Supporting Information

Mo-doped TiNb₂O₇ anode for lithium-ion batteries with high rate capability due to charge redistribution

Hannah Song^a and Yong-Tae Kim*^a

Department of Energy System, Pusan National University, Busan 609-735, Republic of Korea.

Experimental

Synthesis: TNO (TiNb₂O₇) and Mo-TNO (Ti_{0.95}Mo_{0.05}Nb₂O₇) were synthesized by a conventional sol-gel method. Starting reagents Ti(OC₄H₉)₄ and Nb(OC₂H₅)₅ (with a 1:2 and 0.95:2 molar ratio, respectively) were dissolved in ethanol and acetic acid with vigorous stirring for 5 h. After stirring, the solution was oven-dried overnight. The obtained powder was mixed with MoO₃ using a ball-mill and the ground powders were heat-treated at 1000 °C for 5 h in air.

Characterization: The phase compositions and crystal structures of the synthesized powders were characterized by XRD between 10 and 90° (2 θ) using a D8 Discover with a 45 kV acceleration voltage and 0.650 mA tube current. Scanning electron microscope (SEM) images were obtained using a HITACHI S-4100 with an acceleration voltage of 5 kV. The electronic conductivities and mobilities were measured using a Hall effect measurement system (HMS 5000, Ecopia) using the van der Pauw method (i.e., four-point probe measurement) with sample powders pressed into pellets at a 10 ton pressure. The XPS spectra were recorded on a PHI 5000 VersaProbe system using a monochromated Al Kα X-ray beam. Charge correction was performed using the C 1s peak (284.6 eV) as the reference; a Shirley background subtraction was applied to all XPS data. All peaks were fitted with a Gaussian-Lorentzian function to deconvolute overlapping peaks. The spin polarized PDOS calculations were performed using the CASTEP code.¹ The occupied states of the electrons were calculated using the Perdew-Wang 1991 (PW91) functional, based on the generalized gradient approximation (GGA).² To improve the GGA approach, the intra-atomic Coulomb interaction was modified through the LDA+U formalism, and the smearing factor was set to 0.02 eV. The supercell with two unit cells arranged along the b-direction (120 atoms) is employed in our calculations. 12 Ti atoms, 24 Nb atoms, and 84 O atoms were employed in the calculation for TNO. One of the

Ti atoms situated in 4i site was substituted with Mo atom in the calculation for Mo-TNO (11 Ti atoms, 1 Mo atom, 24 Nb atoms, and 84 O atoms).

Battery Tests: The sample electrodes were prepared with the active material, acetylene black, and polyvinyl difluoride (PVDF), mixed at a weight ratio of 70:20:10. The slurry was coated on a Cu foil and vacuum-dried at 75 °C for 24 h. A microporous polyethylene membrane was used as a separator, and 1 M LiPF₆ in ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 v/v) was used as the electrolyte. The coin cells (CR2032) were assembled with a Li foil on a Cu mesh as the counter and reference electrode in a glove-box filled with Ar gas. The charge and discharge tests were carried out on a standard battery cycler (WonATech) at different C-rates in the potential range of 1.0–3.0 V (vs Li⁺/Li). Full cell tests were performed with the LiMn₂O₄ (Sigma Aldrich) cathode in the potential range of 1.6-2.8 V at various C-rates (1C is assumed as 150 mAh/g as previously reported).³ The diffusion coefficients of the Li ions in all samples were measured using a galvanostatic intermittent titration technique (GITT).⁴ EIS measurements were also carried out using the VMP3 (Biologic science instruments) over the half cells. The frequency range was 100 MHz to 1Hz with an amplitude of 10 mV.

References

- 1. M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys. Condens. Matter, 2002, 14, 2717.
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, 46, 6671-6687.
- 3. S. Jayaraman, V. Aravindan, P. Suresh Kumar, W. Chui Ling, S. Ramakrishna and S. Madhavi, *ACS Applied Materials & Interfaces*, 2014, DOI: 10.1021/am501464d.
- 4. W. Weppner and R. A. Huggins, J. Electrochem. Soc., 1977, 124, 1569-1578.

Figure S1. (a) TNO unit cell, (b) XRD patterns (observed: red lines, calculated: black lines, difference: blue lines), and Rietveld refinement profiles of the TNO and Mo-TNO, and (c) SEM images of the TNO and Mo-TNO.

Figure S2. Sample colour of TNO and Mo-TNO

Figure S3. (a) Electronic conductivity (red bars), carrier density (blue bars), and mobility (black bars) of TNO and Mo-TNO. (b) Diffusion coefficients of TNO (black squares) and Mo-TNO (red squares). (c) Nyquist plots of TNO (black squares) and Mo-TNO (red squares) over the frequency range 100 MHz to 0.01 Hz.

Figure S4. (a) Representative galvanostatic charge-discharge curves at 1C and (b) rate capabilities of full-cells.

Sample	TNO	Mo-TNO
a / Å	20.350(0)	20.383(0)
b / Å	3.799(0)	3.802(1)
c / Å	11.891(1)	11.907(0)
α / °	90	90
β / °	120.27(1)	120.25(0)
γ / °	90	90
R _{wp} / %	6.68	6.50
GOF	1.5	1.4

Table S1. Lattice Parameters obtained by Rietveld Refinement