Supporting Information

Tunnel-structured $Na_{0.54}Mn_{0.50}Ti_{0.51}O_2$ and $Na_{0.54}Mn_{0.50}Ti_{0.51}O_2/C$ nanorods as advanced cathode materials for sodium-ion batteries

Xiaolei Jiang ^[a], Shuo Liu ^[a], Huayun Xu ^[a], Liang Chen ^[a], Jian Yang *^[a], and Yitai Qian ^[a, b]

^[a] School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

^[b] Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P.R. China

Experimental Section

Synthesis Method

 $Na_{0.54}Mn_{0.50}Ti_{0.51}O_2$ nanorods were synthesized by a modified molten salt method. First, appropriate amounts of NaCH₃COO, Mn(CH₃COOH)₂, and TiO₂ (Sinopharm, AR) were dissolved in droplets of deionized water and added to a mixture of NaCl-KCl (molar ratio = 0.59:0.41, total mass = 1 g). The mixture was mixed in a mortar, transferred to an alumina crucible, and dried at 180 °C for 3 h. The powders were then ground for another 20 min, then heated to 800 °C at a rate of 2 °C min⁻¹ in air. After stayed at 800 °C for 10 h, the powders were cooled to room temperature at a rate of 3 °C min⁻¹. The obtained product was thoroughly washed with deionized water to remove the salts, dried at 60 °C in a vacuum oven overnight. The obtained sample was named as NMTO. For the carbon coating experiment, the power was mixed with 50 wt% citric acid by ball-milling and heated treated at 400 °C for 4 h under a flow of Ar(95 %)/H₂(5 %). The final black powder was Na_{0.54}Mn_{0.50}Ti_{0.51}O ₂/C composite, marked as NMTO/C. All the powers were collected for structural characterization and electrochemical measurements. The specific surface areas of NMTO and NMTO/C are 16.3 and 22.0 m² g⁻¹, based on Brunauer-Emmett-Teller (BET) model.

Structural Characterization

X-ray powder diffraction (XRD) pattern of the product was recorded on a Bruker D8 advance X-ray diffractometer with Cu K α line as a radiation (λ =1.5418 Å). SEM, TEM and HRTEM images were achieved from a scanning electron microscope (JSM-7600F, Japan), a transmission electron microscope (JEM-1011, Japan) and an analytic transmission electron microscope (JEOL-2100, Japan). The molar ratio of Na, Mn and Ti was determined by inductively coupled plasma-atomic emission spectroscopy (ICP –AES, IRIS Intrepid II XSP, USA). The carbon content of NMTO/C was obtained from a Mettler Toledo TGA/SDTA851 thermal analyzer. Raman spectrum was recorded by a NEXUS 670 FT-IR Raman spectrometer with an excitation wavelength of 632 nm.

Electrochemical measurements

The working electrode was prepared by a recipe of 10 wt.% polyvinylidene fluoride (PVDF), 20 wt.% acetylene black and 70 wt.% active material (NMTO and NMTO/C) in N-methylpyrrolidinone (NMP). The slurry based on the above recipe was bladed on aluminum foil and dried in vacuum at 80 °C. The resulting film was roll-pressed and punched into the discs with a diameter of 12 mm. These discs typically have active material of ~1.8 mg cm⁻². The tap densities of NMTO and NMTO/C are 1.82 and 1.79 g cm⁻³, respectively. The discs were assembled together with a Na metal foil as the counter electrode, a glass fiber as the separator and 1 M NaClO₄ in a mixture of EC-DEC (1:1 volume) as the electrolyte in an argon-filled glove box. Cyclic voltammograms (CV) was acquired from an LK2005A electrochemical workstation between 2 and 4.2 V versus Na⁺/Na at a scan rate of 0.1 mV s⁻¹. As to C-rate, 140 mA g⁻¹ is assumed to be 1 C.

Figure S1. The CV curves of NMTO nanorods between 2.0-4.7 V at a scan rate of 0.1 mV s⁻¹.

Figure S2. The TEM image of NMTO/C nanorods.

Figure S3. (A) Raman spectrum and (B) TG curve of NMTO/C nanorods. TG measurement was carried out at a heating rate of 10 °C min⁻¹ in air.

Fig. S4 CV curves of $Na_{0.54}Mn_{0.50}Ti_{0.51}O_2/C$.

Table 1. Lattice parameters of $Na_{0.54}Mn_{0.50}Ti_{0.51}O_2$ Nanorods after Rietveld
refinement

Phase	Na₄Mn₄Ti₅O ₁₈	
Crystal system	Orthorhombic	
Space group	Pbam (55)	
Lattice constants:		
a ()	9.1817(4)	
b ()	26.4451(5)	
c ()	2.8746(7)	
Cell volume (3)	698.01	
R _B	3.92%	
R _{wp}	5.14%	
X ²	1.13	