatch S51
Table S4. Thermodynamic data of duplexes formed between ON2 and ssRNA or ssDNA S51
Figure S36. Van't Hoff plots of T_{m} values of duplexes formed between ON2 and ssRNA
or ssDNA. S52
8. Supplementary references S52

1. General

Dry dichloromethane, N, N-dimethylformamide, tetrahydrofuran, acetonitrile and pyridine were used as purchased. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz) and ${ }^{31} \mathrm{P}$ NMR (162 MHz) spectra were recorded on a JEOL JNM-ECS-400 spectrometer. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded on a JEOL JNM-AL-300 spectrometer. Chemical shift values are expressed in δ values (ppm) relative to internal tetramethylsilane (0.00 ppm), residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ or $\mathrm{CHD}_{2} \mathrm{OD}(3.31 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR, and internal tetramethylsilane (0.00 ppm), chloroform- d_{1} (77.16 $\mathrm{ppm})$ or methanol- $d_{4}(49.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C} \mathrm{NMR}$, and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(0.00 \mathrm{ppm})$ as external standard for ${ }^{31} \mathrm{P}$ NMR. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Optical rotations were recorded on a JASCO DIP-370 instrument. MALDI-TOF mass spectra of all new compounds were measured on SpiralTOF JMS-S3000. MALDI-TOF mass spectra of oligonucleotides were measured on a Bruker Daltonics Autoflex II TOF/TOF mass spectrometer. For column chromatography, Fuji Silysia PSQ-100B or FL-100D silica gel was used. For flash column chromatography, Fuji Silysia PSQ-60B or FL-60D silica gel was used. For high performance liquid chromatography (HPLC), SHIMADZU LC-10AT $\mathrm{vp}_{\mathrm{vp}}$, SPD-10A A_{vp} and CTO- 10_{vp} were used.

2. Synthesis of scpBNA monomer and phosphoramidite.

3,5-Di- O-benzyl-4-C-formyl-1,2- O-isopropylidene- α-D-ribopentofuranose (2)

The compound 2 was prepared via a different procedure from the reported one (Morita, K.; Takagi, M.; Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa, T.; Imanishi, T.; Koizumi, M. Bioorg. Med. Chem. 2003, 11, 2211-2226.). To the solution of $1(7.38 \mathrm{~g}, 18.5 \mathrm{mmol})$ in dry dichloromethane $(100 \mathrm{~mL})$ was added Dess-Martin periodinane $(9.41 \mathrm{~g}, 22.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 40 min under N_{2} atmosphere. After completion of the reaction, saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated aq. NaHCO_{3} were added, and the resulting mixture was further stirred for 10 min . The organic layer was then removed under reduced pressure, and the residual aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford 2 (7.61 g , quant.) as a colorless
oil.
Compound 2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 3.61,3.67(\mathrm{AB}, J=11.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46,4.52(\mathrm{AB}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59,4.71(\mathrm{AB}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.60(\mathrm{dd}, J=3.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 10 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.1,26.5,69.1,72.8,73.8,78.3,79.6,89.7,104.8,114.1,127.7,127.8,128.0$, 128.1, 128.4, 128.5, 137.0, 137.5, 200.0; IR (KBr): 2985, 2973, 2866, 1731, 1496, 1213, 1165, 1103, 1020, $739,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{29}+27.1$ (c $1.03, \mathrm{MeOH}$); HRMS (MALDI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 421.1622$, Found 421.1620.

3,5-Di- O-benzyl-4-C-carboxy-l,2-O-isopropylidene- α-D-ribopentofuranose (3)

To the solution of $2(7.61 \mathrm{~g}, 19.1 \mathrm{mmol})$ in acetonitrile $(100 \mathrm{~mL})$ was added aq. sodium dihydrogen orthophosphate ($0.2 \mathrm{M}, 20 \mathrm{~mL}, 3.82 \mathrm{mmol}$) and aq. hydrogen peroxide ($30 \mathrm{wt} . \%$, $2.3 \mathrm{~mL}, 21.0$ $\mathrm{mmol})$. After aq. sodium chlorite $(0.75 \mathrm{M}, 38 \mathrm{~mL}, 28.6 \mathrm{mmol})$ was added dropwise to the reaction mixture at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was stirred at room temperature for 1 h . After addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the resulting mixture was stirred at room temperature for 10 min . The organic layer was then removed under reduced pressure, and the residual aqueous solution was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford $\mathbf{3}(7.61 \mathrm{~g}, 96 \%)$ as a white solid.

Compound 3: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 3.72,3.77(\mathrm{AB}, J=10.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.30(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49,4.55(\mathrm{AB}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=4.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$, $4.80(\mathrm{AB}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.40(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.3,26.4,71.8,73.4,74.0,78.1,78.5,104.9,114.6,127.8,128.0,128.2,128.4,128.6$, 128.7, 136.5, 137.4, 170.0; IR (KBr): 3171, 2985, 2937, 2870, 1768, 1497, 1163, 1098, 1020, 740, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{26}+42.3$ (c 1.01, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 437.1571, Found 437.1570.

3,5-Di-O-benzyl-1,2-O-isopropylidene-4-C-methoxycarbonyl- α-D-ribopentofuranose (4)

To the solution of $\mathbf{3}(7.61 \mathrm{~g}, 18.4 \mathrm{mmol})$ in dry N, N-dimethylformamide (30 mL) was added $\mathrm{NaHCO}_{3}(15.4 \mathrm{~g}, 184 \mathrm{mmol})$ and iodomethane $(2.86 \mathrm{~mL}, 45.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring at room temperature for 20 h , saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added and the resulting
mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford 4 ($7.35 \mathrm{~g}, 93 \%$) as a white solid.

Compound 4: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 3.67,3.82(\mathrm{AB}, J=10.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49,4.54(\mathrm{AB}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.59,4.77(\mathrm{AB}, J=$ 12.2 Hz, 2H), $4.67(\mathrm{dd}, J=4.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 26.3,27.3,73.0,73.7,73.9,79.4,80.5,89.7,127.7,127.7,127.8,127.9$, 128.4, 128.6, 137.7, 169.4; IR (KBr): 2985, 2949, 2869, 1763, 1733, 1497, 1160, 1106, 1028, 738, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{27}+31.5$ (c 1.00, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 451.1727, Found 451.1732.

3,5-Di- O-benzyl-4- \boldsymbol{C}-(1-hydroxycyclopropyl)-l,2- O-isopropylidene- α-D-ribopentofuranose (5)

To the solution of $4(12.5 \mathrm{~g}, 29.0 \mathrm{mmol})$ in dry tetrahydrofuran $(290 \mathrm{~mL})$ was added tetraisopropyl orthotitanate $(8.59 \mathrm{~mL}, 29.0 \mathrm{mmol})$ and 1 M ethylmagnesium bromide in tetrahydrofuran $(145 \mathrm{~mL}$, 145 mmol) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring at room temperature for 6 h , saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the organic layer was then removed under reduced pressure. The residual aqueous solution was filtered through celite and extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : $\left.\mathrm{AcOEt}=6: 1\right)$ to afford $5(6.80 \mathrm{~g}, 55 \%)$ as a yellow paste.

Compound 5: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.56-0.68(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.48,3.93(\mathrm{AB}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43,5.00(\mathrm{AB}$, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45,4.54(\mathrm{AB}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=4.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.64,11.2,27.1,27.9,56.3,73.1,73.8$, $75.5,80.3,82.0,89.1,106.6,114.6,127.5,127.6,127.8,128.0,128.6,128.8,137.9,138.2$; IR (KBr): 2935, 2867, 1496, 1454, 1252, 1099, 1027, 741, $699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{29}+93.5(\mathrm{c} 1.02, \mathrm{MeOH})$; HRMS (MALDI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 449.1935$, Found 449.1939.

3,5-Di-O-benzyl-4-C-[1-(tert-butyldimethylsilyloxy)cyclopropyl]-1,2-O-isopropylidene- α-D-ribo pentofuranose (6)

To the solution of $5(2.55 \mathrm{~g}, 5.99 \mathrm{mmol})$ in dry dichloromethane (50 mL) was added 2,6-lutidine ($2.09 \mathrm{~mL}, 18.0 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethanesulfonate ($2.75 \mathrm{~mL}, 12.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring at room temperature for 2 h , saturated aq. NaHCO_{3} was added and the resulting mixture was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane $: \mathrm{AcOEt}=15: 1$ to $\left.5: 1\right)$ to afford $6(2.92 \mathrm{~g}, 90 \%)$ as a yellow oil.

Compound 6: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}), 0.57-0.77(\mathrm{~m}, 3 \mathrm{H}), 0.75$ $(\mathrm{s}, 9 \mathrm{H}), 1.20-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 3.46,3.92(\mathrm{AB}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42,4.61(\mathrm{AB}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52,4.86(\mathrm{AB}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=4.5$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.43(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.4,-$ $3.2,7.7,10.2,17.8,25.7,27.1,28.5,57.5,73.4,73.8,76.2,80.0,83.3,90.3,106.1,114.5,126.8$, 126.9, 127.6, 127.8, 127.8, 128.5, 138.0, 139.2; IR (KBr): 2929, 2858, 1497, 1455, 1279, 1254, 1106, 1040, 733, $696 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{29}+53.6$ (c 1.01, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 563.2799$, Found 563.2809.

1-[3,5-Di-O-benzyl-4-C-[1-(tert-butyldimethylsilyloxy)cyclopropyl]-2-O-methanesulfonyl- β-D-r ibopentofuranosyl]thymine (10)

To the solution of $6(8.04 \mathrm{~g}, 14.9 \mathrm{mmol})$ in acetic acid $(17.0 \mathrm{~mL}, 0.30 \mathrm{~mol})$ was added acetic anhydride ($28.2 \mathrm{~mL}, 0.30 \mathrm{~mol}$) and trifluoroacetic acid ($3.20 \mathrm{~mL}, 44.7 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 5 h , saturated aq. NaHCO_{3} was added and the resulting mixture was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product $7(9.43 \mathrm{~g})$ was used immediately for the next reaction without further purification.

To the solution of $7(9.43 \mathrm{~g})$ in dry acetonitrile (140 mL) was added thymine ($5.63 \mathrm{~g}, 44.6 \mathrm{mmol}$), N, O-bis-trimethylsilylacetoamide $\quad(18.2 \mathrm{~mL}, 74.3 \mathrm{mmol})$ and trimethylsilyl trifluoromethanesulfonate $(4.03 \mathrm{ml}, 22.3 \mathrm{mmol})$ at room temperature under N_{2} atmosphere. After refluxing for 2 h , saturated aq. NaHCO_{3} was added and the resulting mixture was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford $\mathbf{8}(8.26 \mathrm{~g})$. The crude product $\mathbf{8}$ was used for the next reaction without further
purification. For an analysis of compound $\mathbf{8}$, a small amount of the crude product was purified by silica gel column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : $\left.\mathrm{AcOEt}=3: 1\right)$.

To the solution of $\mathbf{8}(8.26 \mathrm{~g})$ in tetrahydrofuran $(150 \mathrm{~mL})$ was added aq. methylamine ($40 \mathrm{wt} . \%$, $30.4 \mathrm{~mL}, 0.73 \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 4 h . After completion of reaction, the resulting mixture was concentrated and extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product $9(7.50 \mathrm{~g})$ was used for the next reaction without further purification. For an analysis of compound $\mathbf{9}$, a small amount of the crude product was purified by silica gel column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : $\left.\mathrm{AcOEt}=2: 1\right)$.

To the solution of $9(7.50 \mathrm{~g})$ in dry pyridine $(120 \mathrm{~mL})$ was added methanesulfonyl chloride (1.43 $\mathrm{mL}, 18.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 4 h under N_{2} atmosphere. After addition of water, the resulting mixture was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane $\left.: \mathrm{AcOEt}=3: 2\right)$ to afford $\mathbf{1 0}$ $(7.39 \mathrm{~g}, 72 \%, 4$ steps) as a white solid.

Compound 7: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{HMz}, \mathrm{CDCl}_{3}\right) \quad \delta-0.07(\mathrm{~s}, 3 / 2 \mathrm{H}),-0.02(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.00(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 / 2 \mathrm{H}), 0.59-0.83(\mathrm{~m}, 4 \mathrm{H}), 0.75(\mathrm{~s}, 9 / 2 \mathrm{H}), 0.78(\mathrm{~s}, 9 / 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 / 2 \mathrm{H}), 2.01(\mathrm{~s}$, $3 / 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 / 2 \mathrm{H}), 3.44(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.57(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.91(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 / 2 \mathrm{H}), 3.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.30(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.40-4.59(\mathrm{~m}, 7 / 2 \mathrm{H}), 4.67(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 / 2 \mathrm{H}), 4.71(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.88(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.44(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.57(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.20(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, 7.26-7.39 (m, 10H); HRMS (MALDI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 607.2698$, Found 607.2701 .

Compound 8: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.65-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{~s}$, $9 \mathrm{H}), 0.95-1.03(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.63,4.03(\mathrm{AB}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.46(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50,4.95(\mathrm{AB}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.62,4.72(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.50$ $(\mathrm{dd}, J=5.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.44(\mathrm{~m}, 10 \mathrm{H}), 7.66(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.3,-3.0,7.3,10.7,12.3,18.0,20.8,25.8,58.1,74.1$, $74.4,75.3,75.3,80.9,84.9,87.8,111.6,127.4,127.6,128.0,128.3,128.4,129.0,136.1,137.1$, 138.7, 150.8, 163.6, 170.8; IR (KBr): 3499, 2955, 2929, 1714, 1683, 1470, 1274, 1233, 1127, 1075,

1036, $733,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}-46.9$ (c $0.99, \mathrm{MeOH}$); HRMS (MALDI) Calcd. for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{NaSi}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 673.2916$, Found 673.2917.
Compound 9: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.68-0.79(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~s}$, $9 \mathrm{H}), 0.94-0.98(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60,4.02(\mathrm{AB}, J=9.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.60(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{~B}$ part of an AB system, $J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20$ (B part of an AB system, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.83 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.42(\mathrm{~m}, 10 \mathrm{H})$, $7.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.2,-2.9,7.4,10.8,12.3$, 18.1, 25.9, 58.2, 74.1, 74.5, 74.7, 75.8, 82.7, 86.8, 87.8, 111.4, 127.9, 128.0, 128.2, 128.5, 128.7, 129.0, 136.1, 137.1, 137.9, 151.1, 163.5; IR (KBr): 3422, 2955, 2929, 1699, 1470, 1277, 1254, 1129, 1087, 1036, 751, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{26}-45.1$ (c 1.00, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 631.2810$, Found 631.2814 .
Compound 10: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.58-1.02(\mathrm{~m}, 4 \mathrm{H}), 0.78$ (s, 9H), 1.56 ($\mathrm{s}, 3 \mathrm{H}$), $2.89(\mathrm{~s}, 3 \mathrm{H}), 3.63,4.03(\mathrm{AB}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.37$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$, $4.71(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.78,4.94(\mathrm{AB}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{dd}, J=4.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.41(\mathrm{~m}, 10 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-3.4,-3.1,7.1,10.6,12.2,17.9,25.7,38.2,57.9,73.9,74.0,75.1,77.2,81.0,84.5,87.6,111.9$, $127.4,127.5,127.9,128.2,128.4,128.9,135.3,136.7,138.3,150.6,163.2$; IR (KBr): 3414, 2926, 1696, 1454, 1363, 1127, 1072, 1038, 748, $698 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{31}-48.2$ (c 0.96, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{NaSiS}[\mathrm{M}+\mathrm{Na}]^{+}: 709.2586$, Found 709.2582.

1-[(1R,4R,6R,7S)-7-benzyloxy-4-benzyloxymethyl-2,5-dioxaspiro(bicyclo[2.2.1]heptane-3,1'-cy clopropan)-6-yl|thymine (13)

To the solution of $\mathbf{1 0}(3.19 \mathrm{~g}, 4.64 \mathrm{mmol})$ in tetrahydrofuran/ ethanol $(150 \mathrm{~mL}, 3: 2)$ was added 4 M aq. sodium hydroxide ($60 \mathrm{~mL}, 0.23 \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 12 h . After addition of aq. HCl , the resulting mixture was concentrated and extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product $11(2.71 \mathrm{~g})$ was used for the next reaction without further purification. For an analysis of compound 11, a small amount of the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : $\left.\mathrm{AcOEt}=1.7: 1\right)$.
To the solution of $\mathbf{1 1}(2.71 \mathrm{~g})$ in dry pyridine (50 mL) was added trifluoromethanesulfonic
anhydride $(3.65 \mathrm{~mL}, 22.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 12 h under N_{2} atmosphere. After addition of water, the resulting mixture was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product $12(4.12 \mathrm{~g})$ was used immediately for the next reaction without further purification.

To the solution of $\mathbf{1 2}(4.12 \mathrm{~g})$ in tetrahydrofuran $(250 \mathrm{~mL})$ was added 1 M tetrabutylammonium fluoride in tetrahydrofuran $(13.9 \mathrm{~mL}, 13.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 2 h . After completion of reaction, the reaction mixture was concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane $\left.: \mathrm{AcOEt}=3: 2\right)$ to afford $13(710 \mathrm{mg}, 32 \%, 3$ steps $)$ as a white solid.

Compound 11: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.06(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.57-0.91(\mathrm{~m}, 4 \mathrm{H}), 0.74$ $(\mathrm{s}, 9 \mathrm{H}), 1.80(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.81,4.15(\mathrm{AB}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=3.7$, $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63,4.76(\mathrm{AB}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67,4.72(\mathrm{AB}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.44(\mathrm{~m}, 11 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-3.4,-3.2,7.9,10.9,12.6,17.8,25.6,58.1,73.2,74.3,74.4,74.5,86.9,87.2,87.4,108.8,127.0$, $127.5,128.2,128.4,129.0,129.0,135.6,137.4,137.9,149.9,163.5$; IR (KBr): 2954, 1703, 1669, 1472, 1286, 1254, 1097, 1042, 738, $696 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{30}+36.3$ (c $1.00, \mathrm{MeOH}$); HRMS (MALDI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}: 631.2810$, Found 631.2813.

Compound 12: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.66-0.88(\mathrm{~m}$, $13 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 3.50,3.62(\mathrm{AB}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.45,4.56(\mathrm{AB}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64,4.75(\mathrm{AB}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{dd}, J=2.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 10 \mathrm{H}), 7.46(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$.

Compound 13: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.65-0.76(\mathrm{~m}, 2 \mathrm{H}), 0.91-1.01(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.50,3.63(\mathrm{AB}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.59(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{~B}$ part of an AB system, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 10 \mathrm{H}), 7.51(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}$, $1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.3,9.9,12.4,64.1,68.4,72.2,74.0,77.1,87.1,87.6,110.3$, $127.7,127.8,127.8,128.2,128.6,128.7,128.7,135.1,137.3,137.5,150.0,164.1 ; \mathrm{IR}(\mathrm{KBr}): 3512$, $3031,1693,1455,1269,1108,1054,761,738,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}+55.3(\mathrm{c} 1.00, \mathrm{MeOH}) ;$ HRMS (MALDI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 499.1840, Found 499.1829.

2,2'-Anhydro-1-[3,5-di-O-benzyl-4-C-(1-hydroxycyclopropyl)- β-d-arabinopentofuranosyl]thy mine (14)

To the solution of $10(459 \mathrm{mg}, 0.67 \mathrm{mmol})$ in tetrahydrofuran (25 mL) was added 1 M tetrabutylammoniumfluoride in tetrahydrofuran $(0.67 \mathrm{~mL}, 0.67 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 5 h . After addition of water, the resulting mixture was extracted with AcOEt. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}=50: 1$ to $20: 1$) to afford $14(290 \mathrm{mg}, 91 \%)$ as a white solid.

Compound 14: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.65-0.75(\mathrm{~m}, 4 \mathrm{H}), 1.92(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.24(\mathrm{~s}$, $1 \mathrm{H}), 3.31,3.60(\mathrm{AB}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.24,4.33(\mathrm{AB}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.85$ (B part of an AB system, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=2.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.0,10.8,14.2,56.5,70.9$, $73.3,73.8,85.9,87.0,89.7,90.8,118.9,128.0,128.1,128.1,128.5,128.7,129.0,130.2,136.1$, $136.9,159.6,172.6 ;$ IR (KBr): 3330, 3069, 2923, 1665, 1633, 1556, 1487, 1128, 1087, 736, 700 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{26}-2.24$ (c $\left.1.00, \mathrm{MeOH}\right) ;$ HRMS (MALDI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 477.2020$, Found 477.2024.

1-[(1R,4R,6R,7S)-7-benzyloxy-4-benzyloxymethyl-2,5-dioxaspiro(bicyclo[2.2.1]heptane-3,1'-cy clopropan)-6-yl]thymine (13)

To the solution of $14(1.62 \mathrm{~g}, 3.40 \mathrm{mmol})$ in N, N-dimethylformamide $(35 \mathrm{~mL})$ was added potassium carbonate $(1.41 \mathrm{~g}, 10.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 20 h . After addition of water, the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane $\left.: \mathrm{AcOEt}=1: 1\right)$ to afford $\mathbf{1 3}(1.23 \mathrm{~g}, 77 \%)$ as a white solid.

1-[(1R,4R,6R,7S)-2,5-Dioxaspiro(bicyclo[2.2.1]heptane-3,1'-cyclopropan)-7-hydroxy-4-hydrox ymethyl-6-yl]thymine (15)

To the solution of $\mathbf{1 3}(2.58 \mathrm{~g}, 5.46 \mathrm{mmol})$ in $\operatorname{AcOEt}(50 \mathrm{~mL})$ was added palladium hydroxide 20% on carbon (1.24 g). The reaction flask was degassed a few times with H_{2} and the reaction mixture
was stirred at room temperature for 1 h under H_{2} atmosphere. After completion of reaction, the reaction mixture was filtered, washed by AcOEt and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : $\left.\mathrm{AcOEt}=1: 5\right)$ to afford $\mathbf{1 5}(1.53 \mathrm{~g}, 95 \%)$ and $\mathbf{1 6}$ (70 $\mathrm{mg}, 5 \%$) as white solids.
Compound 15: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 0.70-0.92(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.56$, $3.74(\mathrm{AB}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.1,9.9,12.6,56.8,68.7,71.9,81.0,88.1,89.9,110.7,137.0,151.9$, 166.5; IR (KBr): $3479,3076,1695,1472,1269,1105,1041 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}+25.2$ (c $1.01, \mathrm{MeOH}$); HRMS (MALDI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 319.0901$, Found 319.0882.
Compound 16: ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.96-1.01(\mathrm{~m}, 6 \mathrm{H}), 1.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.29-$ $2.41(\mathrm{~m}, 1 \mathrm{H}), 3.65,3.73(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=5.3,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.5,17.4$, $18.9,32.3,63.6,74.1,75.6,88.5,92.0,111.8,138.9,153.2,166.4$; IR (KBr): 3375, 2968, 1692, 1474, 1279, 1114, $1087 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{30}-25.7$ (c 1.04, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 323.1214$, Found 323.1212.

1-[(1R,4R,6R,7S)-2,5-Dioxaspiro(bicyclo[2.2.1]heptane-3,1'-cyclopropan)-4-\{[bis(4-methoxyph enyl)(phenyl)methoxy]methyl\}-7-hydroxy-6-yl]thymine (17)

To the solution of $\mathbf{1 5}(873 \mathrm{mg}, 2.95 \mathrm{mmol})$ in dry pyridine $(60 \mathrm{~mL})$ was added 4,4 '-dimethoxytrityl chloride $(1.50 \mathrm{~g}, 4.42 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 9 h under N_{2} atmosphere. After addition of water, the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 0.5 \%\right.$ triethylamine in n-hexane : $\mathrm{AcOEt}=1: 1$ to $1: 5)$ to afford $\mathbf{1 7}(1.72 \mathrm{~g}, 97 \%)$ as a white solid.
Compound 17: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.48-0.54(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.96(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $2.18(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16,3.33(\mathrm{AB}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.3,9.6,12.7,55.3,58.0,68.0$, $72.6,79.7,86.8,87.0,88.0,110.6,113.4,127.2,128.1,128.2,130.1,130.2,134.8,135.2,135.4$, $144.4,150.1,158.8,164.3$; IR (KBr): 3430, 2933, 1696, 1509, 1254, 1177, 1053, 829, $757 \mathrm{~cm}^{-1}$;
$[\alpha]_{\mathrm{D}}{ }^{21}-16.2$ (c 1.00, MeOH); HRMS (MALDI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}:$621.2207, Found 621.2208.

1-[(1R,4R,6R,7S)-7-[(2-Cyanoethoxy)(diisopropylamino)phosphinoxy]-2,5-dioxaspiro(bicyclo[

2.2.1]heptane-3,1'-cyclopropan)-4,4'-dimethoxytrityloxymethyl -6-yl]thymine (18)

To the solution of $17(192 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dry acetonitrile (4 mL) was added N, N-diisopropylethylamine $(0.17 \mathrm{~mL}, \quad 0.96 \mathrm{mmol}) \quad$ and 2 -cyanoethyl- N, N-diisopropylphosphoramidochloridite ($0.11 \mathrm{~mL}, 0.48 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring at room temperature for 5 h , the reaction mixture was concentrated and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 0.5 \%\right.$ triethylamine in n-hexane : $\left.\mathrm{AcOEt}=2: 1\right)$ to afford $\mathbf{1 8}$ (222 $\mathrm{mg}, 87 \%$) as a white solid.
Compound 18: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.40-0.44(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.87(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}$, $3 / 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 / 2 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.57(\mathrm{~m}, 3 \mathrm{H})$, $3.63-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, $4.60(\mathrm{~s}, 1 / 2 \mathrm{H}), 4.63(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.87(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.43-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.70(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6$; LRMS $(F A B) \mathrm{m} / \mathrm{z}=799(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (FAB) Calcd. for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{O}_{9} \mathrm{~N}_{4} \mathrm{P} 799.3472$, Found 799.3475.

Figure S1. Compound $2\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S2. Compound $2\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S3. Compound $\mathbf{3}$ (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

Figure S4. Compound $3\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S5. Compound $\mathbf{4}\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Figure S6. Compound $4\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S7. Compound 5 (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

Figure S8. Compound $5\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S9. Compound $6\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S10. Compound $6\left({ }^{13} \mathrm{C}\right.$ NMR, $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

Figure S11. Compound $8\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S12. Compound $\mathbf{8}\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S13. Compound $9\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S14. Compound $9\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$
苟菏

Figure S15. Compound $\mathbf{1 0}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S16. Compound $10\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S17. Compound $\mathbf{1 1}\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$)

Figure S18. Compound $11\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S19. Compound $13\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S20. Compound $13\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S21. Compound $\mathbf{1 4}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$
140621 2C-0-2'C cyclop

Figure S22. Compound $\mathbf{1 4}\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

Figure S23. Compound $\mathbf{1 5}\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right)$
든

Figure S24. Compound $15\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right)$

Figure S25. Compound $16\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right)$

660

Figure S26. Compound $\mathbf{1 6}\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right)$

Figure S27. Compound $\mathbf{1 7}\left({ }^{1} \mathrm{H}\right.$ NMR, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

Figure S28. Compound $17\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Figure S29. Compound $\mathbf{1 8}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Figure S30. Compound $18\left({ }^{31} \mathrm{P}\right.$ NMR, $\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right)$

3. Synthesis, purification and characterization of oligonucleotides

Synthesis of oligonucleotides modified with scpBNA was performed on an Applied Biosystems Expedite ${ }^{\mathrm{TM}} 8909$ Nucleic Acid Synthesis System on $0.2 \mu \mathrm{~mol}$ scale of ON2-ON6 and $1.0 \mu \mathrm{~mol}$ scale of ON14 according to the standard phosphoroamidite protocol and 5-[3,5-bis(trifluoromethyl)-phenyl]- $1 H$-tetrazole as the activator. In the case of $0.2 \mu \mathrm{~mol}$ scale, the coupling time of phosphoramidite 16 was prolonged from 32 seconds to 8 minutes. In the case of $1.0 \mu \mathrm{~mol}$ scale, that was prolonged from 40 seconds to 10 minutes. The synthesis was carried out in trityl on mode and the solid supported oligonucleotides were treated with concentrated ammonium hydroxide at $55^{\circ} \mathrm{C}$ for 12 h . The ON2-ON6 and the ON14 were briefly purified with Sep-Pak ${ }^{\circledR}$ Plus C_{18} Cartridge and Sep-Pak ${ }^{\circledR}$ Plus C_{18} Environmental Cartridge, respectively. The ON2-ON6 and the ON14 were further purified by reverse-phase HPLC with Waters XTerra MS $\mathrm{C}_{18} 2.5 \mu \mathrm{~m}$ $(10 \times 50 \mathrm{~mm})$ columns with a linear gradient of MeCN (6 to 12% over 30 min) in 0.1 M triethylammonium acetate buffer (pH 7.0). The purity of the oligonucleotides were analyzed by reverse-phase HPLC with Waters XTerra MS C $\mathrm{C}_{18} 2.5 \mu \mathrm{~m}(4.6 \times 50 \mathrm{~mm})$ columns and characterized by MALDI-TOF mass spectrometer.

Table S1. Yields and MALDI-TOF MS data for the oligonucleotides.

oligonucleotides ${ }^{\text {a }}$		Yield (\%)	MALDI-TOF MS	
			calcd [$\mathrm{M}-\mathrm{H}]^{-}$	found [$\mathrm{M}-\mathrm{H}]^{-}$
5'-d(GCGTTXTTTGCT)-3'	ON2	26	3686.4	3686.8
5'-d(GCGTTXXTTGCT)-3'	ON3	12	3740.5	3741.0
5'd(GCGTTXXXTGCT)-3'	ON4	8	3794.5	3794.6
5'd(GCGTTXTXTGCT)-3'	ON5	36	3740.5	3740.3
$5^{\prime}-\mathrm{d}\left(\right.$ GCGXTXTXTGCT) ${ }^{\prime} 3^{\prime}$	ON6	41	3794.5	3794.6
$5{ }^{1}-\mathrm{d}\left(\right.$ TTTTTTTTX) ${ }^{\text {a }}$	ON14	23	2728.8	2728.5

[a] $\underline{\mathbf{X}}=\operatorname{scpBNA}$

Figure S31. MALDI-TOF MS spectra and HPLC charts of all new oligonucleotides. HPLC (ON2)

MALDI-TOF MS (ON2)

HPLC (ON3)

MALDI-TOF MS (ON3)

HPLC (ON4)

MALDI-TOF MS (ON4)

HPLC (ON5)

MALDI-TOF MS (ON5)

HPLC (ON6)

MALDI-TOF MS (ON6)

HPLC (ON14)

MALDI-TOF MS (ON14)

4. UV melting experiments

The UV melting experiments were carried out on SHIMADZU UV-1650PC and SHIMADZU UV-1800 spectrometers equipped with a T_{m} analysis accessory. Equimolecular amounts of the target RNA or DNA strand and oligonucleotide were dissolved in buffer (10 mM phosphate buffer at pH 7.2 containing 100 mM NaCl) to give final strand concentration of $4 \mu \mathrm{M}$. The samples were annealed by heating at $100^{\circ} \mathrm{C}$ followed by slow cooling to room temperature. The melting profile was recorded at 260 nm from 5 to $90^{\circ} \mathrm{C}$ at a scan rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$. The T_{m} value was calculated as the temperature of the half-dissociation of the formed duplexes based on the first derivative of the melting curve.

GCGXTXTXTGCT

Figure S32. UV melting curves for the duplexes formed between representative oligonucleotides and ssRNA. The sequences of oligonucleotides and ssRNA are $5^{\prime}-\mathrm{d}\left(\right.$ GCGXTXTXTGCT) -3^{\prime} and 5'-d(AGCAAAAAACGC)-3', respectively.

GCGXTXTXTGCT

Figure S33. UV melting curves for the duplexes formed between representative oligonucleotides and ssDNA. The sequences of oligonucleotides and ssDNA are $5^{\prime}-\mathrm{d}\left(\right.$ GCGXTXTXTGCT$\left.^{\prime}\right)-3^{\prime}$ and

5'-r(AGCAAAAAACGC)-3', respectively.

5. Nuclease resistance study

The sample solutions were prepared by dissolving 0.56 nmol of oligonucleotides in 50 mM Tris- HCl buffer (pH 8.0) containing $10 \mathrm{mM} \mathrm{MgCl} \mathrm{Mg}_{2}$. In each sample solutions, $0.14 \mu \mathrm{~g}$ CAVP was added and the cleavage reaction was carried out at $37^{\circ} \mathrm{C}$. A portion of each reaction mixture was removed at time intervals and heated at $90^{\circ} \mathrm{C}$ for 2.5 min to deactivate the nuclease. Aliquots of the timed samples were analyzed by reverse-phase HPLC with Waters XBridge ${ }^{\mathrm{TM}}$ OST C $_{18} 2.5 \mu \mathrm{~g}$ (4.6 $\times 50 \mathrm{~mm}$) columns to evaluate the amount of intact oligonucleotides remaining. The percentage of intact oligonucleotide in each sample was calculated and plotted against the digestion time to obtain a degradation curve.

Natural (ON12)

Figure S34. Nuclease resistance of 5^{\prime}-(TTTTTTTTX)-3' against Crotalus admanteus venom phosphodiesterase (CAVP). Column: Waters XBridge ${ }^{\mathrm{TM}} \mathrm{OST}_{\mathrm{C}}^{18} 2.5 \mu \mathrm{~g}(4.6 \times 50 \mathrm{~mm})$. Mobile Phase: Linear gradient of MeCN (6 to 12% over 20 min) in 0.1 M triethylammonium acetate $(\mathrm{pH}$ 7.0). Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$. Detection: Absorbance at 260 nm .

$2^{\prime}, 4^{\prime}$-BNA/LNA

	$2^{\prime}, 4^{\prime}-$ BNA/LNA	scpBNA
$v_{0}:$	-0.71°	-1.74°
$v_{1}:$	-35.74°	-34.78°
$v_{2}:$	54.45°	53.92°
$v_{3}:$	-56.87°	-57.17°
$v_{4}:$	37.30°	37.72°
$v_{\max }:$	57.74°	57.54°
$P:$	19.44°	20.44°
O2'-C6'-C4' $^{\circ}:$	102.96°	105.56°
C2'-O2'-C6': $^{\circ}$	104.29°	103.31°
$\delta:$	62.13°	61.86°

Figure S35. Energy-minimized structures, endocyclic sugar torsion angles $v_{0^{-}} v_{4}$, maximum torsion angle $v_{\text {max }}$, pseudorotation phase angle P, bond angles of $\mathrm{O} 2^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 4$ ' and $\mathrm{C} 2^{\prime}-\mathrm{O} 2^{\prime}-\mathrm{C} 6^{\prime}$ and phosphate backbone torsion angle δ of $2^{\prime}, 4^{\prime}-\mathrm{BNA} / \mathrm{LNA}$ and scpBNA. Theoretical calculation was carried out using HF/6-31G** basis set (Spartan ' 10 , Wavefunction, Inc). P and $v_{\max }$ are calculated as follows: $\tan P=\left(v_{4}+v_{1}-v_{3}-v_{0}\right) /\left(2 \cdot v_{2} \cdot\left(\sin 36^{\circ}+\sin 72^{\circ}\right)\right) ; v_{\max }=$ $v_{2} / \cos P$.
7. Mismatch discrimination and thermodynamic data of scpBNA

Table S2. T_{m} values $\left({ }^{\circ} \mathrm{C}\right)$ of duplexes formed between ONs and ssRNA with or without one base mismatch ${ }^{\text {a }}$

	$T_{\mathrm{m}}\left(\Delta T_{\mathrm{m}}=T_{\mathrm{m}}[\right.$ mismatch $]-T_{\mathrm{m}}[$ match $\left.]\right)\left({ }^{\circ} \mathrm{C}\right)$			
oligonucleotides	$\underline{\underline{Z}}=\mathrm{A}$	G	C	U
ON1	48^{b}	$43(-5)^{\mathrm{b}}$	$32(-16)^{\mathrm{b}}$	$33(-15)^{\mathrm{b}}$
ON2	53	$47(-6)$	$35(-18)$	$38(-15)$
ON7	52	$47(-5)$	$36(-16)$	$39(-13)$

[a] Conditions: 10 mM phosphate buffer (pH 7.2), 100 mM NaCl , and $4 \mu \mathrm{M}$ each oligonucleotide. The T_{m} values reflect the average of at least three measurements. The sequences of oligonucleotides are 5^{\prime}-d(GCGTTXTTTGCT) ${ }^{3}$, $\mathbf{(X}=$ natural thymidine ($\mathbf{O N} 1$), scpBNA-T (ON2), and $2^{\prime}, 4^{\prime}-B N A / L N A-T(O N 7)$). The sequence of ssRNA is $5^{\prime}-r(A G C A A A Z A A C G C)-3^{\prime}$. [b] Reference S1.

Table S3. T_{m} values $\left({ }^{\circ} \mathrm{C}\right)$ of duplexes formed between ONs and ssDNA with or without one base mismatch ${ }^{\text {a }}$

	$T_{\mathrm{m}}\left(\Delta T_{\mathrm{m}}=T_{\mathrm{m}}\right.$ [mismatch] $-T_{\mathrm{m}}[$ match $\left.]\right)\left({ }^{\circ} \mathrm{C}\right)$			
oligonucleotides	$\underline{\underline{Z}}=\mathrm{A}$	G	C	T
ON1	52^{b}	$41(-11)^{\mathrm{b}}$	$37(-15)^{\mathrm{b}}$	$38(-14)^{\mathrm{b}}$
ON2	53	$43(-10)$	$38(-15)$	$40(-13)$
ON7	53	$42(-11)$	$38(-15)$	$41(-12)$

[a] Conditions: 10 mM phosphate buffer (pH 7.2), 100 mM NaCl , and $4 \mu \mathrm{M}$ each oligonucleotide. The T_{m} values reflect the average of at least three measurements. The sequences of oligonucleotides are 5^{\prime} 'd(GCGTTXTTTGCT)-3' ($\mathbf{X}=$ natural thymidine (ON1), scpBNA-T (ON2), and 2', 4'-BNA/LNA-T (ON7)). The sequence of ssDNA is 5^{\prime}-d(AGCAAAZAACGC)-3'. [b] Reference S 1 .

Table S4. Thermodynamic data of duplexes formed between ONs and ssRNA or ssDNA ${ }^{\text {a,b }}$

duplexes	ΔH° $(\mathrm{kcal} \mathrm{mol}$ 1	ΔS° $\left(\mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	$\Delta G^{\circ}{ }^{310 \mathrm{~K}}$ $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
ON1/ssRNA	-98.4^{c}	-282^{c}	-10.9^{c}
ON2/ssRNA	-92.0	-257	-12.3
ON7/ssRNA	-87.6^{c}	-244^{c}	-120^{c}
ON1/ssDNA	-84.6^{c}	-235^{c}	-116^{c}
ON2/ssDNA	-92.0	-257	-12.4
ON7/ssDNA	-83.2^{c}	-230^{c}	-11.9^{c}

[a] Conditions: 10 mM phosphate buffer (pH 7.2) , 100 mM NaCl , and $0.89-10.9 \mu \mathrm{M}$ each oligonucleotide (six data points). The T_{m} values reflect the average of at least three measurements. The sequences of oligonucleotides are $5^{\prime}-\mathrm{d}($ GCGTTXTTTGCT $)-3^{\prime}$ ($\mathbf{X}=$ natural thymidine (ON1), scpBNA-T (ON2), and $2^{\prime}, 4^{\prime}$-BNA/LNA-T (ON7)). The sequences of ssRNA and ssDNA are $5^{\prime}-\mathrm{r}(\mathrm{AGCAAAAAACGC})-3^{\prime}$ and 5^{\prime} 'd(AGCAAAAAACGC)-3', respectively. [b] These values are calculated by Van't Hoff plots with six data points. See also Figure S36. [c] Reference S2.

Figure S36. Van't Hoff plots of T_{m} values of duplexes formed between ON2 and ssRNA or ssDNA.

8. Supplementary references

S1 Y. Mitsuoka, T. Kodama, R. Ohnishi, Y. Hari, T. Imanishi, S. Obika, Nucleic Acids Res., 2009, 37, 1225-1238.

S2 K. Morihiro, T. Kodama, Kentefu, Y. Moai, R. N. Veedu, S. Obika, Angew. Chem. Int. Ed. 2013, 52, 5074-5078.

