Supporting information for

Fluorescent Recognition of $\mathbf{H g}^{\mathbf{2 +}}$ by a $\mathbf{1 , 1}$ '-Binaphthyl-Based Macrocycle: A Highly Selective Off-On-Off Response

Xiangchuan $\mathrm{Xu}, \mathrm{Carl} \mathrm{O}$. Trindle, Guoqing Zhang* and Lin $\mathrm{Pu}{ }^{*}$

Part I. Materials and methods.

Materials. (S)-(-)-1,1'-Bi-2-naphthol was purchased from LianYunGang Chiral Chemical (China) Co., LTD and purified by recrystallization. Chloromethyl methyl ether was obtained from Xiya Reagent and used as received. n-Butyllithium solution (2.5 M in hexane) was obtained from Aladdin Reagent (Shanghai) while the (1R, $2 \mathrm{R})-(-)-1,2$-Cyclohexanediamine was brought from TCI and they were used as received. All other solvents were obtained from Aladdin Reagent and were used as received.

Methods. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra were recorded on a Bruker AV 400 NMR spectrometer operated in the Fourier transform mode. UV-Vis absorption spectra were recorded on a Beijing Persee TU-1901 UV-Vis spectrometer. Melting points of crystals were recorded on a SGW-X4 (Shanghai Precision and Scientific Instrument Co., Ltd.) illuminated microscope melting point apparatus. HRMS spectra were recorded on a BrukerDaltonics Bio TOF mass spectrometer. Steady-state fluorescence emission spectra was recorded on a FluoroMax-4 spectrofluorometer (Horiba Scientific) and analyzed with an Origin integrated software FluoroEssence (v2.2). Fluorescence lifetime data were acquired with a 1MHz LED laser with the excitation peak at 370 nm (NanoLED-370). Lifetime data were analyzed with DataStation v6.6 (Horiba Scientific).

Part II. Synthesis.

(S)-3. Compound $(S) \mathbf{- 1} \quad(458 \mathrm{mg}, \quad 1.34 \mathrm{mmol})$ and (1R, $2 \mathrm{R})$-(-)-1,2-cyclohexanediamine ($154 \mathrm{mg}, 1.34 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2}, and the mixture was stirred at room temperature for 2 d . After evaporation of the solvent, the crude product was purified by recrystallization with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /methanol to afford compound (S) $\mathbf{- 2}$ as a yellow solid. This compound (336.4 $\mathrm{mg}, 0.4 \mathrm{mmol}$) was combined with NaBH_{4} ($30.3 \mathrm{mg}, 0.8 \mathrm{mmol}$) and ethanol (50 mL), which was degassed with nitrogen and heated at reflux for 6 h . After removal of the solvent, the crude product was purified by column chromatography on silica gel eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /methanol (20/1) to afford compound (S)-3 as a white solid (190 $\mathrm{mg}, 56 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 0.92-1.12(\mathrm{~m}, 8 \mathrm{H}), 1.52(\mathrm{~s}, 4 \mathrm{H}), 2.03-$ $2.15(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 4 \mathrm{H}), 4.22(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.38(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.04$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~s}, 4 \mathrm{H}), 7.76(\mathrm{~d}, J=$ 8.0 Hz, 4H). HR-MS: m/z calcd for $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{MH}]^{+}: 849.4374$; found: 849.4379.

Part III. Supplementary Figures.

Fig. S1. The ${ }^{1} \mathrm{H}$ NMR of (S)-3.

13:59:26													25-Jul-2014 TOF MS ES+ 3.82e5
$140725 _H O S T$100									849.4379 T				

Fig. S2. TOF mass spectra of (S)-3.

Fig. S3. TOF mass spectra of $(S)-\mathbf{3}+\mathrm{Hg}(\mathrm{OAc})_{2}$ (1 equiv.).

Fig. S4. TOF mass spectra of $(S) \mathbf{- 3}+\mathrm{Hg}(\mathrm{OAc})_{2}$ (2 equiv.).

Fig. S5. TOF mass spectra of $(S)-3+\mathrm{Hg}(\mathrm{OAc})_{2}$ (3 equiv.).

Fig. S6. Steady-state fluorescence emission spectra of (S)-3 with various concentration $\left(\lambda_{\mathrm{exc}}=365 \mathrm{~nm}\right)$.

Fig. S7. UV-vis absorption spectra of (S)-3 with various concentration.

Fig. S8. Steady-state fluorescence emission spectra of the (S)-3 ligand $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in methanol) versus the concentration of $\mathrm{Hg}^{2+}\left(\lambda_{\mathrm{exc}}=365 \mathrm{~nm}\right)$.

Fig. S9. The steady-state fluorescence emission spectra of the (S) - $\mathbf{3}$ ligand versus $\mathrm{Hg}^{2+}\left(\lambda_{\mathrm{exc}}=365 \mathrm{~nm}\right)$.
(a)

(b)

Fig. S10. (a) Fluorescence decay profiles of (S)-3 in methanol; (b) Fluorescence decay profiles of $(S)-3+\mathrm{Hg}^{2+}$ (1 equiv.) in methanol.

