Supporting Information

Palladium-Catalyzed Aerobic Oxidative Double Allylic C-H Oxygenation of Alkenes: A Novel and Straightforward Route to α,β-Unsaturated Esters

Wanfei Yang,^{*a*} Huoji Chen,^{*a*} Jianxiao Li,^{*a*} Chunsheng Li,^{*a*} Wanqing Wu^{*a*} and Huanfeng Jiang*,^{*a*,*b*}

^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

Fax: (+86)20-8711-2906; E-mail: jianghf@scut.edu.cn

^{b.} State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

List of Contents

A. General Methods	S2
B. General Procedures	S3
C. Characterization Data for All Prepared Compounds	S7
D. References	S15
E. NMR Spectra	S16

A. General Methods

¹H NMR spectra were recorded in CDCl₃ at 400 MHz, ¹⁹F NMR spectra were recorded in CDCl₃ at 376 MHz and ¹³C NMR spectra were recorded in CDCl₃ at 100 MHz, respectively, and the chemical shifts (d) were referenced to TMS. GC–MS data were obtained using electron ionization. HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). IR spectra were obtained as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Brucker Vector 22 spectrometer. TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF₂₅₄), and visualization was effected at 254 nm.

Substrates

Alkenes substrates **1a**, **1b**, **1p**, **1s**, **1t** alcohols and phenol were commercial available reagents. Alkenes **1c**, **1d-h**, **1m-o**, **1q**, **1r**, **1u** were synthesized through Grignard reaction. Other alkene substrates were synthesized according to the following procedures **3** and **4**.

B. General Procedures

Grignard Reaction for the Synthesis of Alkenes 1

$$\mathbf{R} - \mathbf{Br} \xrightarrow{\text{Mg (1.5 equiv)}}_{\text{THF(dry), I_2}} \mathbf{R} - \mathbf{MgBr} \xrightarrow{(1)}_{(2)} \mathbf{Br} (1 \text{ equiv}) \mathbf{R} \longrightarrow \mathbf{R}$$

$$\mathbf{R} - \mathbf{R} - \mathbf{MgBr} \xrightarrow{(1)}_{(2)} \mathbf{NH}_4 \text{Cl(aq.)} \mathbf{R} \longrightarrow \mathbf{R}$$

Aryl bromide (5 mmol) was reacted with magnesium (1.5 equiv.) in 5 mL THF using I_2 as initiator at room temperature. After the reaction was finished, the combined organics was added to the THF solution of allyl bromide with magnetic stirring. After 1 h, NH₄Cl (aq.) was added to the reaction mixture, washing with water and then concentrated for further purification.

Typical Reaction Procedure for the Synthesis of Alkene 1j

p-Toluenesulfonyl chloride (1.9g, 10 mmol) and 2-allylphenol (10 mmol) were dissolved in 15 mL dichloromethane. DABCO (1.35g, 12 mmol) in 5 mL dichloromethane was added, resulting in rapid warming and precipitate formation. After completion, 3 mL of 1M NaOH was added and the reaction was diluted into 100 mL ethyl acetate. The organic layer was extracted with 5% aqueous NaHCO₃ (3×50 mL), 0.1M HCl (3×50 mL), water (25 mL), and brine (25 mL). The solvent was dried over MgSO₄ and removed in vacuum.

Typical Reaction Procedure for the Synthesis of Alkenes 1k and 1l

Benzyl bromide or allyl bromide (10 mmol) and 2-allylphenol (10 mmol) were dissolved in 15 mL N,N-dimethylformamide (DMF). K₂CO₃ (1.37g, 10 mmol) in 5 mL DMF was added, stirred at 50 °C overnight. After cooling, the reaction was washed with water (150 mL) and the aqueous phase was separated and extracted with diethyl ether (3 × 10 mL). The combined organic phases were washed with NaOH (2 M, 50 mL) and dried over MgSO₄. The mixture was filtered and the solvent was removed in vacuum.

Palladium-Catalyzed Regioselective Double Oxygenation of Allylic C-H Bonds

(1) General procedure for the reaction condition screening (Table 1). In 25 mL Schlenk tube, allylbenzene 1a (0.5 mmol), *n*-butanol 2a (0.5 mL), catalyst (0.05 mmol) and H_2O (1.5 equiv, 14 mg)

were combined in 1.5 mL of solvent. The reaction tubes with different Pd^{II}-catalysts or solvents were placed into a dioxygen atmosphere (1 atm) and stirred for 24 h. After the reactions were finished, the reaction mixture was added diphenyl ether (0.5 mL of a known concentration solution in ethyl acetate). The oxidative double oxygenation product was evaluated by GC relative to an internal standard. The results were summarized in Table 1.

(2) Typical procedure for Pd-catalyzed double allylic oxygenation of various alkenes to form α,β -unsaturated esters (Table 2): Pd(OAc)₂ (11.0 mg) was added to a 25 mL Schlenk tube equipped with a magnetic stirred bar, and a balloon filled with O₂ (1 atm) was connected to the Schlenk tube through the side arm, and purged three times. An alkene 1 (0.5 mmol), *n*-butanol 2a (0.5 mL), DMA (1.5 mL) and H₂O (1.5 equiv, 14 mg) were then injected into the tube by syringe. The reaction was then heated to 100 °C and stirred for 24 h. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over MgSO₄, filtered, and concentrated. Purification of the residue on a preparative TLC afforded the desired product.

(3) Typical procedure for Pd-catalyzed double allylic oxygenation of allylbenzene with various alcohols or phenol to form α,β -unsaturated esters (Table 3): Pd(OAc)₂ (11.0 mg) was added to a 25 mL schlenk tube equipped with a magnetic stirred bar, and a balloon filled with O₂ (1 atm) was connected to the Schlenk tube through the side arm, and purged three times. Allylbenzene **1a** (0.5 mmol), alcohol **2** (3 mmol), DMA (1.5 mL) and H₂O (1.5 equiv., 14mg) were then injected into the tube by syringe. The reaction was then heated to 100 °C and stirred for 24 h. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over MgSO₄, filtered, and concentrated. Purification of the residue on a preparative TLC afforded the desired product.

(4) Typical procedure for Pd-catalyzed intramolecular double allylic oxygenation of 2allylphenol to form 2*H*-chromen-2-one: In a glass tube, 2-allylphenol 1s (0.5 mmol) and $Pd(OAc)_2$ (0.05 mmol) were combined in 1.5 mL of solvent. The reaction tubes were placed into a dioxygen atmosphere (1 atm) and stirred for 12 h. After the reactions were completed, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over MgSO₄, filtered, and concentrated. Purification of the residue on a preparative TLC afforded the desired products (3s).

(5) Typical procedure for applications of the novel synthetic sequence to benzofuran-2carboxylate: $Pd(OAc)_2$ (11.0 mg, 0.015 mmol) was added to a 25 mL Schlenk tube equipped with a magnetic stirred bar, and a balloon filled with O_2 (1 atm) was connected to the Schlenk tube through the side arm, and purged three times. Alkene **1t** (0.5 mmol), alcohol **2** (0.5 mL), DMA (1.5 mL) and H_2O (1.5 equiv, 14 mg) were then injected into the tube by syringe. The reaction was then heated to 100 °C and stirred for 24 h. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H_2O and brine, dried over MgSO₄, filtered, and concentrated. Purification of the residue on a preparative TLC afforded the desired product.

Control Studies: Support Experiments for the Proposed Mechanism of the Pd-

Catalyzed Double Oxygenation Reaction to α,β -Unsaturated Esters

Oxidation-Controlled Synthesis of β-Unsaturated Ethers

Table 4. Oxidation-controlled synthesis of β -unsaturated ether in anhydrous DMSO.^{*a*}

^{*a*} Conditions: 1 (0.5 mmol), 2**a** (0.5 mL), O_2 balloon, DMSO (1.5 mL), 24 h, yield determined by GC using diphenyl ether as the internal standard.

General procedure for the reaction to β -unsaturated ethers: Pd(OAc)₂ (11.0 mg) was added to a 25 mL Schlenk tube equipped with a magnetic stirred bar, and a balloon filled with O₂ (1 atm) was connected to the Schlenk tube through the side arm, and purged three times. Alkene 1 (0.5 mmol), *n*-butanol 2a (0.5 mL) and anhydrous DMSO (1.5 mL) were then injected into the tube by syringe. The

reaction was then heated and stirred for 24 h. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over MgSO₄, filtered, and concentrated. Purification of the residue on a preparative TLC afforded the desired product.

C. Characterization Data for All Prepared Compounds:

Butyl cinnamate (3aa^[1]) Light yellow liquid (0.086 g, 84%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 16.0 Hz, 1H), 7.53 (dd, J = 6.1, 2.5 Hz, 2H), 7.42 - 7.35 (m, 3H), 6.44 (d, J = 16.1 Hz, 1H), 4.21 (t, J = 6.5 Hz, 2H), 1.73 - 1.65 (m, 2H), 1.49 - 1.39 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 144.6, 134.5, 130.2, 128.9, 128.1, 118.3, 64.4, 30.8, 19.2, 13.8; IR (KBr, cm⁻¹) v 2958, 2925, 1716, 1639, 1270, 1172; MS (EI): m/z (%) 204 (M⁺), 148, 131.

(*E*)-Butyl 3-(4-methoxyphenyl)acrylate (3ba) Yellow liquid (0.102 g, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.20 (t, J = 6.7 Hz, 2H), 3.83 (s, 3H), 1.72 - 1.64 (m, 2H), 1.44 (dq, J = 14.6, 7.3 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 161.3, 144.2, 129.7, 127.2, 115.8, 114.3, 64.3, 55.4, 30.8, 19.2, 13.8; IR (KBr, cm⁻¹) ν 2958, 2929, 1710, 1605, 1253, 1168; HRMS (ESI) calcd for C₁₄H₁₈O₃ [M+H]⁺: 235.1329 found: 235.1332.

(*E*)-Butyl 3-([1,1'-biphenyl]-4-yl)acrylate (3ca^[2]) Yellow liquid (0.123 g, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 16.2 Hz, 1H), 7.64 (s, 7H), 7.49 (t, *J* = 7.5 Hz, 3H), 7.40 (t, *J* = 7.3 Hz, 1H), δ 6.51 (d, *J* = 16.5 Hz, 1H), 4.26 (t, *J* = 6.5 Hz, 2H), 1.78 - 1.70 (m, 2H), 1.48 (dt, *J* = 14.5, 7.3 Hz, 2H), 1.01 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 144.1, 143.0, 140.2, 133.5, 128.9, 128.6, 127.9, 127.5, 127.1, 118.2, 64.5, 30.8, 19.2, 13.8; IR (KBr, cm⁻¹) *v* 2958, 2928, 1711, 1634, 1266, 1171; MS (EI): m/z (%) 280 (M⁺), 224, 207.

(*E*)-Butyl 3-(4-(*tert*-butyl)phenyl)acrylate (3da^[3]) Yellow liquid (0.113 g, 87%); ¹H NMR (400 MHz, CDCl3) δ 7.70 (d, *J* = 15.9 Hz, 1H), 7.50 (d, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 7.7 Hz, 2H), 6.44 (d, *J* = 15.9 Hz, 1H), 4.23 (t, *J* = 6.5 Hz, 2H), 1.71 (dd, *J* = 13.4, 6.6 Hz, 1H), 1.48 (dt, *J* = 15.1, 7.0 Hz, 2H), 1.35 (s, 2H), 0.99 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 167.3, 153.7, 144.5, 131.7, 127.9,

125.9, 117.4, 64.4, 34.9, 31.2, 30.8, 19.2, 13.8; IR (KBr, cm⁻¹) v 2961, 2870, 1715, 1636, 1268, 1171; MS (EI): m/z (%) 260 (M⁺), 245, 204.

(*E*)-Butyl 3-(*p*-tolyl)acrylate (3ea) Light yellow liquid (0.089 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 6.42 (d, *J* = 15.8 Hz, 1H), 4.23 (t, *J* = 6.6 Hz, 2H), 2.40 (s, 3H), 1.76 - 1.68 (m, 2H), 1.47 (dq, *J* = 14.6, 7.4 Hz, 2H), 0.99 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 144.6, 129.6, 129.3, 128.9, 128.1, 117.2, 64.4, 30.8, 21. 5, 19.2, 13.8; IR (KBr, cm⁻¹) ν 2987, 1744, 1376, 1243, 1409, 916, 738; HRMS (ESI) calcd for C₁₄H₁₈NaO₂[M+Na]⁺: 241.1199, found: 241.1195.

(*E*)-Butyl 3-(*m*-tolyl)acrylate (3fa) Light yellow liquid (0.086 g, 79%); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 16.0 Hz, 1H), 7.27 (m, 1H), 7.19 (d, J = 4.1 Hz, 2H), 7.12 (d, J = 6.7 Hz, 1H), 6.36 (d, J = 16.2 Hz, 1H), 4.14 (t, J = 6.6 Hz, 2H), 2.30 (s, 3H), 1.66 - 1.58 (m, 2H), 1.36 (dt, J = 14.5, 7.4 Hz, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 144.7, 138.5, 134.5, 131.0, 128.8, 128.7, 125.2, 118.1, 64.4, 30.8, 21.3, 19.2, 13.7; IR (KBr, cm⁻¹) v 2986, 1742, 1375, 1243, 1049, 915, 736; HRMS (ESI) calcd for C₁₄H₁₈NaO₂[M+Na]⁺: 241.1199, found: 241.1199.

(*E*)-Butyl 3-(3,5-dimethylphenyl)acrylate (3ga) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 16.0 Hz, 1H), 7.14 (s, 2H), 7.01 (s, 1H), 6.41 (d, J = 16.1 Hz, 1H), 4.20 (t, J = 6.6 Hz, 2H), 2.32(s, 6H), 1.72 - 1.64 (m, 2H), 1.49 - 1.38 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 144.9, 138.4, 134.4, 132.0, 125.9, 117.9, 64.3, 30.8, 21.2, 19.2, 13.8; IR (KBr, cm⁻¹) v 2960, 2927, 1715, 1637, 1254, 1165; HRMS (ESI) calcd for C₁₄H₁₈ Na O₂ [M+Na]⁺: 235.1329 found: 235.1332.

(*E*)-Butyl 3-(4-chlorophenyl)acrylate (3ha) Yellow liquid (0.068 g, 57%); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 4.21 (t, J = 6.7 Hz, 2H), 1.72 - 1.65 (m, 2H), 1.44 (dq, J = 14.7, 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 143.1, 136.1, 133.0, 129.2, 129.2, 118.9, 64.6, 30.7, 19.2, 13.7; IR (KBr, cm⁻¹) v 2925, 1714, 1639, 1494, 1312, 1266, 1173; HRMS (ESI) calcd for C₁₃H₁₅ClNaO₂[M+Na]⁺: 361.0653, found: 361.0652.

(*E*)-Ethyl 4-(3-butoxy-3-oxoprop-1-en-1-yl)benzoate (3ia^[4]) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 16.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 6.54 (d, J = 16.0 Hz, 1H), 4.41 (dd, J = 14.2, 7.1 Hz, 2H), 4.25 (t, J = 6.6 Hz, 2H), 1.76 - 1.67 (m, 2H), 1.52 - 1.40 (m, 5H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.0, 143.2, 138.6, 131.7, 130.1, 127.8, 120.6, 64.7, 61.2, 30.74 (s, 1H), 19.2, 14.3, 13.7; IR (KBr, cm⁻¹) v 2987, 1746, 1375, 1243, 1172; MS (EI): m/z (%) 276 (M⁺), 131, 103.

(*E*)-Butyl 3-(2-(tosyloxy)phenyl)acrylate (3ja) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.7 Hz, 2H), 7.50 (dd, J = 11.8, 3.9 Hz, 2H), 7.43 - 7.33 (m, 3H), 7.27 (d, J = 8.3 Hz, 2H), 6.14 (d, J = 16.1 Hz, 1H), 4.19 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H), 1.75 - 1.66 (m, 2H), 1.51 - 1.41 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 147.8, 145.7, 137.1, 131.9, 131.1, 130.1, 129.9, 128.6, 127.5, 127.4, 124.0, 120.4, 64.5, 30.8, 21.6, 19.2, 13.7; IR (KBr, cm⁻¹) ν 2963, 1740, 1600, 1376, 1244, 1175; HRMS (ESI) calcd for C₂₀H₂₂NaO₅S [M+Na]⁺: 397.1080, found: 397.1082.

(*E*)-Butyl 3-(2-(benzyloxy)phenyl)acrylate (3ka) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 16.2 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.45 - 7.35 (m, 4H), 7.30 (dd, J = 15.9, 7.8 Hz, 2H), 6.96 (t, J = 8.5 Hz, 2H), 6.53 (d, J = 16.2 Hz, 1H), 5.15 (s, 2H), 4.19 (t, J = 6.6 Hz, 2H), 1.72 - 1.63 (m, 2H), 1.48 - 1.38 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 157.4, 139.8, 136.7, 131.3, 128.7, 128.6, 128.0, 127.2, 124.0, 121.1, 118.9, 112.8, 70.4, 64.2, 30.8, 19.2, 13.8; IR (KBr, cm⁻¹) ν 2990, 1764, 1378, 1243, 1055, 744; HRMS (ESI) calcd for C₂₀H₂₂NaO₃[M+Na]⁺: 333.1461, found: 333.1459.

(*E*)-Butyl 3-(2-(allyloxy)phenyl)acrylate (3la) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 16.2 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.23 - 7.18 (m, 1H), 6.91 - 6.82 (m, 2H), 6.45 (d, J = 16.2 Hz, 1H), 6.05 - 5.93 (m, 1H), 5.40 - 5.33 (m, 1H), 5.24 (d, J = 10.7 Hz, 1H), 4.55 (d, J = 4.4 Hz, 2H), 4.14 (t, J = 6.6 Hz, 2H), 1.62 (dt, J = 13.9, 6.8 Hz, 2H), 1.37 (dq, J = 13.8, 6.9 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 157.3, 139.9, 132.9, 131.3, 128.7, 120.9, 120.1, 118.8, 117.7, 112.5, 69.2, 64.3, 30.8, 19.2, 13.8; IR (KBr, cm⁻¹) ν 2957, 2926, 1765, 1515, 1243, 746; HRMS (ESI) calcd for C₁₆H₂₀NaO₃[M+Na]⁺: 283.1305, found: 283.1304.

(*E*)-Butyl 3-(benzo[d][1,3]dioxol-5-yl)acrylate (3ma) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 15.9 Hz, 1H), 7.04 - 6.98 (m, 2H), 6.80 (d, J = 8.0 Hz, 1H), 6.26 (d, J = 15.9 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 1.72 - 1.64 (m, 2H), 1.42 (dt, J = 14.6, 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 149.5, 148.3, 144.2, 128.9, 124.3, 116.3, 108.5, 106.5, 101.5, 64.3, 30.8, 19.2, 13.7; IR (KBr, cm⁻¹) ν 2960, 1708, 1495, 1447, 1251, 1171, 1037, 742; HRMS (ESI) calcd. for C₁₄H₁₆NaO₄[M+Na]⁺: 271.0941, found: 271.0942.

(*E*)-Butyl 3-(thiophen-2-yl)acrylate (3na^[5]) Yellow liquid (0.097 g, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 15.7 Hz, 1H), 7.36 (d, J = 5.0 Hz, 1H), 7.27 - 7.24 (m, 1H), 7.07 - 7.02 (m, 1H), 6.24 (d, J = 15.7 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 1.72 - 1.64 (m, 2H), 1.43 (dq, J = 14.4, 7.3 Hz, 2H), 0.96 (t, J = 9.4, 5.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 139.6, 137.0, 130.8, 128.3, 128.1, 117.1, 64.4, 30.8, 19.2, 13.7; IR (KBr, cm⁻¹) v 2957, 1710, 1624, 1512, 1462, 1267, 1166; MS (EI): m/z (%) 210 (M⁺), 154, 137.

(*E*)-Butyl 3-(naphthalen-2-yl)acrylate (3oa^[6]) Yellow liquid (0.095 g, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.82 (dd, *J* = 16.9, 7.6 Hz, 4H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.48 (dd, *J* = 8.7, 4.4 Hz, 2H), 6.54 (d, *J* = 16.0 Hz, 1H), 4.23 (t, *J* = 6.7 Hz, 2H), 1.74 - 1.66 (m, 2H), 1.50 - 1.40 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 144.6, 134.2, 133.3, 132.0, 129.9, 128.7, 128.6, 127.8, 127.2, 126.7, 123.5, 118.5, 64.5, 30.8, 19.3, 13.8; IR (KBr, cm⁻¹) *v* 2960, 2932, 1711, 1634, 1262, 1172, 981, 742; MS (EI): m/z (%) 254 (M⁺), 207, 198.

Butyl 2-(*p*-tolyl)acrylate (**3pa**) Yellow liquid (0.051 g, 47%); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.2 Hz, 2H), 5.46 (s, 1H), 5.19 (s, 1H), 4.32 (t, *J* = 6.5 Hz, 2H), 2.17 (s, 3H), 1.79 - 1.72 (m, 2H), 1.47 (dt, *J* = 14.5, 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 145.6, 142.6, 129.5, 129.4, 125.4, 114.5, 64.8, 30.8, 21.7, 19.3, 13.8; IR (KBr, cm⁻¹) ν 2924, 1720, 1512, 1377, 1273, 1107; HRMS (ESI) calcd for C₁₄H₁₉O₂ [M+H]⁺: 235.1380 found: 235.1375.

(*E*)-Cinnamic acid ethyl ester (3ab^[7]) Light yellow liquid (0.080 g, 91%); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 16.0 Hz, 1H), 7.55 - 7.49 (m, 2H), 7.39 - 7.35 (m, 3H), 6.44 (d, J = 16.0 Hz, 1H),

4.26 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 144.6, 134.5, 130.2, 128.9, 128.1, 118.3, 60.5, 14.3; IR (KBr, cm⁻¹) v 2925, 1714, 1638, 1511, 1458, 1312, 1267, 1172; MS (EI): m/z (%) 176 (M⁺), 131, 103.

Propyl cinnamate (**3ac**^[8]) Yellow liquid (0.090 g, 95%); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 16.0 Hz, 1H), 7.45 (dd, J = 5.8, 2.2 Hz, 2H), 7.32 - 7.29 (m, 3H), 6.37 (d, J = 16.0 Hz, 1H), 4.10 (t, J = 6.7 Hz, 2H), 1.73 - 1.59 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 144. 6, 134.5, 130.2, 128.9, 128.1, 118.3, 66.2, 22.1, 10.5; IR (KBr, cm⁻¹) v 2924, 1711, 1512, 1465, 1264, 1172; MS (EI): m/z (%) 190 (M⁺), 131, 103.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl cinnamate (3ad) Yellow liquid (0.081 g, 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 16.0 Hz, 1H), 7.52 (s, 3H), 7.39 (s, 4H), 6.48 (d, J = 16.0 Hz, 1H), 4.40 (dd, J = 11.1, 5.9 Hz, 1H), 4.31 (dd, J = 11.5, 4.6 Hz, 2H), 4.22 (dd, J = 11.5, 6.0 Hz, 1H), 4.12 (dt, J = 17.9, 9.2 Hz, 2H), 3.83 - 3.78 (m, 1H), 1.46 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 145.5, 134.3, 130.4, 128.9, 128.1, 117.5, 109.9, 73.8, 66.4, 64.9, 26.7, 25.4; IR (KBr, cm⁻¹) v 2986, 1741, 1375, 1244, 1048, 916, 735; HRMS (ESI) calcd for C₁₅H₁₈NaO₄ [M+Na]⁺: 285.1097 found: 285.1101.

Isopropyl cinnamate (**3ae**^[7]) Yellow liquid (0.086 g, 91%); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 16.0 Hz, 0H), 7.55 - 7.49 (m, 0H), 7.39 - 7.35 (m, 1H), 6.42 (d, J = 16.0 Hz, 0H), 5.13 (dq, J = 12.3, 6.1 Hz, 0H), 1.31 (d, J = 6.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 144.3, 134.6, 130.1, 128.9, 128.0, 118.8, 67.8, 22.0; IR (KBr, cm⁻¹) v 2962, 2927, 1712, 1639, 1264, 1173; MS (EI): m/z (%) 190 (M⁺), 131, 103.

1-Cyclopropylethyl cinnamate (3af) Yellow liquid (0.100 g, 93%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 16.0 Hz, 1H), 7.56 - 7.49 (m, 2H), 7.38 (dd, J = 8.9, 5.5 Hz, 3H), 6.45 (d, J = 16.0 Hz, 1H), 4.51 - 4.43 (m, 1H), 1.37 (d, J = 6.3 Hz, 3H), 1.12 - 1.01 (m, 1H), 0.60 - 0.48 (m, 2H), 0.47 - 0.40 (m, 1H), 0.30 (dd, J = 9.4, 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.4, 134.6, 130.1, 128.9, 128.0, 118.8, 75.4, 19.9, 16.5, 3.7, 2.6; IR (KBr, cm⁻¹) ν 2984, 1743, 1710, 1374, 1243, 1176, 1051; HRMS (ESI) calcd for C₁₄H₁₆NaO₂ [M+Na]⁺: 239.1043 found: 239.1047; MS (EI): m/z (%) 216 (M⁺), 131, 103.

Cyclopentyl cinnamate (**3ag**^[9]) Yellow liquid (0.102 g, 94%); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 15.9 Hz, 1H), 7.55 - 7.48 (m, 2H), 7.37 (d, J = 2.2 Hz, 3H), 6.41 (d, J = 16.0 Hz, 1H), 5.29 (br, 1H), 1.98 - 1.87 (m, 2H), 1.78 (br, 4H), 1.63 (d, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 144.3, 134.6, 130.1, 128.9, 128.0, 118.8, 77.2, 32.8, 23.8; IR (KBr, cm⁻¹) ν 2960, 2926, 1710, 1638, 1316, 1273, 1165; MS (EI): m/z (%) 216 (M⁺), 149, 131.

1-Ethoxy-1-oxopropan-2-yl cinnamate (**3ah**^[10]) Yellow liquid (0.062 g, 50%); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 16.0 Hz, 1H), 7.56 (d, J = 2.8 Hz, 2H), 7.42 (s, 3H), 6.53 (d, J = 16.0 Hz, 1H), 5.24 (q, J = 7.0 Hz, 1H), 4.26 (dd, J = 14.1, 7.0 Hz, 2H), 1.59 (d, J = 7.0 Hz, 3H), 1.32 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 166.2, 145.9, 134.3, 130.5, 128.9, 128.2, 117.3, 68.8, 61.4, 17.1, 14.1; IR (KBr, cm⁻¹) v 2986, 2929, 1741, 1375, 1244, 1048; MS (EI): m/z (%) 248 (M⁺), 131, 103.

Phenyl cinnamate (**3ai**^[7]) Yellow Oil (0.043 g, 39%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 16.0 Hz, 1H), 7.64 - 7.61 (m, 2H), 7.45 (dd, J = 10.1, 5.3 Hz, 5H), 7.29 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 150.8, 146.6, 134.2, 130.7, 129.5, 129.0, 128.3, 125.8, 121.7, 117.4; IR (KBr, cm⁻¹) v 2923, 1730, 1636, 1310, 1197, 1139; MS (EI): m/z (%) 224 (M⁺), 131, 103.

2H-Chromen-2-one (**3s**^[11]) Yellow Oil (0.047 g, 65%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 9.5 Hz, 1H), 7.56 - 7.47 (m, 2H), 7.34 - 7.26 (m, 2H), 6.42 (d, J = 9.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 154.1, 143.5, 131.8, 127.9, 124.4, 118.9, 116.9, 116.7; IR (KBr, cm⁻¹) ν 1734, 1608, 1517, 1454, 1375, 1244, 1101; MS (EI): m/z (%) 146 (M⁺), 118, 90.

Butyl benzofuran-2-carboxylate (4ta) Yellow liquid (0.092 g, 76%); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.52 (s, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 4.39 (t, J = 6.7 Hz, 2H), 1.83 - 1.74 (m, 2H), 1.54 - 1.43 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 155.7, 145.8, 127.5, 127.0, 123.8, 122.8, 113.7, 112.4, 65.3, 30.7, 19.2, 13.7; IR (KBr, cm⁻¹) *v* 2925, 1728, 1463, 1296, 1178, 749; HRMS (ESI) calcd for C₁₃H₁₅NaO₃ [M+Na]⁺: 219.1016 found: 219.1016; MS (EI): m/z (%) 218 (M⁺), 162, 145.

Ethyl benzofuran-2-carboxylate (**4tb**^[12]) Yellow liquid (0.077 g, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 4.47 (q, J = 6.9 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 155.7, 145.7, 127.6, 127.0, 123.8, 122.8, 113.8, 112.4, 61.6, 14.4; IR (KBr, cm⁻¹) v 2923, 1728, 1464, 1296, 1179, 751; MS (EI): m/z (%) 190 (M⁺), 162, 145.

Hexyl benzofuran-2-carboxylate (4tj) Yellow liquid (0.092 g, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.50 - 7.45 (m, 1H), 7.33 (t, J = 7.5 Hz, 1H), 4.41 (t, J = 6.8 Hz, 2H), 1.86 - 1.78 (m, 2H), 1.47 (dd, J = 15.2, 6.4 Hz, 2H), 1.40 - 1.36 (m, 4H), 0.94 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 155.7, 145.8, 127.5, 127.0, 123.8, 122.8, 113.7, 112.4, 65.7, 31.4, 28.7, 25.6, 22.5, 14.0; IR (KBr, cm⁻¹) ν 2925, 1733, 1512, 1295, 1178, 753; HRMS (ESI) calcd for C₁₅H₁₈NaO₃ [M+Na]⁺: 269.1148 found: 269.1154.

Butyl cinnamyl ether (**5aa**^[13]). Light yellow liquid (0.071 g, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.23 (dd, *J* = 12.0, 4.2 Hz, 1H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.30 (dt, *J* = 15.9, 5.9 Hz, 1H), 4.13 (d, *J* = 6.0 Hz, 2H), 3.48 (t, *J* = 6.6 Hz, 2H), 1.65 – 1.56 (m, 2H), 1.40 (dd, *J* = 14.6, 7.3 Hz, 2H), 0.93 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 132.1, 128.5, 127.6, 126.5, 71.8, 70.9, 70.3, 31.9, 19.4, 14.0; IR (KBr, cm⁻¹) v 2926, 1739, 1703, 1514, 1459, 1110; MS (EI): m/z (%) 190 (M⁺), 129, 115.

(*E*)-1-(3-butoxyprop-1-en-1-yl)-4-methylbenzene (5ea^[14]) Light yellow liquid (0.081 g, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.24 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 2H), 6.56 (d, *J* = 15.9 Hz, 1H), 6.31 - 6.19 (m, 1H), 4.11 (d, *J* = 6.0 Hz, 2H), 3.47 (t, *J* = 6.6 Hz, 2H), 2.33 (s, 2H), 1.59 (t, *J* = 10.6 Hz, 2H), 1.40 (dq, *J* = 14.6, 7.5 Hz, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 134.1, 132.1, 129.2, 126.4, 125.4, 71.5, 70.2, 31.9, 21.2, 19.4, 13.9; IR (KBr, cm⁻¹) *v* 2925, 1740, 1647, 1514, 1460, 1268, 1106; MS (EI): m/z (%) 204 (M⁺), 143, 129.

(*E*)-1-(3-Butoxyprop-1-en-1-yl)-3-methylbenzene (5fa) Yellow liquid (0.076 g, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 5.3 Hz, 1H), 7.05 (d, J = 4.0 Hz,3H), 6.57 (d, J = 15.9 Hz, 1H), 6.28 (dt, J = 15.8, 6.0 Hz, 1H), 4.12 (d, J = 6.0 Hz, 1H), 3.48 (t, J = 6.6 Hz, 2H), 2.34 (s, 3H), 1.64 - 1.56 (m, 2H), 1.40 (dq, J = 14.3, 7.3 Hz, 2H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 136.8, 132.2, 128.4, 127.2, 126.3, 123.6, 71.4, 70.2, 31.9, 21.4, 19.4, 13.9; IR (KBr, cm⁻¹) ν 2925, 1740, 1702, 1514, 1461, 1370, 1106; HRMS (ESI) calcd for C₁₄H₂₀NaO [M+Na]⁺: 227.1406 found: 227.1407.

(*E*)-1-(3-Butoxyprop-1-en-1-yl)-4-Chlorobenzene (5ha) Yellow liquid (0.086 g, 77%); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 15.0, 8.4 Hz, 4H), 6.55 (d, J = 16.0 Hz, 1H), 6.27 (dt, J = 15.9, 5.9 Hz, 1H), 4.11 (d, J = 5.8 Hz, 2H), 3.48 (t, J = 6.6 Hz, 2H), 1.64 - 1.56 (m, 2H), 1.45 - 1.35 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 133.2, 130.7, 128.7, 127.7, 127.2, 71.2, 70.4, 31.9, 19.4, 13.9; IR (KBr, cm⁻¹) ν 2925, 1740, 1704, 1514, 1463, 1375, 1095; HRMS (ESI) calcd for C₁₃H₁₇ NaClO [M+Na]⁺: 247.0866 found: 247.0867.

(*E*)-Ethyl 4-(3-butoxyprop-1-en-1-yl)benzoate (5ia) Yellow liquid (0.088 g, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 16.0 Hz, 1H), 6.41 (dt, J = 16.1, 5.8 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.15 (d, J = 5.7 Hz, 2H), 3.50 (t, J = 6.6 Hz, 2H), 1.66 - 1.60 (m, 2H), 1.44 - 1.37 (m, 5H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 141.3, 130.8, 129.9, 129.3, 126.3, 71.1, 70.5, 60.9, 31.9, 19.4, 14.3, 13.9; IR (KBr, cm⁻¹) ν 2925, 1722, 1569, 1458, 1273, 1105; HRMS (ESI) calcd for C₁₆H₂₂NaO₃ [M+Na]⁺: 285.1461 found: 285.1457.

(*E*)-2-(3-Butoxyprop-1-en-1-yl)naphthalene (50a) Yellow liquid (0.100 g, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (t, *J* = 6.9 Hz, 3H), 7.73 (s, 1H), 7.61 (d, *J* = 8.5 Hz, 1H), 7.48 - 7.40 (m, 2H), 6.76 (d, *J* = 15.9 Hz, 1H), 6.43 (dt, *J* = 12.2, 5.9 Hz, 1H), 4.18 (d, *J* = 5.9 Hz, 2H), 3.51 (t, *J* = 6.6 Hz, 2H), 1.62 (dt, *J* = 14.0, 6.9 Hz, 2H), 1.41 (dt, *J* = 14.5, 7.3 Hz, 2H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.3, 133.6, 133.0, 132.1, 128.2, 128.0, 127.7, 126.9, 126.4, 126.2, 125.9, 123.7, 71.5, 70.4, 31.9, 19.4, 14.0; IR (KBr, cm⁻¹) v 2926, 1695, 1513, 1370, 1271, 1117; HRMS (ESI) calcd for C₁₇H₂₀NaO [M+Na]⁺: 263. 1406 found: 263.1404.

(*E*)-1-(3-Butoxyprop-1-en-1-yl)-4-fluorobenzene (5qa) Yellow liquid (0.070 g, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.0, 5.7 Hz, 2H), 6.99 (t, J = 8.6 Hz, 2H), 6.56 (d, J = 15.9 Hz, 1H), 6.21 (dt, J = 15.9, 6.0 Hz, 1H), 4.11 (d, J = 5.9 Hz, 2H), 3.48 (t, J = 6.6 Hz, 2H), 1.59 (dd, J = 14.5, 6.9 Hz, 2H), 1.45 - 1.35 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, J = 246.7 Hz), 133.0 (d, J = 3.3 Hz), 130.9, 128.0 (d, J = 8.0 Hz), 126.3, 115.4 (d, J = 21.6 Hz), 71.3, 70.3, 31.9, 19.4, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.54 - -114.65 (m, 1F); IR (KBr, cm⁻¹) v 2923, 1742, 1697, 1560, 1460, 1106; HRMS (ESI) calcd for C₁₃H₁₇FNaO [M+Na]⁺: 231.1156 found: 231.1154.

(*E*)-2-(3-Butoxyprop-1-en-1-yl)benzo[b]thiophene (5ua) Yellow liquid (0.079 g, 64%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.44 - 7.32 (m, 3H), 6.88 (d, J = 15.9 Hz, 1H), 6.37 (dt, J = 15.9, 5.9 Hz, 1H), 4.18 (d, J = 5.9 Hz, 2H), 3.52 (t, J = 6.6 Hz, 2H), 1.67 - 1.58 (m, 2H), 1.42 (dq, J = 14.4, 7.3 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 137.7, 133.6, 128.2, 124.4, 124.2, 122.9, 122.2, 122.0, 71.5, 70.4, 31.9, 19.4, 14.0; IR (KBr, cm⁻¹) v 2925, 1700, 1647, 1516, 1460, 1267, 1109; HRMS (ESI) calcd for C₁₅H₁₈NaOS [M+Na]⁺: 269.0971 found: 269.0968.

D. References

- [1] T. Mino, Y. Shirae, Y. Sasai, M. Sakamoto and T. Fujita, J. Org. Chem., 2006, 71, 6834.
- [2] X. Zhang, A. Liu and W. Chen, Org. Lett., 2008, 10, 3849.
- [3] X. Zhou, J. Luo, J. Liu, S. Peng and G.-J. Deng, Org. Lett., 2011, 13, 1432.
- [4] M. Oberholzer, R. Gerber and C. M. Frecha, Adv. Synth. Catal., 2012, 354, 627.
- [5] S.-H. Huang, J.-R. Chen and F.-Y. Tsai, *Molecules*, 2010, 15, 315.
- [6] B. Karimi and D. Enders, Org. Lett., 2006, 8, 1237.
- [7] S. De Sarkar, S. Grimme and A. Studer, J. Am. Chem. Soc., 2010. 132, 1190.
- [8] S. Morrissey, I. Beadham and N. Gathergood, Green Chem., 2009, 11, 466.
- [9] Z.-H. Shi, N.-G. Li, Q.-P. Shi, H. Tang and Y.-P. Tang, Drug Develop. Res., 2012, 73, 317.
- [10] N. N. Rao and H. J. Roth, Arch. Pharm. Chem. Life Sci., 2006, 322, 523.
- [11] J. Ferguson, F. Zeng and H. Alper, Org. Lett., 2012, 14, 5602.
- [12] S. Ushijima, K. Moriyama and H. Togo, *Tetrahedron*, 2012, 68, 4701.
- [13] Y. Kasashima, A. Uzawa, K. Hashimoto, T. Nishida, K. Murakami, T. M. Sakamoto and T. Fujita, J. Oleo Sci., 2010, 59, 549.
- [14] N. Nishina and Y. Yamamoto, *Tetrahedron*, 2009, 65, 1799.

E. NMR Spectra

¹H NMR Spectrum of **3aa**

703 5538 5538 521 5216 388 388 374	463 423	230 213 196	694	$\begin{array}{c} 658 \\ 488 \\ 470 \\ 451 \\ 432 \\ 413 \\ 395 \end{array}$	986 968 949
	6.	44.	<u>-</u>]-	<u></u>	000

¹³C NMR Spectrum of **3aa**

-167.122 -144.558 -144.558 $\sqrt{134.496}$ $\sqrt{130.214}$ $\sqrt{128.059}$ -118.316	-64. 448	-30. 792 -19. 216 -13. 763
--	----------	----------------------------------

^{180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

¹H NMR Spectrum of **3ba**

¹H NMR Spectrum of **3da**

¹H NMR Spectrum of **3fa**

¹H NMR Spectrum of **3ga**

¹H NMR Spectrum of **3ha**

¹H NMR Spectrum of **3ka**

¹H NMR Spectrum of **3la**

¹H NMR Spectrum of **3ma**

¹H NMR Spectrum of **30a**

895 810 810 810 810 810 810 810 810 810 810	559 520	247 230 213	703	498 440 441 405	991 973 954
	فربغ	4 <u>4</u> 4	[-]	<u> </u>	000

¹³C NMR Spectrum of **30a**

.65	100202020202020202020202020202020202020	6	14	10 Q
		÷.	8	
67.	12222244	÷.	ö	ത്ത്
1		٩	ကို	77

¹H NMR Spectrum of **3pa**

¹H NMR Spectrum of **3ac**

¹H NMR Spectrum of **3ae**

¹H NMR Spectrum of **3af**

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

¹H NMR Spectrum of **3ag**

¹H NMR Spectrum of **3ah**

¹H NMR Spectrum of **3s**

¹H NMR Spectrum of 4ta

¹H NMR Spectrum of **4tj**

718 66938 6134 74453 334524 333954 3319 311 311 311 311 311 311 311 311 31	423 389 389	856 838 801 784	380 953 918
R. C.	44	<u> </u>	7000

 $\stackrel{1}{\rightarrow} H NMK Sbectrum of$ **2aa** $\\ 0. 949 \\ 0. 914 \\ 0. 932 \\ 0. 914 \\ 0.$

¹H NMR Spectrum of 5ea

¹H NMR Spectrum of **5fa**

¹H NMR Spectrum of **5ha**

316 2573 2573 2574 2534 2274 23595 23595 23555 23555 25555 25555 25555 25555 25555 2	122 107	497 480 464	601	428 409 391 354 354	951 933 914
	4.4.	e, e, e,	1.	<u></u>	000

¹³C NMR Spectrum of **5ha**

362	186	660	688	655	232
r135.	/133.	7,130.	1128.	127.	127.

₹70. 417

-31.870 -19.378 -13.931

¹H NMR Spectrum of **5qa**

$347 \\ 342 \\ 328 \\ 328 \\ 328 \\ 328 \\ 328 \\ 328 \\ 328 \\ 328 \\ 328 \\ 328 \\ 342 \\ 328 \\ 342 \\ 328 \\ 342 $	973	543	232 217 207 192 178	119 104	497 480 464	601	$\begin{array}{c} 429\\ 391\\ 355\\ 355 \end{array}$	952 933 915
	<u>.</u>	-9.	မ်ကိုက်ကို	<u>64</u> .	ર્લ્યુ છે.	-1-		000

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR Spectrum of **5qa**

¹³C NMR Spectrum of **5ua**

