Electronic Supplementary Information

Direct Detection of the Mercury–Nitrogen Bond in the Thymine–Hg^{II}–Thymine Base-pair with ¹⁹⁹Hg NMR Spectroscopy

Takenori Dairaku,‡^a Kyoko Furuita,‡^b Hajime Sato,‡^c Jakub Šebera,‡^{d,e} Daichi Yamanaka,^a Hiroyuki Otaki,^a Shoko Kikkawa,^a Yoshinori Kondo,^a Ritsuko Katahira,^b F. Matthias Bickelhaupt,^{f,g} Célia Fonseca Guerra,^f Akira Ono,^h Vladimír Sychrovský,*^d Chojiro Kojima,*^b and Yoshiyuki Tanaka*^a

- ^a Laboratory of Molecular Transformation, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan. E-mail: tanaka@mail.pharm.tohoku.ac.jp
- ^b Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: kojima@protein.osaka-u.ac.jp
- ^c Application, Bruker BioSpin K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan.
- ^d Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo náměstí 2, 16610, Praha 6, Czech Republic. E-mail: vladimir.sychrovsky@uochb.cas.cz
- ^e Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic.
- ^f Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
- ^g Institute for Molecules and Material (IMM)s, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands.
- ^h Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan.
- [‡] These authors are equally contributed to this work.

* Corresponding authors

Contents

Experimental Section

Supporting Discussion

Supplementary references

- **Table S1.** Experimental NMR spectral parameters of the T-Hg^{II}-T pair and related works.
- **Table S2.** Experimental ¹⁹⁹Hg NMR spectral parameters of Hg^{II}-complexes.
- **Table S3.** Theoretical values of *J*-coupling and ¹⁹⁹Hg NMR chemical shift for the T-Hg^{II}-T pair.
- **Table S4.** Decomposition of theoretical ¹⁵N-¹⁹⁹Hg *J*-coupling.
- **Table S5.** Theoretical ${}^{1}J_{\rm NHg} {}^{2}J_{\rm NN}$ and δ (Hg) values for rotamers.
- Figure S1. One-dimensional ¹⁵N NMR spectrum of thymidine-Hg^{II}-thymidine complex.
- Supporting Appendix Cartesian coordinates of computed molecules

Experimental section

NMR measurement

The NMR sample of the thymidine-Hg^{II}-thymidine complex was prepared as described in the reference 24, except for the use of uniformly ¹⁵N-labeled thymidine (Cambridge Isotope Laboratory, Inc., MA, USA, Catalog #: NLM-3901-0, Lot # PR-20710, isotope enrichment: 99.2%). The NMR sample solution contained 25 mM thymidine-Hg^{II}-thymidine complex in deuterated dimethyl sulfoxide (DMSO-d6). A 1-dimensional (1D) ¹⁹⁹Hg NMR spectrum (71.667 MHz for ¹⁹⁹Hg frequency) was recorded under the natural abundance on a Bruker AVANCE III HD 400 spectrometer equipped with 5mm BBFO probehead for double resonance experiments, which can be tuned to ¹H and multiple nuclei (¹⁹F and ³¹P to ¹⁵N) at 25 °C with 2048 complex points for a spectral width of 14,124.294 Hz. 960,000 scans were averaged. A 1D ¹⁹⁹Hg NMR spectrum (71.667 MHz for ¹⁹⁹Hg frequency) with ¹⁵N-decoupling was recorded under the natural abundance on a Bruker AVANCE III HD 400 spectrometer equipped with 5 mm TBI probehead for triple resonance experiments, which can be tuned to ¹H, ¹⁵N and multiple heteronuclei (³¹P to ¹⁰⁹Ag) at 25 °C with 2048 complex points for a spectral width of 14,124.294 Hz. 119,504 scans were averaged. One-dimensional ¹⁵N NMR spectra (81.093695 MHz for ¹⁵N frequency) were recorded on a Bruker AVANCE-I 800 spectrometer equipped with 5 mm TXI Cryogenic probehead for triple resonance experiments, which can be tuned to ¹H, ¹³C and ¹⁵N at 25 °C with 8192 complex points for a spectral width of 9,765.625 Hz, and 152,000 scans were averaged. The ¹⁹⁹Hg NMR chemical shift was referenced to dimethylmercury at 0 ppm, using 1 M HgCl₂ in DMSO-d6 as the secondary reference (-1501 ppm).⁵⁵ The ¹⁵N NMR chemical shift was calibrated by indirect referencing using the chemical shift ratio of ¹⁵N to ¹H.^{S1}

Theoretical calculations of NMR parameters

The NMR parameters (${}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})$, ${}^{2}J({}^{15}\text{N},{}^{15}\text{N})$, and $\delta({}^{199}\text{Hg})$) for the thymidine-Hg^{II}-thymidine complex were calculated using relativistic density functional theory (DFT) as implemented in the Amsterdam Density Functional (ADF 2012a) (Amsterdam Density Functional package)⁴⁷⁻⁴⁹, based on geometries obtained from optimizations with the Gaussian 09.A02 code.^{S2} The propeller-twist angle dependency of NMR parameters were also examined, by generating rotamers of the T–Hg^{II}–T base-pair around the N3-Hg^{II}-N3 axis with different propeller-twist angles by 30° (Table S5 and Supporting Appendix in ESI†).

Geometries were optimized using the B3LYP/cc-pVTZ method, using the polarizable continuum (PCM) model to treat account for implicit solvation in DMSO, and a relativistic effective core potential (ECP)^{S3} for the mercury atom augmented as was described in reference 11. Stationary points were subject to vibrational analyses to verify that they are proper equilibrium structures. The NMR parameters were calculated at the B3LYP/TZ2P level, employing the large slater-type-orbital basis set TZ2P, ZORA-SO for explicit relativistic effects, and the conductor-like screening model (COSMO) for simulating the

effect of solvation in DMSO. The *J*-couplings were calculated as a sum of the "Fermi contact" + "spin-dipole coupling" (FC+SD), diamagnetic spin-orbit (DSO), and paramagnetic spin-orbit (PSO) contributions. The ¹⁹⁹Hg NMR shielding values were calculated as a sum of diamagnetic, paramagnetic, and spin-orbit contributions. The same method was employed in the calculations of the dimethylmercury reference molecule.

The ¹⁹⁹Hg chemical shift was calculated with respect to dimethylmercury using the following equation^{18,S4}:

 $\delta(^{199}\text{Hg}) \cong \sigma(^{199}\text{Hg})_{\text{Ref}} - \sigma(^{199}\text{Hg})$

where $\sigma(^{199}\text{Hg})_{\text{Ref}}$ is the ¹⁹⁹Hg NMR shielding calculated for dimethylmercury ($\sigma(^{199}\text{Hg})_{\text{Ref}} = 8923.3 \text{ ppm}$) and $\sigma(^{199}\text{Hg})$ is the ¹⁹⁹Hg NMR shielding constants for thymidine-Hg^{II}-thymidine. For $\sigma(^{199}\text{Hg})$, the rotation around the N-Hg^{II}-N axis of thymidine-Hg^{II}-thymidine was also considered, and the $\sigma(^{199}\text{Hg})$ values from the respective rotamers were averaged (Table 1; For details, see Table S5 in ESI†).

Theoretical NMR parameters $({}^{1}J_{HgN}$ and $\delta({}^{199}Hg))$ for $(Me_{3}Si)_{2}N-Hg^{II}-N(SiMe_{3})_{2}$ were calculated using the same calculation procedure as was used for the thymidine-Hg^{II}-thymidine calculation, with the COSMO implicit solvent corresponding to toluene employed.

Supporting Discussion

Regarding the hybridization state of the nitrogen atoms in (Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂, sp²-like planar structure of the nitrogen atoms was suggested from the electron diffraction study.¹⁹ This suggestion is supported by Bent's rule (*Original proposal: Atomic s character concentrates in orbitals directed toward electropositive substituents*.⁴⁵). Since silicon and Hg^{II} are more electropositive than carbon, *s*-characters of N-Si and N-Hg^{II} bonds in (Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂ increase, and the central nitrogen atoms become more sp²-like. Therefore, in this sense, the hybridization state of the nitrogen atoms in (Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂ can be regarded as approximately sp².

However, this sp²-like nature of the nitrogen atoms seems to be different from a canonical sp²-hybridization. In fact, the ¹⁴N chemical shift ($\delta_{14_N} = 66.2 \text{ ppm} (\cong \delta_{15_N})$) of a Hg-linked nitrogen of a closely related compound ([{(CH₂)(CH₃)₂Si}₂N]₂Hg in Table S1 =

$$S_{i}$$
 $N-Hg^{II}-N$ S_{i} S_{i}

nitrogen atoms (Table S1). For example, the canonical sp²-hybridized nitrogen in $(t-Bu)_2Si=\underline{N}-Si(t-Bu)_3$ resonates at 146.2 ppm,^{S5} which is far from the $\delta_{14_N} = 66.2$ ppm ($\cong \delta_{15_N}$) in $[-\{(CH_2)(CH_3)_2Si\}_2N]_2Hg^{46}$ (Table S1). In the past, it was thought that the empty *d*-orbitals of silicon might interact with the *p*-electrons of nitrogen to stabilized the planar structure of the nitrogen atom, but such evidence has not been found to date.^{S6}

It may be possible for the nitrogen atoms in (Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂ to be

classified as sp²-like nitrogen, but this structural feature seem to be of a rather enforced nature (non-canonical one). Therefore, spectroscopic features could also retain some sp³-like nature for the nitrogen atoms in the Si₂N-Hg^{II}-NSi₂ linkage. This might be the reason why $|^{1}J(^{199}\text{Hg},^{15}\text{N})|$, $\delta_{^{15}\text{N}}$, and $\delta_{^{199}\text{Hg}}$ of T-Hg^{II}-T were considerably different from those of (Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂ and [-{(CH₂)(CH₃)₂Si}₂N]₂Hg. Therefore, we should consider that T-Hg^{II}-T and (Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂ belong to distinct structural categories, and their spectroscopic data should be classified distinctively.

We also found $|{}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})|$ values for N(sp³)-Hg^{II}-N(sp³) in Hg^{II}-CyDTA (365.7-395.5 Hz)²⁰ and Hg^{II}(NHMe₂)Cl₂ (14.7 Hz)²¹. Interestingly, their $|{}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})|$ values were strikingly smaller than that of T-Hg^{II}-T. Unfortunately, direct comparison with T-Hg^{II}-T is difficult, since coordination environments for these complexes are not defined, and *J*-coupling values are generally affected by the coordination number. We then considered measuring $|{}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})|$ values for the compounds with N(sp)–Hg^{II}–N(sp) and N(sp³)–Hg^{II}–N(sp³) linkages by ourselves. However, we had to give up preparing such compounds and recording their NMR spectra, due to their possible toxicities. Therefore, the clear correlation between $|{}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})|$ values and N-hybridization is not demonstrated at this moment, unfortunately. However, it is interesting to note that the experimental $|{}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})|$ values available to date satisfy a prerequisite for the assumption that $|{}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})|$ values may also be correlated with the *s*-character of the corresponding nitrogen atoms in N-Hg^{II} bonds.

Supplementary references

- S1. Wishart, D. S.; Bigam, C. G.; Yao, J.; Abildgaard, F.; Dyson, H. J.; Oldfield,
 E.; Markley, J. L.; Sykes, B. D. *J. Biomol. NMR* 1995, *6*, 135-140.
- S2. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,

M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, **2009**.

- S3. Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim.* Acta 1990, 77, 123-141.
- S4. Becker, E. D. *High Resolution NMR Theory and Chemical Applications* Second Edition; Academic Press: New York, 1980.
- S5. Wiberg, N.; Schulz, K.; Reber, G.; Müller, G. J. Chem. Soc., Chem. Commun. 1986, 591-592.
- S6. Albert, K.; Rosch, N. Chem. Ber./Recueil 1997, 130, 1745-1749.
- S7. Kennedy, J. D.; McFarlane, W. J. Chem. Soc. Faraday II. 1976, 72, 1653-1660.
- S8. Wrackmeyer, B.; Schwarze, B. Z. Anorg. Allg. Chem. 1996, 622, 2048-2052.
- S9. Müller, J.; Polonius, F. A.; Roitzsch, M. Inorg. Chim. Acta 2005, 358, 1225-1230.
- S10. Otting, G.; Messerle, B. A.; Soler, L. P. J. Am. Chem. Soc. 1997, 119, 5425-5434.
- S11. Sebald, A.; Wrackmeyer, B. Spectrochimica Acta 1982, 38A, 163-173.
- S12. Steinborn, D.; Taube, R.; Radeglia, R.; Hobold, W. J. Organomet. Chem. 1981, 210, 139-148.
- S13. Browning, J.; Goggin, P. L.; Goodfellow, R. J.; Hurst, N. W.; Mallinson, L. G.; Murray, M. J. Chem. Soc. Dalton Trans. 1978, 872-876.
- S14. Sens, M. A.; Wilson, N. K.; Ellis, P. D.; Odom, J. D. J. Magn. Reson. 1975, 19, 323-336.
- S15. Guillemin, J.-C.; Bellec, N.; Szétsi, S. K.; Nyulászi, L.; Veszprémi, T. Inorg. Chem. 1996, 35, 6586-6591.
- S16. Zamora, F.; Sabat, M.; Lippert, B. Inorg. Chem. 1996, 35, 4858-4864.
- S17. Goedheijt, M. S.; Nijbacker, T.; Horton, A. D.; de Kanter, F. J. J.; Akkerman, O. S.; Bickelhaupt, F. *Eur. J. Inorg. Chem.* 2003, 638-643.
- S18. Wu, G.; Kroeker, S.; Wasylishen, R. E. Inorg. Chem. 1995, 34, 1595-1598.
- S19. Tupciauskas.A. P.; Sergeyev, N. M.; Ustynyuk, Y. A.; Kashin, A. N. J. Magn. Reson. 1972, 7, 124-126.
- S20. Kwetkat, K.; Kitching, W. J. Chem. Soc. Chem. Commun. 1994, 345-347.
- S21. Harris, D. C.; Nissan, R. A.; Higa, K. T. Inorg. Chem. 1987, 26, 765-768.
- S22. Thomas, R. D.; Clarke, M. T.; Jensen, R. M.; Young, T. C. Organometallics 1986, 5, 1851-1857.
- S23. Klapötke, T. M.; Krumm, B.; Moll, R. Z. Anorg. Allg. Chem. 2011, 637, 507-514.
- S24. Charland, J. P.; Viet, M. T. P.; Stjacques, M.; Beauchamp, A. L. J. Am. Chem. Soc. 1985, 107, 8202-8211.
- S25. Dean, P. A. W.; Vittal, J. J. Can. J. Chem. 1988, 66, 2443-2451.
- S26. Norris, A. R.; Kumar, R. Inorg. Chim. Acta 1984, 93, L63-L65.
- S27. Abraham, R. J.; Fisher, J.; Loftus, P. Introduction to NMR Spectroscopy John Wiley & Sons, Sussex, UK (1988).

Table S1. Experimental NMR spectral	parameters of the	Г-Нg ^и -Т раіг ап	d related works			
Compounds	$ ^{1}J_{\mathrm{HgN}} ~(\mathrm{Hz})^{a}$	$ ^{2}J_{\mathrm{NN}} ~(\mathrm{Hz})^{b}$	$\delta_{^{199\mathrm{Hg}}} (\mathrm{ppm})^c$	$\delta_{15\mathrm{N}}/\delta_{14\mathrm{N}}~\mathrm{(ppm)}^d$	N-hybrid. ^e	N-metal Bond
Thy-Hg ^{II} -Thy	1047	2.4^{f}	-1784 ^g	184^{h} , $185.2 - 189.2^{f}$	sp^2	Covalent
[{(CH ₃) ₃ Si} ₂ N] ₂ Hg	316.2^{i}	ا ر.	-992 ^k	I	sp^{3}/sp^{2}	Covalent
$[\{(CH_2)(CH_3)_2Si\}_2N]_2Hg = \left(si_{N-Hg^{II-N}}si_{Si_1}\right)$	I	I	I	66.2 ¹	sp^3/sp^2	Covalent
{(CH ₃) ₃ Si} ₂ NH	N.A.	N.A.	N.A.	27.2^{m}	sp^3/sp^2	Metal-free
$(t-Bu)_2Si=N-Si(t-Bu)_3$	N.A.	N.A.	N.A.	146.2^{n}	sp^{2}	Metal-free
Hg ^{II} -CyDTA	365.7-395.5°	I	I	51.1^{o}	sp^3	Coordination
Hg ^{II} -(NHMe ₂) ₂ Cl ₂	14.7^p	N.A.	-1298 ^p	I	sp^3	Coordination
(9-Me-1-deazapurine) ₂ Hg	I	I	-1948^{q}	I	sp^2	Coordination
[Ru ^{II} Cl(PPh ₃)(BPM) ₂]Cl	N.A.	4.3^{r}	N.A.	229.1 – 230.8″	sp^2	Coordination
-: Not reported. N.A.: Not applicat <i>trans</i> -1,2-diaminocyclohexane- <i>NNNN'</i> -te (absolute value). ^b Two-bond ¹⁵ N- ¹⁵ N dimethylmercury (CH ₃ HgCH ₃) at 0 ppm at 0 ppm. The δ_{15_N} and δ_{14_N} values are 6 nitrogen atoms. ^f Reference-6. ^g Mercury sulfoxide (DMSO) relative to dimethylm the line-broadening of ¹⁵ N resonance. ^k Hg(NO ₃) ₂ in D ₂ O relative to dimethylm6 Solvent: C ₆ D ₆ ; Reported ¹⁴ N chemical sl ammonia (NH ₃). ¹⁸ ^m Reference-S8; Solv6 CH ₃ <u>N</u> O ₃ relative to liquid ammonia (NH ₂ ppm for external 2.0 M NH ₃ <u>N</u> O ₃ in D ₂ C shift (-329.1 ppm) was converted with ¹⁴ DMSO; Mercury-199 chemical shift wai Reference-S9; Solvent: D ₂ O (pD 4.0). ^r R ppm for external neat CH ₃ <u>N</u> O ₃ relative to	ble. $\frac{f(CH_2)(CH_3)}{J}$ -coupling across <i>J</i> -coupling across <i>a</i> Nitrogen-15 NN essentially the san <i>i</i> -199 chemical shi encury ⁵⁵) and refe references-53: M hift (-310 ppm) w ent: C ₆ D ₆ ; Report ontin (-310 ppm) w ent: C ₆ D ₆ ; Report ontin (-310 ppm) w secury as described hift (-310 ppm) w ent: C ₆ D ₆ ; Report on the content of the content on $\delta_{15}_{N} = 380.2$ ppm is reference-S10; So of tiquid ammonia (² Si} ₂ N ⁻ : 2,2,5,5 triphenylphospl s metal cation MR chemical shi ne except for the ft in this work (rence-23. ^{<i>h</i>} This fercury-199 che d, ⁵³ although the as converted wi ed ¹⁴ N chemical 5; Solvent: C ₆ D, 1 ammonia (NH, for external ne $\delta_{199}_{Hg} = -1501$] lvent: CD ₃ OD; 1 NH ₃). ¹⁸	b-tetramethyl-2,5- hine. BPM: bis(1 (absolute value). ift (δ_{15_N}) or ¹⁴ N N e small isotope sh $\delta_{199_{Hg}}$ reference: d work (Figure S1) work (Figure S1) mical shift was 1 s conversion with th $\delta_{14_N} = 376.2$ pl 1 shift (-353 ppm) 6; Reported ¹⁴ N cf 6; Reported ¹⁴ N cf 3) ¹⁸ ° Reference-2 at CH ₃ <u>N</u> O ₃ relati ppm for external Reported ¹⁵ N cher	fisila-1-aza-cyclopentanic -pyrazolyl)methane. ^{<i>a</i>} O ^{<i>c</i>} Mercury-199 NMR G MR chemical shift (δ_{14N}) ift between ¹⁵ N and ¹⁴ N ¹⁹⁹ Hg = -1501 ppm for ex ^{<i>i</i>} Reference-19. <i>j</i> ² <i>J</i> (¹⁵ N, ¹ ^{<i>i</i>} Referenced with δ_{199} Hg = δ_{199} Hg = 2430 ppm ^{S7} seer on for external 2.0 M NF was converted with δ_{14N} iemical shift (-230 ppm) v (0; Solvent: 10% D ₂ O/900 <i>i</i> to liquid ammonia (N 1.0 M HgCl ₂ in DMSO r nical shift (-329.1 ppm) v	le. <i>t</i> -Bu: <i>tert</i> -line-bond ¹⁵ N- ¹⁹ hemical shift with respect to nuclei. ^e Hybrid ternal 1.0 M Hg 4 N) < 9 Hz was -2400 ppm for ins to be better. H ₃ MO ₃ in D ₂ O r = 380.2 ppm f was converted w <i>%</i> H ₂ O; Report H ₃). ¹⁸ ^p Referent H ₃). ¹⁸ ^p Referent vas converted w vas converted w	Butyl. CyDTA: ⁹ Hg <i>J</i> -coupling with respect to liquid ammonia ization states of gCl ₂ in dimethyl s estimated from external 1.0 M ^{<i>l</i>} References-46; elative to liquid or external neat <i>i</i> th $\delta_{l4_N} = 376.2$ ed ¹⁵ N chemical nec-21; Solvent: thylmercury. ⁵⁵ <i>q</i> <i>i</i> th $\delta_{l5_N} = 380.2$

-1040 7 • .tha τ μ_~Π τ. 4 - Lond A DINIAD •

S6

wade with i Git minimized war is a stant	or git to grantinind int	conordini		
X-Hg ^{II} -Y [Branch] ^a	Coordination	$\delta^{_{199}\mathrm{Hg}} \mathrm{(ppm)}^{b}$	$ ^{1}J_{\rm HgX} $ or $ ^{1}J_{\rm CH} $ (Hz) ^c	$ ^{1}J_{ m HgY} ~(m Hz)^{c}$
C(sp)-Hg ^{II} -C(sp)	linear two-coordinate	-978 – -864 ^(S11)	$2493 - 2676^{(S11,S12)}$	N.A.
$C(sp)-Hg^{II}-C(sp^2)$	linear two-coordinate	-848 – -808 ^(S11)	sp: 1502 – 1650 ^(S11)	sp^2 : 1691 – 1875 ^(S11)
$C(sp)-Hg^{II}-C(sp^3)$	linear two-coordinate	-485 – -629 ^(S11)	sp: 1134 – 1447 ^(S11,S12)	sp^3 : 1145 – 1245 ^(S11,S12)
$C(sp^2)-Hg^{II}-C(sp^2)$	linear two-coordinate	-809 – -354 ^(S3,S13-S16)	$1044 - 1176^{(S12,S13,S15)}$	N.A.
$C(sp^2)$ -Hg ^{II} -C(sp^3)	linear two-coordinate	$-392237^{(S11,S17)}$	sp ² : 926, 970 ^(S12)	sp ³ : 817, 819 ^(S12)
$C(sp^3)-Hg^{II}-C(sp^3)$ [1°]	linear two-coordinate	$-366 - +5.3^{(S3,S11,S13,S14,S18,S19)}$	$549 - 760^{(S12,S13,S18,S20)}$	N.A.
$C(sp^3)$ -Hg ^{II} -C(sp^3) [2°]	linear two-coordinate	$-640597^{(S3,S13,S19)}$	$636^{(S12,S13)}$	N.A.
$C(sp^3)$ -Hg ^{II} -C(sp^3) [3°]	linear two-coordinate	-838 – -826 ^(S3,S13,S21)	$628 - 652^{(S12,S13,S21,S22)}$	N.A.
$N(sp^2)-Hg^{II}-C(sp^2)$	linear two-coordinate	$-12921191^{(16a, S16, S23)}$	N: I	C: 2361 ^(S23)
$N(sp^2)-Hg^{II}-C(sp^3)$	linear two-coordinate	-1357787 ^(S23-S26)	N: –	C: 1491 – 1663 ^(S23,S24)
$N(sp^3)-Hg^{II}-N(sp^3) \{Hg^{II}-CyDTA\}$	I	I	$365.7 - 395.5^{(20)}$	N.A.
$N(sp^{3})-Hg^{II}-N(sp^{3}) \{Hg^{II}-(NHR^{1}R^{2})_{2}Cl_{2}\}$	possible tetrahedral ^e	-1200 – -1496 ⁽²¹⁾	$14.7^{(21)}$	N.A.
$(R_3Si)_2N-Hg^{II}-N(SiR_3)_2$	linear two-coordinate	-992 ⁽⁵³⁾	$316.2^{(19)}$	N.A.
$N(sp^2)-Hg^{II}-N(sp^2)$	linear two-coordinate	-1948, -1784 ^(S9,This work)	$1050^{(This work)}$	N.A.
C(sp)-H {hydrocarbon}	N.A.	N.A.	$ ^{1}J_{\rm CH} :\sim 250^{(\rm S27)}$	N.A.
C(sp ²)-H {hydrocarbon}	N.A.	N.A.	$ ^{1}J_{ m CH} $: ${\sim}160^{(m S27)}$	N.A.
C(sp ³)-H {hydrocarbon}	N.A.	N.A.	$ ^{1}J_{ m CH} :\sim \! 125^{(m S27)}$	N.A.
-: Not reported. N.A.: Not applicable. Cy (degree of substitution) on sp ³ -carbon ar	vDTA: <i>trans</i> -1,2-diami re listed in brackets; 1°:	nocyclohexane-NNN'N'-tetra primary carbon, 2°: secondary	acetate. NHR ¹ R ² : second carbon, 3°: tertiary carbo	lary amine ^{<i>a</i>} Branching on. ^{<i>b</i>} Mercury-199 NMR

Table S2. Experimental ¹⁹⁹Hg NMR spectral parameters of Hg^{II}-complexes

chemical shift with respect to dimethylmercury (CH₃HgCH₃) as 0 ppm. Each range of $\delta_{^{199}\text{Hg}}$ includes solvent/concentration-dependent chemical shift perturbations. ^{*c*} One-bond ¹⁵N/¹³C-¹⁹⁹Hg or ¹H-¹³C *J*-coupling (absolute value). Reference numbers are written in the parentheses beside the chemical shifts and J-coupling values are indicated as superscripts.

I able 33. I IICOI CUCAI VAIUCS UI J-COUPTITIE AITU	TIE MAIN MICHICAI SIIII	TUL ULV 1-115 -1 Pa	T	
Compound	$^{1}J_{ m HgN}(m Hz)^{a}$	$^{2}J_{ m NN}~({ m Hz})^{b}$	$\delta^{(199)}$ Hg) (ppm) ^c	Ref.
T-Hg ^{II} -T (average) ^d [B3LYP/TZ2P]	-931	2.8	-1848	This work
$T-Hg^{II}-T(cis)^{e}$ [BLYP/TZ2P]	-670	1.7	-1727	ref. 50
Experiment(Thy-Hg ^{II} -Thy [#] ; T-Hg ^{II} -T in DNA*)	$1050^{\#}$	2.4*	-1784#	[#] This work; * ref. 6 for $^2J_{NN}$
^{<i>a</i>} One-bond ¹⁹⁹ Hg- ¹⁵ N <i>J</i> -coupling. Experimental	value is given as absolut	te value. ^b Two-bond	1 ¹⁵ N- ¹⁵ N J-coupling	across Hg ^{II} in the T-Hg ^{II} -T pair. *

Table S3 Theoretical values of Leonnlino and ¹⁹⁹Ho NMR chemical shift for the T-Ho^{II}-T nair

Experimental value is given as absolute value. ^c Theoretical ¹⁹⁹Hg NMR chemical shift with respect to dimethylmercury at 0 ppm, as previously described.⁵⁰ Experimental chemical shift was reported with respect to dimethylmercury (0 ppm) by using 1.0 M HgCl₂ in dimethyl sulfoxide (DMSO-d6) as the secondary reference at -1501 ppm.^{55 d} The $^{1}J_{\text{HgN}}$, $^{2}J_{\text{NN}}$ and $\delta(^{199}\text{Hg})$ values were averaged over those from rotamers around the N-Hg^{II}-N axis (see the footnote to Table S5 for the rotamers). Calculation with ADF 2012a considering relativistic effect. DMSO solvent was modeled implicitly with COSMO. ^e Calculations by Bagno and Saielli.⁵⁰

 Table S4. Decomposition of theoretical ¹⁵N-¹⁹⁹Hg J-coupling.

Compound	$DSO (Hz)^a$	$PSO(Hz)^b$	FC+SD $(Hz)^c$	Total (Hz)
$T-Hg^{II}-T(average)^d$	-0.053	10.727	-942.062	-931.388
(Me ₃ Si) ₂ N-Hg ^{II} -N(SiMe ₃) ₂ ^e	-0.058	17.246	-295.616	-278.383

^{*a*}DSO: Diamagnetic spin-orbit coupling. ^{*b*}PSO: Paramagnetic spin-orbit coupling. ^{*c*}FC+SD: Mixed Fermi contact plus Spin-dipole coupling. All the calculations were performed with ADF 2012a. ^{*d*} The average values of DSO, PSO and FC+SD terms and ¹ $J_{\rm NHg}$ coupling (For details see the footnote to Table S5). The DMSO solvent was modeled implicitly with COSMO. ^{*e*} Toluene solvent was modeled implicitly with COSMO.

Torsion angle: O2(1)-N3(1)-N3(2)-O4(2) [O2(1)-N3(1)-N3(2)-O2(2)]	$^1\!J_{ m NHg}$	$^{2}J_{\mathrm{NN}}$	δ (¹⁹⁹ Hg)	$\sigma(^{199}\text{Hg})$
180.0 [-0.88: cisoid]	-940.627	2.900	-1875.25	10798.58
210.0 [31.9]	-935.642	2.791	-1847.59	10770.92
240.0 [59.7]	-931.940	2.841	-1884.23	10807.56
270.0 [89.1]	-935.290	2.816	-1885.72	10809.05
300.0 [119.1]	-933.920	2.792	-1890.59	10813.92
330.0 [151.2]	-928.581	2.736	-1797.53	10720.86
0.0 [180.5: transoid]	-930.469	2.746	-1840.35	10763.68
30.0 [209.1]	-930.156	2.779	-1842.99	10766.32
60.0 [241.1]	-922.103	2.831	-1831.24	10754.57
90.0 [271.1]	-931.155	2.863	-1854.28	10777.61
120.0 [298.3]	-925.421	2.844	-1822.55	10745.88
150.0 [330.0]	-931.356	2.786	-1809.46	10732.79
Average ^a	-931.388	2.810	-1848.48	10771.81

Table S5. Theoretical ${}^{1}J_{\rm NHg} {}^{2}J_{\rm NN}$ and δ (Hg) values for rotamers of thymidine-Hg^{II}-thymidine.

^{*a*} The averaged value of NMR parameters for rotation around the N3(1)-Hg^{II}-N3(2) bond was calculated employing the structures that were optimized with constrained torsion angle O2(1)-N3(1)-N3(2)-O4(2) rotation). The torsion angles for O2(1)-N3(1)-N3(2)-O2(2) are written in the parenthesis. The definition of the torsion angle O2(1)-N3(1)-N3(2)-O4(2) is as follows where R denotes ribose.

Figure S1. One-dimensional ¹⁵N NMR spectrum of thymidine-Hg^{II}-thymidine complex (25 mM in DMSO-d6). (a) A doublet resonance of N3 due to the ¹⁵N3-¹⁹⁹Hg linkage observed as satellite peaks (${}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})$: 1050 Hz). (b) All ¹⁵N signals in ¹⁵N-labeled thymidine. Satellite peaks of N3 due to ${}^{1}J({}^{199}\text{Hg},{}^{15}\text{N})$ are highlighted with red asterisks.

Supporting Appendix Cartesian coordinates of computed molecules:

i ilyiniunic-iig	-uryinianie (torsion	aligie $O_2(1)$ -NS	(1)-1N3(2)-04(2).
0	-7.35468100	6.29222600	0.98571200
С	-6.46557100	5.24191500	1.33911000
С	-5.66322300	5.51119600	2.62276100
0	-4.47790500	4.72655100	2.46650800
С	-4.09062700	4.75436600	1.08572600
С	-5.36329700	5.10423000	0.28656800
С	-6.36890600	5.12757100	3.89948100
N	-3.47496500	3.47535200	0.76324100
С	-4.23723900	2.33068000	0.76919100
С	-3.72945800	1.10552200	0.55086900
С	-2.29261000	1.00026400	0.31651500
N	-1.56298000	2.17267500	0.34157300
С	-2.08981100	3.41308600	0.56664900
0	-1.39939300	4.43167900	0.59322500
N	2.74122700	1.86646000	-0.09812600
С	3.26663200	0.62566600	-0.32399100
N	4.64999500	0.56170500	-0.51384000
С	5.42373000	1.69637900	-0.46892500
С	4.91718000	2.92234900	-0.24723800
С	3.47614400	3.03520600	-0.05016000
С	5.27411000	-0.73180900	-0.77155700
0	6.37341500	-0.89317100	0.12440900
С	7.37407300	-1.73628000	-0.48037600
C	6.90821300	-2.00322500	-1.93059600
C	5.87454700	-0.91061500	-2.16467200
С	8.73810600	-1.08107600	-0.39650200
0	2.57316200	-0.39107300	-0.37025700
0	2.92111000	4.12151500	0.15153100
С	5.76208300	4.15787600	-0.19121900
0	6.24211500	-3.26023700	-2.05725500
0	-1.73753600	-0.08439800	0.10945300
С	-4.56329700	-0.13856900	0.54983100
Н	8.72456300	-0.11614800	-0.91445200
0	9.07991200	-0.91881100	0.97622000
Н	7.40235400	-2.67941400	0.07200000
Н	4.50536400	-1.47409900	-0.57702600

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 0°)

H	6.48162800	1.53048100	-0.60370500
Н	6.81146200	3.92011300	-0.36025700
Н	5.67268300	4.65241100	0.77780900
Н	5.44728200	4.88311500	-0.94378400
Н	6.35858200	0.00922500	-2.49190500
Н	5.13782700	-1.20238700	-2.90909000
Н	7.73994700	-1.94612900	-2.63539000
0	-5.59621200	5.57356800	5.01052300
Н	-7.35826800	5.59827900	3.90161000
Н	-5.40940300	6.57822600	2.65600200
Н	-3.31145600	5.49468800	0.93739700
Н	-5.28814300	2.47891400	0.96808500
Н	-5.60912600	0.09274100	0.74736300
Н	-4.21686500	-0.84365900	1.30754900
Н	-4.49964800	-0.65335600	-0.41053200
Н	-5.59397100	4.36716300	-0.47791200
Н	-5.23420800	6.06634700	-0.20721500
Н	-7.01850700	4.30443400	1.44722200
Hg	0.58937800	2.02013100	0.12112900
Н	-6.50458800	4.04146400	3.92304800
Н	6.87559000	-3.96428300	-1.88131700
Н	9.45996300	-1.72964500	-0.90473000
Н	-8.18555900	6.17115900	1.45619100
Н	9.93330300	-0.47701200	1.02469800
Н	-6.05410300	5.32085100	5.81815700

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 30°)

0	-7.36991100	6.03906500	0.22263000
C	-6.49216600	5.11715400	0.85377000
C	-5.80062200	5.67788000	2.10785400
0	-4.57760600	4.94100400	2.20030300
C	-4.09161100	4.68287500	0.87745600
C	-5.30826800	4.80527900	-0.06370400
C	-6.59050500	5.52081000	3.38366400
Ν	-3.43409600	3.38249200	0.88529300
C	-4.16334600	2.25748200	1.19187200
C	-3.62130100	1.03151700	1.29208600
C	-2.18336500	0.90876300	1.07685900
Ν	-1.49457100	2.06258200	0.75932200

С	-2.05331300	3.30654700	0.67410400
0	-1.38989400	4.31274400	0.42161100
N	2.80107400	1.73668700	0.29984100
С	3.28881200	0.56628900	-0.21257100
N	4.66977700	0.50253900	-0.41736800
С	5.48154100	1.56619800	-0.10772900
С	5.01661200	2.71632700	0.41095000
С	3.58056800	2.82556200	0.64215600
С	5.24897500	-0.71122900	-0.98976300
0	6.38345400	-1.08646000	-0.21042200
С	7.36832800	-1.72696600	-1.04691500
С	6.80861600	-1.69212000	-2.48581800
С	5.77511700	-0.57715000	-2.41806500
С	8.71264400	-1.03896800	-0.91115700
0	2.56587600	-0.39092700	-0.49331600
0	3.06976900	3.84393400	1.12198600
С	5.90298100	3.87210900	0.76010200
0	6.12036900	-2.89721600	-2.82307600
0	-1.59135100	-0.17163100	1.17431800
С	-4.41725600	-0.19109900	1.63061600
Н	8.63048000	0.01045900	-1.21354000
0	9.14372500	-1.14785200	0.44134700
Н	7.46860800	-2.76334500	-0.71449800
Н	4.47195800	-1.46721900	-0.92671700
Н	6.53304400	1.40268800	-0.28613300
Н	6.94363300	3.64846300	0.52910200
Н	5.83059600	4.11775700	1.82118000
Н	5.61284300	4.76912200	0.20998800
Н	6.25200900	0.39264600	-2.55849600
Н	4.99687500	-0.69630500	-3.16782600
Н	7.59351200	-1.48890600	-3.21676000
0	-5.92578000	6.21834100	4.43318900
Н	-7.59386300	5.93021000	3.22162900
Н	-5.58878900	6.74127800	1.94121700
Н	-3.31517300	5.39583100	0.62055300
Н	-5.21610100	2.42603400	1.36244400
Н	-5.46940700	0.05432600	1.76850000
Н	-4.04890500	-0.65720600	2.54618400
Н	-4.33903500	-0.94191400	0.84226400

Н	-5.45912000	3.91232000	-0.66464700
Н	-5.16631100	5.64494200	-0.74270000
Н	-7.03418700	4.20340100	1.11376400
Нд	0.64504000	1.91344500	0.51659700
Н	-6.68810500	4.45551600	3.61685500
Н	6.75825100	-3.61853600	-2.85167500
Н	9.41865400	-1.53287900	-1.58760300
Н	-8.22902700	6.00129800	0.65475500
Н	9.98196000	-0.68371500	0.52927200
Н	-6.43858600	6.11011300	5.24019400

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 60°)

0	-7.35213400	5.53719300	-0.34942500
C	-6.44662400	4.84782400	0.50109500
C	-5.71625100	5.76052100	1.49996800
0	-4.49130800	5.07480700	1.77676200
C	-4.04634700	4.42297900	0.58018600
C	-5.29213700	4.26626100	-0.31710300
C	-6.46472200	6.01279100	2.78517500
N	-3.38816900	3.18029900	0.96006800
C	-4.11476200	2.18859100	1.57723000
С	-3.57613300	1.03077200	1.99654500
С	-2.14466900	0.83626600	1.78823300
N	-1.45165000	1.87104300	1.19241900
С	-2.00860900	3.04547800	0.77336100
0	-1.34258600	3.94091400	0.25230800
N	2.82720300	1.48912500	0.74379300
С	3.27638700	0.48238600	-0.06209700
N	4.65545000	0.40385800	-0.25121200
С	5.49981100	1.32935400	0.31050400
С	5.06744200	2.33610200	1.09285600
C	3.63477700	2.43516400	1.34429700
C	5.18071500	-0.65504600	-1.12063400
0	6.40714300	-1.12643200	-0.57648600
C	7.32170300	-1.48386900	-1.63475600
C	6.57062500	-1.23159800	-2.95754200
C	5.51052200	-0.21933400	-2.54811900
C	8.61232400	-0.69474100	-1.52158300
0	2.51693900	-0.31993600	-0.60896600

0	3.14500300	3.31971900	2.05690700
С	5.99059500	3.34098000	1.71101600
0	5.89406400	-2.39981100	-3.42230300
0	-1.56351300	-0.19949800	2.12898000
С	-4.37048600	-0.04672900	2.66801900
Н	8.40818000	0.37766100	-1.60912700
0	9.22052100	-0.99673000	-0.27019200
Н	7.54875000	-2.54716100	-1.52848900
Н	4.42997100	-1.44052500	-1.11364400
Н	6.54638800	1.17251300	0.10181700
Н	7.02509400	3.14047300	1.43531300
Н	5.91563100	3.32882400	2.79989300
Н	5.73977700	4.35388700	1.39036000
Н	5.92593300	0.78831400	-2.54785500
Н	4.64615800	-0.24247300	-3.20679400
Н	7.23773800	-0.84752400	-3.73155400
0	-5.76909300	6.99892800	3.54269900
Н	-7.47431600	6.35740200	2.53524100
Н	-5.50993600	6.71898100	1.00769900
Н	-3.27879100	5.01864500	0.09718300
Н	-5.16338400	2.40590400	1.71353100
Н	-5.41611200	0.24224100	2.76493400
Н	-3.97801300	-0.25988400	3.66402900
Н	-4.32127200	-0.98041600	2.10499800
Н	-5.46101600	3.23603300	-0.61951700
Н	-5.17310500	4.86371800	-1.21986200
Н	-6.97323900	4.05934300	1.04630700
Hg	0.69030600	1.68534300	0.97258300
Н	-6.55040100	5.07403000	3.34212700
Н	6.55086600	-3.05962000	-3.66966600
Н	9.26367900	-0.98508400	-2.35298000
Н	-8.20098500	5.61917600	0.09653700
Н	10.02007800	-0.46783800	-0.18807100
Н	-6.25588800	7.15278700	4.35833100

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 90°)

0	-7.55963500	4.92749400	-0.52240300
С	-6.55383700	4.49470200	0.38257800
С	-5.75021500	5.64298600	1.01371800

0	-4.48515500	5.05751800	1.33396100
С	-4.14910400	4.09557200	0.32486300
С	-5.47411300	3.71051100	-0.36559600
С	-6.37048300	6.23444200	2.25535200
N	-3.43380000	3.00041500	0.96568800
С	-4.08706500	2.20522500	1.87824500
С	-3.48083700	1.22720300	2.57234400
С	-2.05360000	1.02243500	2.34702100
N	-1.43739200	1.84699300	1.42514700
С	-2.06082800	2.84982200	0.73814600
0	-1.46119000	3.58586400	-0.04553200
N	2.83174700	1.43551900	0.89509600
С	3.25491600	0.64264300	-0.13345800
N	4.63350600	0.58659300	-0.35112000
С	5.50266000	1.30248500	0.43697800
С	5.09719900	2.08771900	1.45127700
С	3.66362600	2.17934300	1.70799500
С	5.14479800	-0.22638900	-1.44914600
0	6.19227100	-1.05723300	-0.95225400
С	7.08992700	-1.38873000	-2.02998500
С	6.67971800	-0.50921900	-3.23708000
С	5.77719800	0.54286800	-2.60704800
С	8.52685000	-1.18613900	-1.59643100
0	2.47378700	0.01257800	-0.84719000
0	3.19466700	2.88744700	2.60598600
С	6.04625400	2.86355200	2.31205800
0	5.90194100	-1.23435600	-4.19062400
0	-1.41108400	0.15714800	2.95210500
С	-4.19565000	0.36375200	3.56552000
Н	8.68491300	-0.14380500	-1.30005700
0	8.80621500	-2.07216200	-0.51733300
Н	6.94290500	-2.44174900	-2.28591600
Н	4.30390400	-0.82432400	-1.78957700
Н	6.54653900	1.17367100	0.19497100
Н	7.07634100	2.70686400	1.99481700
Н	5.96001000	2.56817300	3.35933800
Н	5.83115500	3.93276300	2.26853200
Н	6.36950100	1.37624200	-2.23008200
Н	5.04467100	0.92396800	-3.31440600

Н	7.55142500	-0.06752300	-3.72360300
0	-5.63037300	7.38928700	2.64061400
Н	-7.41043600	6.49687300	2.03062000
Н	-5.62263900	6.43159300	0.26172600
Н	-3.44393000	4.52822800	-0.37693800
Н	-5.13565200	2.42435000	2.01195800
Н	-5.24919200	0.63265200	3.62902200
Н	-3.75438000	0.46149200	4.55901900
Н	-4.12437400	-0.69065800	3.29282600
Н	-5.64903800	2.63787500	-0.36589200
Н	-5.45895800	4.04606300	-1.40165900
Н	-6.99978000	3.88426100	1.17322900
Hg	0.70198200	1.63933400	1.15856800
Н	-6.37087700	5.48156300	3.05016900
Н	6.45821200	-1.91087800	-4.59166500
Н	9.17448600	-1.39900800	-2.45392100
Н	-8.34748700	5.16735200	-0.02413400
Н	9.71454200	-1.92672000	-0.23522500
Н	-6.03263500	7.75584700	3.43411200

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 120°)

0	-7.47621400	4.33114000	-0.94204800
С	-6.54342100	4.13374500	0.11195700
С	-5.83871700	5.42407900	0.56368000
0	-4.58302000	4.98000500	1.08310000
С	-4.12021100	3.89142200	0.27387000
С	-5.37686800	3.26709000	-0.37033900
С	-6.58128500	6.20870300	1.61657100
Ν	-3.33809500	3.00169900	1.11968400
С	-3.94701400	2.36094600	2.17266500
С	-3.28632000	1.57003800	3.03547100
С	-1.85062700	1.40812400	2.83626600
Ν	-1.27824900	2.07671100	1.77352400
С	-1.95906500	2.88161900	0.90346700
0	-1.41178200	3.47097800	-0.02806400
Ν	2.95428400	1.50563100	1.17067900
С	3.26989200	0.93820500	-0.03161900
Ν	4.62898000	0.75461400	-0.29714300
С	5.58239400	1.10881800	0.62789000

С	5.28232500	1.64657300	1.82350200
С	3.87347700	1.86105300	2.13736500
С	5.03269600	0.15650600	-1.56384300
0	5.88218900	-0.95770300	-1.29055600
С	6.76048900	-1.17596400	-2.41133700
С	6.57839200	0.03307900	-3.36180400
С	5.85182700	1.05071800	-2.49205300
С	8.18503100	-1.36092400	-1.93157600
0	2.41107000	0.60899300	-0.85036400
0	3.49953100	2.33677200	3.21461800
С	6.32248100	2.02005400	2.83441500
0	5.73008900	-0.27808600	-4.46791700
0	-1.15604000	0.70729400	3.58052100
С	-3.95126300	0.86927900	4.17977300
Н	8.51241100	-0.47329800	-1.38017500
0	8.23978500	-2.52196500	-1.10893200
Н	6.44032000	-2.08698700	-2.92488200
Н	4.11299600	-0.16723200	-2.04299700
Н	6.60009900	0.90153000	0.33462700
Н	7.32301800	1.80783900	2.45997700
Н	6.17987200	1.47072000	3.76675400
Н	6.26546700	3.08129000	3.08320200
Н	6.56752400	1.64157000	-1.92107800
Н	5.23625200	1.72319900	-3.08450000
Н	7.53896100	0.40763800	-3.72077200
0	-5.92062500	7.45398100	1.82313600
Н	-7.60824200	6.36731900	1.26897100
Н	-5.68065600	6.05835800	-0.31756600
Н	-3.42897500	4.25649800	-0.47875900
Н	-5.00681100	2.54269200	2.27019900
Н	-5.01887400	1.08375500	4.20091100
Н	-3.51874700	1.17680600	5.13355000
Н	-3.81814000	-0.21170300	4.10865400
Н	-5.49643000	2.21768500	-0.11417800
Н	-5.31232200	3.34000800	-1.45489100
Н	-7.04123200	3.67133100	0.96880000
Нд	0.86610500	1.83864900	1.54259100
Н	-6.61883000	5.62302900	2.54088600
Н	6.16763800	-0.93926100	-5.01512000

Н	8.82932400	-1.47421900	-2.81019900
Н	-8.31789500	4.60974800	-0.56751600
Н	9.14382600	-2.62869600	-0.79734300
Н	-6.39865000	7.94089200	2.50162200

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 150°)

0	-7.49117300	3.75695500	-1.03189900
С	-6.60952600	3.81883300	0.08210300
С	-5.85829200	5.15832900	0.19769500
0	-4.62763700	4.82264000	0.84376600
С	-4.19209000	3.56810400	0.30997500
С	-5.47385400	2.80233500	-0.08420300
С	-6.58479300	6.21910300	0.98604900
N	-3.34961200	2.92027500	1.30288200
С	-3.87532000	2.58806600	2.52961600
С	-3.15385300	2.01394600	3.50793000
С	-1.74451200	1.74155900	3.24059600
N	-1.25658400	2.10899400	2.00313700
С	-1.99769600	2.70058100	1.01862800
0	-1.51802600	3.02167200	-0.06877300
N	2.91245600	1.40534600	1.13831600
С	3.28945300	1.15514200	-0.15173200
N	4.65040000	0.89931900	-0.36266100
С	5.53747300	0.88011100	0.68714900
С	5.17809000	1.12905300	1.95837800
С	3.77229400	1.41436400	2.21894500
С	5.11388200	0.57191800	-1.70307800
0	5.69708100	-0.73319400	-1.67422400
С	6.65881600	-0.84998700	-2.73919000
С	6.84413900	0.57072400	-3.32847100
С	6.20714100	1.47039700	-2.27741400
С	7.94140700	-1.46551500	-2.21905100
0	2.49415500	1.15703500	-1.09076700
0	3.34594900	1.64978000	3.35494600
С	6.14594200	1.10831100	3.10125600
0	6.11697100	0.74491200	-4.54547500
0	-1.00445400	1.20903700	4.07398900
C	-3.72899600	1.65147400	4.84233300
Н	8.34952900	-0.85144300	-1.40961400

0	7.65899200	-2.78588200	-1.76581400
Н	6.24218900	-1.50515500	-3.50969900
Н	4.22811200	0.58236900	-2.33171800
Н	6.55415700	0.63249100	0.42293300
Н	7.15217700	0.87640400	2.75481700
Н	5.85808800	0.36489300	3.84676800
Н	6.17135200	2.07234700	3.61250500
Н	6.93558300	1.73048300	-1.51082100
Н	5.81626300	2.38642900	-2.71357400
Н	7.89888600	0.80413600	-3.48619800
0	-5.88453600	7.45393900	0.86490600
Н	-7.60096000	6.30895600	0.58624200
Н	-5.66142900	5.53091500	-0.81555500
Н	-3.55250800	3.73324200	-0.55158500
Н	-4.91875400	2.83217700	2.66187000
Н	-4.78309500	1.92012900	4.89806500
Н	-3.20004500	2.16101800	5.64966300
Н	-3.63581200	0.58073300	5.03242000
Н	-5.62212500	1.91137800	0.52037400
Н	-5.42106700	2.49271700	-1.12656000
Н	-7.16296500	3.63004600	1.00577300
Hg	0.82814600	1.74910900	1.57454900
Н	-6.65477500	5.90486200	2.03247100
Н	6.49286200	0.16340300	-5.21516900
Н	8.66981300	-1.48136800	-3.03708100
Н	-8.32480700	4.17536100	-0.79437100
Н	8.46818200	-3.16113000	-1.40501700
Н	-6.35655900	8.12020400	1.37399400

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 180°)

0	-7.84619500	3.23335300	-0.54510100
С	-6.78809300	3.54978900	0.34999900
С	-6.06774600	4.86770600	0.01421500
0	-4.74612900	4.68848000	0.52855800
С	-4.35864500	3.33247200	0.27524600
С	-5.66647300	2.51277700	0.23109300
С	-6.69449800	6.09843300	0.62010000
Ν	-3.40005300	2.93668500	1.29464000
С	-3.79083700	2.87917000	2.61224200

S21

C	-2.95386600	2.55972900	3.61416300
С	-1.56328700	2.27015700	3.27289500
N	-1.21232600	2.36139100	1.93956800
С	-2.07079200	2.69568400	0.93143700
0	-1.70884100	2.77673400	-0.24244800
N	2.92309400	1.36899200	1.07751300
С	3.39801800	1.34456900	-0.20142800
N	4.72184100	0.92157200	-0.36624600
С	5.47693800	0.53291200	0.71536100
С	5.01619000	0.54828300	1.97837400
С	3.64189700	0.98976800	2.19337400
С	5.27936700	0.82486100	-1.70769900
0	5.69031000	-0.52590100	-1.93106400
С	6.74980700	-0.55072100	-2.90579100
С	7.16543200	0.92128500	-3.14815500
С	6.52876200	1.66024300	-1.97819300
С	7.88462900	-1.42991800	-2.42227800
0	2.71289700	1.67978800	-1.16819200
0	3.12821100	1.02399000	3.31709300
С	5.83956100	0.12235100	3.15484800
0	6.60094500	1.44666000	-4.35048000
0	-0.72797200	1.95987500	4.12852200
С	-3.38236600	2.49366500	5.04769500
Н	8.26692700	-1.05528600	-1.46704300
0	7.40133500	-2.76309900	-2.29111200
Н	6.35231500	-0.96868100	-3.83519000
Н	4.47283200	1.09690000	-2.38264700
Н	6.47336100	0.19257300	0.47858000
Н	6.83834700	-0.18017900	2.84293700
Н	5.37323900	-0.71398600	3.67877500
Н	5.93554900	0.93235700	3.88007000
Н	7.19472100	1.65047400	-1.11622900
Н	6.29985000	2.69285200	-2.23031300
Н	8.25134000	1.03247000	-3.16472200
0	-6.04620100	7.25640000	0.10151800
Н	-7.75995700	6.10343400	0.36461100
Н	-6.03641400	4.97618500	-1.07736000
Н	-3.82302000	3.27124400	-0.66683000
Н	-4.82792200	3.11896400	2.79386400

Н	-4.43982300	2.73379500	5.14982100
Н	-2.80950700	3.19114200	5.66147200
Н	-3.21325300	1.49833300	5.46223100
Н	-5.70903000	1.75840700	1.01231900
Н	-5.75574600	2.00464000	-0.72768100
Н	-7.16642500	3.59328500	1.37486600
Нд	0.84321600	1.97083900	1.37368200
Н	-6.60315600	6.04877800	1.71002000
Н	6.97652500	0.97271700	-5.10033300
Н	8.69452600	-1.37889600	-3.15813700
Н	-8.64424600	3.68990300	-0.26060600
Н	8.11548200	-3.31116400	-1.95146600
Н	-6.45052100	8.03315300	0.50036700

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 210°)

0	-7.93048000	2.74437300	-0.08116600
С	-6.82071400	3.31248700	0.60235000
С	-6.19857900	4.51623000	-0.12743700
0	-4.82736700	4.51103000	0.27954500
С	-4.39698800	3.14873200	0.35703700
С	-5.66129100	2.31265900	0.65486800
С	-6.83005200	5.84488700	0.20460800
N	-3.34109100	3.06187500	1.35598700
С	-3.60200400	3.43739400	2.65274000
С	-2.68218000	3.39036600	3.63230300
С	-1.35063500	2.90439200	3.28570900
N	-1.13613300	2.53745500	1.97264700
С	-2.07067500	2.61381000	0.97921700
0	-1.82621600	2.30041400	-0.18580900
N	2.75285900	0.85593200	1.06902700
С	3.30740400	1.08490800	-0.15882500
N	4.60207300	0.59461100	-0.35727000
С	5.25887100	-0.09175900	0.63548400
С	4.72248900	-0.32189300	1.84733500
С	3.38617200	0.20217900	2.10743700
С	5.27075200	0.85048400	-1.62793200
0	5.79140400	-0.38017500	-2.12722000
С	6.92044400	-0.10855600	-2.98071700
С	7.25878700	1.39327800	-2.80906600

С	6.47827700	1.78339800	-1.56116400
С	8.07166800	-1.03038300	-2.63672400
0	2.72075200	1.69666600	-1.05210100
0	2.82840000	0.07721900	3.20408600
С	5.43640000	-1.07739400	2.92577300
0	6.76721000	2.18207900	-3.89348800
0	-0.44109600	2.81403900	4.11760100
С	-2.96748000	3.80362500	5.04324700
Н	8.35933100	-0.89465300	-1.58880500
0	7.66968400	-2.37336200	-2.88671700
Н	6.61914200	-0.29182200	-4.01601400
Н	4.50573200	1.24499500	-2.29073600
Н	6.23880900	-0.45474900	0.36532400
Н	6.41822400	-1.40501800	2.58665200
Н	4.86707800	-1.95665000	3.23284500
Н	5.56713900	-0.46106300	3.81696000
Н	7.06457300	1.57982700	-0.66561100
Н	6.20305900	2.83528100	-1.56830300
Н	8.33277200	1.54872500	-2.68978800
0	-6.29427400	6.84520900	-0.65664100
Н	-7.91341100	5.75439500	0.06783100
Н	-6.27081400	4.33958000	-1.20790700
Н	-3.93644600	2.84828100	-0.57882500
Н	-4.60574300	3.79216500	2.83289100
Н	-3.99868500	4.13745600	5.15022800
Н	-2.30838900	4.61535200	5.35638200
Н	-2.79883800	2.97701600	5.73580200
Н	-5.59654600	1.79740300	1.60986400
Н	-5.80510700	1.56203900	-0.12068700
Н	-7.11779500	3.61124200	1.61113100
Hg	0.79841000	1.70665900	1.49084800
Н	-6.63633100	6.08261600	1.25568300
Н	7.23744300	1.93068300	-4.69580700
Н	8.92696600	-0.75573500	-3.26374500
Н	-8.72659100	3.23099600	0.15484100
Н	8.39702000	-2.95594400	-2.64718200
Н	-6.70326300	7.68710100	-0.43327200

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 240°)

0	-8.05843200	2.63689200	0.34368400
С	-6.89596500	3.29112300	0.83663300
С	-6.20242300	4.18312400	-0.20972400
0	-4.82543100	4.17734700	0.17323300
С	-4.50653000	2.84940100	0.60349100
С	-5.81272400	2.26186100	1.18064500
С	-6.71775700	5.59898300	-0.26734800
N	-3.38572400	2.92927500	1.52643600
С	-3.52092500	3.63053800	2.70169600
С	-2.51869400	3.78993900	3.58352500
С	-1.22928300	3.18914000	3.25760300
N	-1.13920800	2.49940100	2.06559000
с	-2.16068900	2.35274900	1.17098500
0	-2.03031700	1.74433000	0.10914600
N	2.71763800	0.73735600	1.10993400
С	3.34618700	1.18034300	-0.02174100
N	4.61335400	0.64747000	-0.28035000
С	5.17242900	-0.28711300	0.55752000
С	4.55960600	-0.73822900	1.66578900
С	3.24146000	-0.19753500	1.98176200
С	5.34342900	1.08879900	-1.46237400
0	5.73668500	-0.06126500	-2.21076100
С	6.91145400	0.25084800	-2.98369600
С	7.41084800	1.63444300	-2.49649700
С	6.64559900	1.84128300	-1.19631300
С	7.94087600	-0.85024300	-2.83776500
0	2.84618200	2.01007700	-0.78319700
0	2.60998100	-0.55313400	2.98315400
С	5.16638800	-1.76292900	2.57409300
0	7.03988400	2.68423500	-3.39109700
0	-0.24794700	3.28412100	4.00290700
С	-2.66901100	4.55220500	4.86381700
Н	8.21426300	-0.96905500	-1.78410700
0	7.39399800	-2.05561400	-3.36295700
Н	6.62092600	0.32500200	-4.03560000
Н	4.64629600	1.69887100	-2.02958400
Н	6.13960100	-0.65483500	0.25060400
Н	6.14650700	-2.07180500	2.21307300
Н	4.53175000	-2.64787000	2.64838900

Н	5.27967400	-1.37212000	3.58689000
Н	7.18282900	1.38962400	-0.36301900
Н	6.49014700	2.89587800	-0.98226400
Н	8.49178000	1.63736200	-2.34393200
0	-6.12728000	6.26577900	-1.37927700
Н	-7.80803200	5.56324100	-0.37004000
Н	-6.32075300	3.71372100	-1.19456600
Н	-4.14997800	2.26295200	-0.23772100
Н	-4.49664900	4.06194400	2.86801900
Н	-3.68219100	4.93729500	4.97096900
Н	-1.97441400	5.39321600	4.90489300
Н	-2.44771500	3.91981600	5.72549200
Н	-5.74257500	2.07438500	2.24898600
Н	-6.04809500	1.31834000	0.69134100
Н	-7.15080800	3.88967000	1.71520400
Нд	0.77345000	1.60826600	1.57977700
Н	-6.47850500	6.10800000	0.67206000
Н	7.50929700	2.56072500	-4.22322700
Н	8.83833000	-0.55451100	-3.39207400
Н	-8.80595300	3.24017000	0.40560200
Н	8.04073900	-2.75791000	-3.24351500
Н	-6.46345300	7.16701700	-1.40487100

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 270°)

0	-8.13360100	2.44003000	1.02328100
С	-6.90871600	3.13970100	1.19646800
С	-6.38560500	3.79762600	-0.09212500
0	-4.96791500	3.85044200	0.08651700
С	-4.55767500	2.65324400	0.75763200
С	-5.78629700	2.16135900	1.55354200
С	-6.92468900	5.18209300	-0.35176400
Ν	-3.37694500	2.96312600	1.55009000
С	-3.46457300	3.88630400	2.56572300
С	-2.41179400	4.26299200	3.31204200
С	-1.11687700	3.66259600	3.00715500
Ν	-1.07596100	2.74982200	1.97197400
С	-2.15218300	2.37219600	1.22136300
0	-2.06503200	1.55268700	0.30681300
Ν	2.74612200	0.91841500	1.03118400

С	3.56478900	1.47682900	0.09145000
N	4.75814000	0.79240100	-0.17421100
С	5.05124300	-0.39053600	0.46153800
С	4.24691900	-0.95085700	1.38244600
С	3.00208300	-0.26120800	1.69923100
С	5.65958600	1.30422700	-1.19552300
0	5.81762900	0.30300000	-2.20296200
С	7.06811300	0.51273000	-2.88399400
С	7.86214900	1.55090800	-2.05013600
С	7.08333400	1.62092600	-0.74260800
С	7.79183300	-0.80528900	-3.06154900
0	3.29296200	2.52393900	-0.49526400
0	2.19091200	-0.69975300	2.52393800
С	4.56519900	-2.24360000	2.06869700
0	7.83490500	2.84986200	-2.64354300
0	-0.09248600	3.94885200	3.63721000
С	-2.51093400	5.26228700	4.42306100
Н	7.96906000	-1.26782500	-2.08496100
0	7.00061100	-1.65022800	-3.89133200
Н	6.85821900	0.93609100	-3.87074200
Н	5.17341000	2.18638400	-1.60263600
Н	5.97501600	-0.85649800	0.15424500
Н	5.52092100	-2.64016800	1.72853700
Н	3.79378600	-2.99125000	1.87511000
Н	4.61147700	-2.11331400	3.15140100
Н	7.44297400	0.86458200	-0.04599800
Н	7.17101800	2.59800900	-0.27374600
Н	8.89502800	1.23250100	-1.89680700
0	-6.51037300	5.61017000	-1.64580700
Н	-8.01797000	5.14286500	-0.28728800
Н	-6.63531100	3.14590500	-0.93878800
Н	-4.23360800	1.91313600	0.03291100
Н	-4.44857400	4.30225400	2.72277300
Н	-3.53230500	5.62444700	4.53190900
Н	-1.85854000	6.11816100	4.24120700
Н	-2.19744600	4.82471200	5.37262200
Н	-5.59426600	2.11303800	2.62229800
Н	-6.07016000	1.16438200	1.22012900
Н	-7.02069400	3.90042500	1.97415400

Hg	0.83515500	1.85193600	1.49558100
Н	-6.55959700	5.86148700	0.42525100
Н	8.30968700	2.81636300	-3.48114000
Н	8.76324200	-0.60182300	-3.52525100
Н	-8.86204000	3.06648300	1.08143800
Н	7.45379700	-2.49409900	-3.98228200
Н	-6.85302900	6.49690700	-1.79513800

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 300°)

0	-8.24245100	2.85470900	1.77499000
С	-6.91845500	3.33558000	1.59187300
С	-6.52172300	3.51622500	0.11779100
0	-5.09907400	3.36472600	0.10841600
С	-4.71935900	2.40328800	1.10282400
С	-5.90814200	2.29598600	2.07885200
С	-6.89956100	4.85369000	-0.46986900
N	-3.45952600	2.84097000	1.69115700
С	-3.41840100	4.01297200	2.40927900
С	-2.28512600	4.53350800	2.91072700
С	-1.04089400	3.82148800	2.64232500
N	-1.12597800	2.66364800	1.89612800
С	-2.28631600	2.12797600	1.41475800
0	-2.31501500	1.07592500	0.77669100
N	2.64769100	0.74353700	0.90683800
С	3.56819200	1.42292000	0.16087700
N	4.74908300	0.73351200	-0.14562700
С	4.93565900	-0.56559800	0.26324500
С	4.03291100	-1.24456400	0.99183900
С	2.79595100	-0.55797000	1.34468000
С	5.75580300	1.37500400	-0.97778500
0	5.93783900	0.58624700	-2.15639600
С	7.25483600	0.82173600	-2.68697800
С	8.03510000	1.61681000	-1.60927600
С	7.15320700	1.49161300	-0.37319400
С	7.90865300	-0.49133700	-3.06406100
0	3.39245800	2.57868900	-0.22401800
0	1.90433700	-1.10671200	2.00311000
С	4.23592600	-2.66082500	1.43453000
0	8.13610200	3.00411100	-1.93369500

0	0.05332500	4.22565100	3.05148000
С	-2.24672800	5.80312100	3.70404100
Н	7.96985100	-1.14442900	-2.18726700
0	7.14479900	-1.09930700	-4.10101700
Н	7.16033600	1.43932000	-3.58499100
Н	5.35324300	2.35253000	-1.22814400
Н	5.86118600	-1.01792100	-0.05808500
Н	5.19915300	-3.04063400	1.09646600
Н	3.45180300	-3.31120600	1.04262500
Н	4.19589700	-2.74166900	2.52229700
Н	7.40806300	0.59102700	0.18389600
Н	7.25884800	2.35050300	0.28506100
Н	9.03010600	1.19775300	-1.44773800
0	-6.63712800	4.84131700	-1.87007400
Н	-7.96445100	5.02662300	-0.27697900
Н	-6.99085800	2.71662300	-0.46850900
Н	-4.50029700	1.45085800	0.63192900
Н	-4.37094900	4.50207000	2.54689100
Н	-3.24477800	6.22547900	3.81264800
Н	-1.60760000	6.54631400	3.22400000
Н	-1.83523600	5.63142300	4.70033000
Н	-5.61213300	2.43973500	3.11454400
Н	-6.36264800	1.30968000	1.99532000
Н	-6.78947600	4.28299300	2.12322900
Нд	0.74575700	1.70310600	1.38597400
Н	-6.32751700	5.64052300	0.03250100
Н	8.68731800	3.09823800	-2.71812800
Н	8.92843900	-0.27959800	-3.40364500
Н	-8.85264400	3.59827700	1.74167500
Н	7.54769400	-1.94624300	-4.31587500
Н	-6.87297900	5.70236500	-2.22916000

Thymidine-Hg^{II}-thymidine (torsion angle O2(1)-N3(1)-N3(2)-O4(2): 330°)

0	-8.11766600	2.87360100	2.74163300
C	-6.90061400	3.38000400	2.21103100
С	-6.77715800	3.22390000	0.68606600
0	-5.36845600	3.16504600	0.44847500
С	-4.75451700	2.44409400	1.52500000
С	-5.71710000	2.55707600	2.72627700

С	-7.38532300	4.35076100	-0.11104800
N	-3.42130200	2.99141200	1.72991400
С	-3.27710300	4.28834400	2.16473400
С	-2.08482500	4.89585100	2.29514200
с	-0.89621000	4.13253600	1.93090800
N	-1.08825500	2.83614800	1.49967600
С	-2.30487300	2.23177400	1.36009800
0	-2.42664000	1.08270100	0.93750600
N	2.42296300	0.69759800	0.20840500
с	3.50240100	1.41353100	-0.22675900
N	4.64182500	0.67735900	-0.56231800
с	4.66487500	-0.69017500	-0.43811800
с	3.60995000	-1.40496700	-0.00686900
с	2.39954800	-0.67588300	0.35058500
с	5.84198900	1.39039900	-0.99683100
0	6.38678900	0.71814600	-2.12942900
с	7.81950400	0.88428000	-2.15611800
с	8.19893700	1.64216400	-0.86344700
с	6.97914400	1.43384000	0.02208600
С	8.50782700	-0.45944300	-2.28952300
0	3.49563500	2.64161400	-0.31562900
0	1.38409200	-1.24413900	0.76881400
С	3.62988400	-2.89732500	0.11877900
0	8.33730600	3.04613300	-1.08500800
0	0.24315300	4.60721100	1.99058600
С	-1.93257800	6.30719500	2.77242200
Н	8.24381800	-1.10400000	-1.44443700
0	8.11432000	-1.04965100	-3.52408900
Н	8.07146300	1.49562300	-3.02649500
Н	5.51265400	2.39083300	-1.26271100
Н	5.59037200	-1.15756800	-0.73737800
Н	4.59772600	-3.30019000	-0.17662100
Н	2.86103300	-3.35556200	-0.50608000
Н	3.42607100	-3.20764000	1.14524300
Н	7.04881600	0.48281300	0.54991700
Н	6.86408100	2.23150400	0.75176800
Н	9.11015400	1.24030500	-0.41627900
0	-7.35698400	4.01179100	-1.49462900
Н	-8.41570200	4.49811900	0.23120500

Н	-7.24975200	2.27749600	0.39493900
Н	-4.60014600	1.40962800	1.23595500
Н	-4.19941100	4.80150500	2.39237200
Н	-2.90289600	6.75213800	2.98867200
Н	-1.43000700	6.92214200	2.02380400
Н	-1.32360800	6.35314500	3.67722700
Н	-5.24386800	2.99599900	3.60069300
Н	-6.07668800	1.56746400	3.00425900
Н	-6.78671000	4.43409900	2.47968300
Нд	0.65671600	1.76387100	0.84974300
Н	-6.82431400	5.27085400	0.08222400
Н	9.10329000	3.19518400	-1.64978000
Н	9.59004000	-0.29178700	-2.26358500
Н	-8.79994800	3.54725500	2.65751400
Н	8.53200100	-1.91370200	-3.59235900
Н	-7.74159900	4.73993200	-1.99248900

(Me₃Si)₂N-Hg^{II}-N(SiMe₃)₂:

Нд	-1.47224800	-2.84503100	-0.02576500
N	0.60429800	-2.70698900	0.05404900
N	-3.54531700	-3.02007900	-0.16227300
Si	1.28832900	-1.60293200	1.21822200
Si	1.50128200	-3.75368800	-1.02104100
Si	-4.33550500	-1.89807900	-1.24449900
Si	-4.33440800	-4.06501400	0.99325800
С	3.01388800	-2.87745600	-1.75029700
С	2.08683800	-5.32765700	-0.14523300
С	0.44501500	-4.31061500	-2.49396700
С	2.81135300	-2.33320800	2.07554900
С	1.79282000	0.03479200	0.41255600
С	0.03160100	-1.20461500	2.57730200
С	-3.08916000	-4.75278000	2.24277000
С	-5.65795300	-3.14714700	1.99154200
С	-5.14782000	-5.55399300	0.15395100
С	-3.25838600	-1.59311100	-2.77038500
С	-6.00006000	-2.55869200	-1.85639700
С	-4.64365500	-0.22003800	-0.41951600
Н	0.49568100	-0.56595800	3.33284500
Н	-0.84251400	-0.66823600	2.20158300

11	-0.31523000	-2.10796500	3.08326900
Н	2.54505900	-0.11790900	-0.36301700
Н	0.93393800	0.52295000	-0.05324500
Н	2.20948100	0.72629200	1.14883800
Н	3.21342900	-1.61341700	2.79247100
Н	2.55823100	-3.24269000	2.62339400
Н	3.61205300	-2.57741900	1.37655400
Н	3.55098900	-3.56002400	-2.41327900
Н	2.71696900	-2.00786800	-2.33955800
Н	3.71899100	-2.54001500	-0.99001600
Н	2.76548800	-5.10491100	0.67920500
Н	1.24050500	-5.88299000	0.26504600
Н	2.61130500	-5.98860900	-0.83961900
Н	1.05995600	-4.90297000	-3.17563300
Н	-0.39894200	-4.93838300	-2.19943900
Н	0.05383900	-3.46207900	-3.05888100
Н	-3.70845700	0.24029900	-0.09242200
Н	-5.13005600	0.47585500	-1.10740100
Н	-5.28352900	-0.32131800	0.45898600
Н	-6.71007200	-2.73330600	-1.04724800
Н	-6.45079300	-1.82816100	-2.53239400
Н	-5.88157600	-3.49239900	-2.40806500
Н	-2.30934100	-1.11107600	-2.52385900
Н	-3.03378600	-2.52673200	-3.28988300
Н	-3.77685300	-0.93752900	-3.47384500
Н	-2.31484800	-5.36040900	1.76928900
Н	-2.59966100	-3.96236600	2.81573000
Н	-3.60827400	-5.39609700	2.95735100
Н	-6.44331300	-2.73001400	1.35975200
Н	-6.13642200	-3.82493300	2.70256100
Н	-5.21864900	-2.32529300	2.56056000
Н	-4.41162600	-6.13652400	-0.40385800
Н	-5.60124100	-6.21394400	0.89760900
Н	-5.93081400	-5.25440800	-0.54323800