Electronic Supplementary Information

Reductive P-P Coupling of Primary and Secondary Phosphines mediated by N-Heterocyclic Carbenes

Heidi Schneider, David Schmidt, and Udo Radius*

Heidi Schneider, Dr. David Schmidt, Prof. Dr. Udo Radius Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

* Author for correspondence. E-mail: <u>u.radius@uni-wuerzburg.de</u>

The Supporting Information contents:

- 1. Additional Figures and Tables
- 2. Experimental Details
- 3. Crystallography
- 4. References

1. Additional Figures and Tables

Figure S1. Segments of ¹H, ¹³C and ³¹P NMR spectra for the reaction of Ph₂PH with *i*Pr₂Im at room temperature, directly after addition in d_8 -toluene.

Figure S2. Time dependent ³¹P NMR spectra for the reaction of Ph₂PH with *i*Pr₂Im to give P₂Ph₄ **2** at 95 °C in d_8 -toluene (blue asterisk: Ph₂PH; red asterisk: P₂Ph₄ **2**).

Figure S3. ¹H NMR spectrum of P₂Me₂Ph₂ 3 in C₆D₆.

Figure S4. ³¹P NMR spectrum of $P_2Me_2Ph_2$ 3 in C_6D_6 .

Figure S5. ¹H NMR spectrum for the reaction of 1 equivalent of PhPH₂ with 2 equivalents of iPr_2Im to iPr_2ImH_2 **1** and $iPr_2Im=PPh$ **4** after 5 h at 105 °C in d_8 -toluene (blue asterisk: $iPr_2Im=PPh$ **6**; red asterisk: iPr_2ImH_2 **1**; green asterisk: remaining iPr_2Im)

Figure S6. ³¹P NMR spectrum for the reaction of 1 equivalent of PhPH₂ with 2 equivalents of iPr_2Im to iPr_2ImH_2 **1** and $iPr_2Im=PPh$ **4** after 5 h at 105 °C in d_8 -toluene.

Figure S7. ¹H NMR spectrum of isolated *i*Pr₂Im=PPh **4** in C₆D₆.

Figure S8. ³¹P NMR spectrum of isolated *i*Pr₂Im=PPh 4 in C_6D_6 .

Figure S9. ¹H NMR spectrum of isolated iPr_2ImH_2 1 (with remaining toluene) in C₆D₆

Figure S10. ¹H NMR spectrum of the reaction of 1 equivalent of PhPH₂ with 1 equivalent of iPr_2Im immediately after addition at room temperature in d_8 -toluene (blue asterisk: iPr_2Im ; red asterisk: PhPH₂).

Figure S11. ³¹P NMR spectrum of the reaction of 1 equivalent of PhPH₂ with 1 equivalent of iPr₂Im immediately after addition at room temperature in d_8 -toluene.

Figure S12. ¹H NMR spectrum of the reaction of 1 equivalent of PhPH₂ with 1 equivalent of iPr_2Im after 2 h at 105 °C in d_8 -toluene. (blue asterisk: iPr_2ImH_2 **1**; red asterisk: PhPH₂; green asterisk: $iPr_2Im=PPh$ **4**)

Figure S13. ³¹P NMR spectrum of the reaction of 1 equivalent of PhPH₂ with 1 equivalent of iPr_2Im after 2 h at 105 °C in d_8 -toluene. Literature known ³¹P NMR signals: P₄Ph₄ -48.0 [S6], P₆Ph₆ -21.2 [S5d]; P₅Ph₅ -5.0 - -2.8 [S7]

Figure S14. ¹H NMR spectrum of the reaction of 1 equivalent of pTolPH₂ with 1 equivalent of iPr₂Im immediately after addition at room temperature in d_8 -toluene. (blue asterisk: iPr₂Im; red asterisk: pTolPH₂).

Figure S15. ³¹P NMR spectrum of the reaction of 1 equivalent of pTolPH₂ with 1 equivalent of *i*Pr₂Im immediately after addition at room temperature in d_8 -toluene.

Figure S16. ¹H NMR spectrum of the reaction of 1 equivalent of pTolPH₂ with 1 equivalent of iPr₂Im after 2 h at 105 °C in d_8 -toluene. (blue asterisk: iPr₂ImH₂ **1**; red asterisk: P_n(pTol)_n; green asterisk: iPr₂Im=PpTol)

Figure S17. ³¹P NMR spectrum of the reaction of 1 equivalent of pTolPH₂ with 1 equivalent of *i*Pr₂Im after 2 h at 105 °C in d_8 -toluene.

Figure S18. ³¹P NMR spectrum of the reaction of 1 equivalent of pTolPH₂ with 1 equivalent of *i*Pr₂Im after 4 h at 105 °C in d_8 -toluene.

Figure S19. ¹H NMR spectrum of $P_6(pTol)_6$ 6 in CD_2Cl_2 .

Figure S20. ³¹P NMR spectrum of $P_6(pTol)_6$ 6 in CD_2Cl_2 .

2. Experimental Details

General Considerations.

All reactions and subsequent manipulations were performed under an argon atmosphere using standard Schlenk techniques as reported previously. [SI1] Elemental analysis were performed in the microanalytical laboratory of the authors department with an Elementar vario micro cube. NMR spectra were recorded on a Bruker Avance 200 (¹H, 200.1 MHz; ¹³C, 50.3 MHz; ³¹P, 80.9 MHz), Bruker Avance 500 (¹H, 500.1 MHz; ¹³C, 125.8 MHz; ³¹P, 202.5 MHz), using C₆D₆, CD₂Cl₂ and toluene- d_8 as the solvent. Assignment of the ¹H NMR data was supported by ¹H,¹H, ¹³C,¹H and ³¹P,¹H correlation experiments. ¹³C NMR spectra are broad-band proton-decoupled ($^{13}C{^{1}H}$). Assignment of the ^{13}C NMR data was supported by ¹³C,¹H correlation experiments. Chemical shifts are listed in parts per million (ppm) and were determined relative to internal C₆D₅H (¹H, δ = 7.16; C₆D₆), CDHCl₂ (¹H, δ = 5.32; CD₂Cl₂) and d_7 -toluene (¹H, δ = 2.08; d_8 -toluene) or to natural-abundance carbon resonances C₆D₆ (¹³C, δ = 128.06; C₆D₆), CD₂Cl₂ (¹³C, δ = 53.84; CD₂Cl₂) and toluene-d₈ (¹³C, δ = 20.43; d₈-toluene) or external 85% H₃PO₄ (³¹P, δ = 0). Coupling constants are quoted in Hertz. Infrared spectra were recorded on a Bruker Alpha FT-IR spectrometer as solids by using an ATR unit and are reported in cm⁻¹. The NHC *i*Pr₂Im (1,3-di-*iso*-propyl-imidazolin-2-ylidene) has been prepared according to a published procedure. [S2]

Synthesis of P_2Ph_4 2: Diphenylphosphine (2.32 g, 12.4 mmol) was added at room temperature to a solution of iPr_2Im (945 mg, 6.21 mmol) in 10 mL of xylene and was heated to 140 °C for 3 d. All volatiles were removed *in vacuo* and the residue was suspended in 10 mL of *n*-hexane. The precipitate was filtered off, washed twice with 3 mL of *n*-hexane and dried *in vacuo* to afford 2.05 g (5.53 mmol, yield: 89 %) of a colorless powder. ¹H-NMR (200.1 MHz, C₆D₆, 303 K): δ = 6.86–7.02 (m, 12 H, aryl-CH), 7.46 – 7.63 (m, 8 H, aryl-CH); ³¹P{¹H}-NMR (80.9 MHz, C₆D₆, 296 K): δ = -14.9; reference: -14.9 [S3]. NMR spectra of **1**: ¹H-NMR (200.1 MHz, *d*₈-toluene, 303 K): δ = 0.95 (d, 12 H, ³J_{HH} = 6.4 Hz, ⁱPr-CH₃), 2.44 (sept, 2 H, ³J_{HH} = 6.4 Hz, ⁱPr-CH), 3.93 (s, 2 H, NCH₂N), 5.44 (s, 2 H, CHCH). ¹³C{¹H}-NMR (50.3 MHz, *d*₈-toluene, 296 K): δ = 21.0 (ⁱPr-CH₃), 52.7 (ⁱPr-CH), 73.9 (NCH₂N), 118.4 (CHCH).

Synthesis of P₂Me₂Ph₂ 3: Phenylmethylphosphine (2.06 g, 16.6 mmol) was added at room temperature to a solution of *i*Pr₂Im (1.26 g, 8.28 mmol) in 10 mL of xylene and was heated to 140 °C for 3 d. All volatiles were removed *in vacuo* and the residue was dissolved in 10 mL of *n*-hexane. The crude product was recrystallized at -80 °C, filtered, washed twice with 5 mL of -78 °C cold *n*-hexane and dried *in vacuo* to afford 367 mg (1.49 mmol, yield: 18 %) of a colorless solid containing the *S*,*S* / *R*,*R* and *meso* diastereomeres in the ratio 0.76 : 1.00

(ratio estimated by integration of ¹H NMR spectrum). $C_{14}H_{16}P_2$ [246.22 g/mol]: Calcd. (found) C 68.29 (67.91), H 6.55 (6.49). ¹H-NMR (200.1 MHz, C_6D_6 , 296 K): δ = 1.08 (m, 3 H, CH_3), 1.17 (m, 3 H, CH_3), 6.90 – 7.10 (m, 8 H, aryl-C*H*), 7.26 – 7.38 (m, 2 H, aryl-C*H*). ¹³C{¹H}-NMR (50.3 MHz, C_6D_6 , 296 K): δ = 6.3 (m, CH_3), 6.9 (m, CH_3), 132.3 – 132.8 (m, aryl-CH). ³¹P-NMR (80.9 MHz, C_6H_6 , 298 K): δ = -40.3, -36.7; reference: -40.5, -36.9. [S4]

Synthesis of *i*Pr₂ImH₂ 1 and *i*Pr₂Im=PPh 4: Phenylphosphine (361 mg, 3.28 mmol) was added at room temperature to a solution of *i*Pr₂Im (1.00 g, 6.56 mmol) in 10 mL of toluene and was heated to 105 °C for 5 h. According to NMR spectroscopy the conversion to *i*Pr₂ImH₂ **1** and *i*Pr₂Im=PPh **4** is a 100 % and complete after 5 h (see Figure S5 and S6). For the isolation of both compounds all volatiles were condensed into a Schlenk tube and the remaining clear liquid was distilled to afford *i*Pr₂ImH₂ 1 (with traces of toluene). The light orange residue was suspended in 7 mL of n-hexane, filtered and dried in vacuo to afford 506 mg (1.94 mmol; 60 %) of a yellow solid. iPr_2ImH_2 1: ¹H-NMR (500.1 MHz. d_8 -toluene. 296 K): δ = 0.95 (d, 12 H, ${}^{3}J_{HH}$ = 6.4 Hz, i Pr-CH₃), 2.44 (sept, 2 H, ${}^{3}J_{HH}$ = 6.4 Hz, i Pr-CH), 3.93 (s, 2 H, NCH₂N), 5.44 (s, 2 H, CHCH). ¹³C{¹H}-NMR (125.76 MHz, d₈-toluene, 296 K): δ = 21.0 (ⁱPr-CH₃), 52.7 (ⁱPr-CH), 73.9 (NCH₂N), 118.4 (CHCH). ¹H-NMR (500.1 MHz. C₆D₆. 296 K): δ = 0.96 (d, 12 H, ${}^{3}J_{HH}$ = 6.4 Hz, i Pr-CH₃), 2.48 (sept, 2 H, ${}^{3}J_{HH}$ = 6.4 Hz, i Pr-CH), 3.98 (s, 2 H, NCH₂N), 5.51 (s, 2 H, CHCH). ¹³C{¹H}-NMR (125.76 MHz, C₆D₆, 296 K): δ = 21.4 (ⁱPr-CH₃), 52.7 (ⁱPr-CH), 73.9 (NCH₂N), 118.5 (CHCH). ⁱPr₂Im=PPh **4**: ¹H-NMR (500.1 MHz, d_8 -toluene, 298 K): δ = 0.91 (d, 12 H, ${}^{3}J_{HH}$ = 6.7 Hz, i Pr-CH₃), 4.97 (sept, 2 H, ${}^{3}J_{HH}$ = 6.7 Hz, J_{PH} = 4 Hz, *P*r-CH, 6.26 (s, 2 H, CHCH), 6.84, 7.00, 7.50 (m, 5H, aryl-H). ¹³C{¹H}-NMR (125.8 MHz, d_8 -toluene, 298 K): δ = 21.7 (*Pr*-CH₃), 49.9 (d, J_{PC} = 10 Hz, *Pr*-CH), 115.3 (d, J_{CP} = 3 Hz, CHCH), 122.2, 128.1 (aryl-CH), 132.2 (d, J_{CP} = 19 Hz, aryl-CH), 150.1 (d, J_{CP} = 50 Hz, aryl-CH), 168.5 (d, J_{CP} = 104 Hz, NCN). ³¹P-NMR (202.5 MHz, d_8 toluene, 298 K): δ = -59.0, reference: -61.2 [S5]. ¹H-NMR (500.1 MHz, C₆D₆, 298 K): δ = 0.90 (d, 12 H, ${}^{3}J_{HH}$ = 6.7 Hz, i Pr-CH₃), 5.00 (sept, 2 H, ${}^{3}J_{HH}$ = 6.7 Hz, J_{PH} = 4 Hz, i Pr-CH), 6.19 (s, 2 H, CHCH), 6.91, 7.07, 7.64 (m, 5H, aryl-H). ¹³C{¹H}-NMR (125.8 MHz, C₆D₆, 298 K): δ = 21.8 (^{*i*}Pr-CH₃), 49.9 (d, *J*_{PC} = 10 Hz, *i*Pr-CH), 115.4 (d, *J*_{CP} = 3 Hz, CHCH), 122.3, 128.1 (aryl-CH), 132.1 (d, J_{CP} = 19 Hz, aryl-CH), 150.2 (d, J_{CP} = 50 Hz, aryl-CH), 168.2 (d, J_{CP} = 104 Hz, NCN). ³¹P-NMR (202.5 MHz, C₆D₆, 298 K): δ = -60.0, reference: -61.2 [S5]

NMR experiments:

Conversion of 1 equivalent of iPr_2Im and 1 equivalent of $PhPH_2$ in d_8 -toluene: Penylphosphine (16.6 mg, 151 µmol) was added at room temperature to a solution of iPr_2Im (23.0 mg, 151 µmol) in 600 µL of d_8 -toluene and was heated to 105 °C for 2 h. Identified products: **1**: ¹H-NMR (200.1 MHz, d_8 -toluene, 296 K): δ = 0.95 (d, 12 H, ³ J_{HH} = 6.4 Hz, ^{*i*}Pr-CH₃), 2.44 (sept, 2 H, ³ J_{HH} = 6.4 Hz, ^{*i*}Pr-CH), 3.93 (s, 2 H, NCH₂N), 5.44 (s, 2 H, CHCH). *i*Pr₂Im=PPh **4:** ¹H-NMR (200.1 MHz, *d*₈-toluene, 296 K): δ = 0.91 (d, 12 H, ³J_{HH} = 6.7 Hz, *i*Pr-CH₃), 4.96 (sept, 2 H, ³J_{HH} = 6.7 Hz, *J*_{PH} = 4 Hz, *i*Pr-CH), 6.24 (s, 2 H, CHCH), 6.84, 7.00, 7.50 (m, 5H, aryl-*H*). ³¹P-NMR (80.9 MHz, *d*₈-toluene, 298 K): δ = -58.8; reference: -61.2 [S5]. P₄Ph₄: ³¹P-NMR (80.9 MHz, *d*₈-toluene, 296 K): δ = -48.23; reference: -48.0. [S6] P₆Ph₆: ³¹P-NMR (80.9 MHz, *d*₈-toluene, 296 K): δ = -22.0; reference: -21.2. [S6d] P₅Ph₅: ³¹P-NMR (80.9 MHz, *d*₈-toluene, 296 K): δ = -2.68; reference: -5.0 – -2.9. [S7]

Conversion of 1 equivalent of *i*Pr₂Im and 1 equivalent of *p*ToIPH₂ in *d*₈-toluene: *para*-Tolylphosphine (20.7 mg, 167 µmol) was added at room temperature to a solution of *i*Pr₂Im (25.4 mg, 167 µmol) in 600 µL *d*₈-toluene and heated to 105 °C for 4 h. *i*Pr₂ImH₂ **1**: ¹H-NMR (200.1 MHz. *d*₈-toluene, 296 K): δ = 0.95 (d, 12 H, ³J_{HH} = 6.4 Hz, *i*Pr-CH₃), 2.44 (sept, 2 H, ³J_{HH} = 6.4 Hz, *i*Pr-CH), 3.93 (s, 2 H, NCH₂N), 5.44 (s, 2 H, CHCH). *i*Pr₂Im=PpToI **4**: ¹H-NMR (200.1 MHz, *d*₈-toluene, 296 K): δ = 0.91 (d, 12 H, ³J_{HH} = 6.7 Hz, *i*Pr-CH₃), 4.90 (sept, 2 H, ³J_{HH} = 6.7 Hz, *J*_{PH} = 4 Hz, *i*Pr-CH), 6.25 (s, 2 H, CHCH), 6.84, 7.00, 7.50 (m, 5H, aryl-H). ³¹P-NMR (80.9 MHz, *d*₈-toluene, 296 K): δ = -57.3. P₄pTol₄: ³¹P-NMR (80.9 MHz, *d*₈-toluene, 298 K): δ = -22.8. P₅pTol₅: ³¹P-NMR (80.9 MHz, *d*₈-toluene, 298 K): δ = -8.3 – -3.6.

Synthesis of P_5Ph_5 5: Phenylphosphine (579 mg, 5.26 mmol) was added at room temperature to a solution of iPr_2Im (200 mg, 1.31 mmol) in 10 mL of toluene and was heated to 105 °C for 4 d. All volatiles were removed *in vacuo* and the residue was dissolved in 10 mL of Et₂O. The crude product was recrystallized at -80 °C, filtered, washed twice with 5 mL of -78 °C cold *n*-hexane and dried *in vacuo* to afford 208 mg (385 mmol, yield: 37 %) of a colorless solid. $C_{30}H_{25}P_5$ [540.39 g/mol]: Calcd. (found) C 66.58 (66.38), H 4.66 (4.57). ¹H-NMR (200.1 MHz, C₆D₆, 296 K): δ = 6.79 – 7.10 (m, 15 H, aryl-C*H*), 7.36 – 7.38 (m, 4 H, aryl-C*H*), 7.97 – 8.08 (m, 6 H, aryl-C*H*). ¹³C{¹H}-NMR (50.3 MHz, C₆D₆, 296 K): δ = 127.9 – 128.2 (m, aryl-CH), 128.8 – 129.3 (m, aryl-CH), 132.8 – 133.4 (m, aryl-CH), 134.1 –134.7 (m, aryl-CH). ³¹P-NMR (80.9 MHz, C₆H₆, 298 K): δ = -5.7 – -1.0; reference: -5.0 – -2.9. [S7]

Synthesis of $P_6(pTol)_6$ 6: *para*-Tolylphosphine (326 mg, 2.63 mmol) was added at room temperature to a solution of iPr_2Im (400 mg, 2.63 mmol) in 10 mL of toluene and was heated to 105 °C for 4 d. All volatiles were removed *in vacuo* and the residue was dissolved in 10 mL of Et₂O. The crude product was recrystallized at -80 °C, filtered, washed twice with 5 mL of -78 °C cold *n*-hexane and dried *in vacuo* to afford 76 mg (104 mmol, yield: 20 %) of a colorless solid. C₄₂H₄₂P₆ [732.63 g/mol]: Calcd. (found) C 68.86 (68.82), H 5.78 (6.14). IR (ATR): $\tilde{\nu} = 707$ (vw), 730 (w), 799 (vs), 1020 (m), 1038 (w), 1084 (m), 1103 (w), 1117 (w), 1181 (m), 1304 (w), 1393 (m), 1445 (w), 1491 (m), 1595 (w), 1904 (vw), 2862 (w, *v*_{-C-H,str}), 2919 (w, *v*_{-C-H,str}), 2971 (w, *v*_{-C-H,str}), 3014 (m, aryl-*v*_{=C-H,str}), 3029 (w, aryl-*v*_{=C-H,str}), 3063 (w, aryl-*v*_{=C-H,str}). ¹H-NMR (200.1 MHz, CD₂Cl₂, 296 K): $\delta = 2.20$ (s, 18 CH₃), 6.93 (d, 12 H, ³J_{HH} =

7.7 Hz, aryl-C*H*), 6.93 (d, 12 H, ${}^{3}J_{HH}$ = 7.7 Hz, aryl-C*H*). ${}^{13}C{}^{1}H$ -NMR (50.3 MHz, CD₂Cl₂, 296 K): δ = 21.4 (CH₃), 129.4 (aryl-CH), 135.2 (aryl-CH), 140.0 (aryl-CH). ${}^{31}P$ -NMR (80.9 MHz, CD₂Cl₂, 296 K): δ = -24.2.

3. Crystallography

Crystal data collection and processing parameters are given below. Crystals were immersed in a film of perfluoropolyether oil on a glass fiber and transferred to a Bruker X8 Apex-2 diffractometer with CCD area detector and mirror-monochromated Mo-Ka radiation equipped with a Bruker Kryoflex² low-temperature device. Data were collected at 100 K. The images were processed with the Bruker software packages and equivalent reflections were merged. Corrections for Lorentz-polarization effects and absorption were performed if necessary and the structures were solved by direct methods. Subsequent difference Fourier syntheses revealed the positions of all other non-hydrogen atoms, and hydrogen atoms were included in calculated positions and refined using a riding model. Extinction corrections were applied as required. Crystallographic calculations were performed using the SHELXTL software package. [S8] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factors calculations. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no.s CCDC 1056079 (5) and CCDC 1056079 (6). Copies of the data can be obtained free of charge on application to CCDC.

Crystal Structure Determination of P_5Ph_5 **5:** $C_{60}H_{51}P_{10}$, M_r = 1081.71, colorless block, 0.15 × 0.15 × 0.10 mm, triclinic space group $P^{\bar{1}}$, a = 10.102(2) Å, b = 13.842(3) Å, c = 19.518(4), α = 90.19(3) °, β = 93.99(3) °, γ = 93.20 °, V = 2718.4(9) Å³, T = 173 K, Z = 2, $\rho_{calcd.}$ = 1.322 g·cm⁻³, μ = 0.355 mm⁻¹, F(000) = 1120, 11007 reflections in h(-18/18), k(-13/13), l(-28/28) measured in the range 1.05° < θ < 26.50°, completeness 99.9 %, 11007 independent reflections, 9868 observed reflections ($l > 2\sigma(l)$), 669 parameters, 0 restraints; *all data:* R_1 = 0.0673 and wR_2 = 0.1375, $l > 2\sigma(l)$: R_1 = 0.0589 and wR_2 = 0.1279, *Goof* 1.121, largest difference peak/hole 0.704/-0.738 e·Å⁻³.

Crystal Structure Determination of P₆(*p***Tol**)₆ **6**: C₄₂H₄₂P₆, *M_r* = 732.57, colorless block, 0.34 × 0.30 × 0.23 mm, trigonal space group R^3 , *a* = 13.896(3) Å, *b* = 13.896(3) Å, *c* = 20.034(4), γ = 120 °, *V* = 3350.0(17) Å³, *T* = 100 K, *Z* = 3, $\rho_{calcd.}$ = 1.089 g·cm⁻³, μ = 0.266 mm⁻¹, *F*(000) = 1152, 7835 reflections in *h*(-16/17), *k*(-17/17), *l*(-24/23) measured in the range 2.6455° < θ < 25.9365°, completeness 95.6 %, 1405 independent reflections, 1184 observed reflections (*I* > 2 σ (*I*)), 113 parameters, 0 restraints; *all data: R*₁ = 0.0483 and *wR*₂ = 0.1256, $l > 2\sigma(l)$: $R_1 = 0.0423$ and $wR_2 = 0.1229$, *Goof* 1.123, largest difference peak/hole 0.380/-0.183 e·Å⁻³. For the molecular structure of **P**₆(*p***Tol**)₆ one diethyl ether solvent molecule could not be refined properly was subsequently removed from the model using the PLATON/SQUEEZE routine.

4. References

- [S1] J. Attner, U. Radius, Chem. Eur. J. 2001, 7, 783-790.
- [S2] T. Schaub, U. Radius, A. Brucks, M. P. Choules, M. T. Olsen, T. B. Rauchfuss, *Inorg. Synth.* 2010, 35, 78–83.
- [S3] D. L. Dodds, M. F. Haddow, A. G. Orpen, P. G. Pringle, G. Woodward, Organometallics 2006, 25, 5937-5945.
- [S4] H. C. E. McFarlane, W. McFarlane, J. A. Nash, *J. Chem. Soc., Dalton Trans.* **1980**, 240-244.
- [S5] O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin, G. Bertrand, Angew. Chem. 2013, 125, 3011-3015; Angew. Chem. Int. Ed. 2013, 52, 2939-2943.
- [S6] T. L. Breen, D. W. Stephan, Organometallics 1997, 16, 365-369.
- [S7] (a) N. Burford, C. A. Dyker, A. Decken, *Angew. Chem. Int. Ed.* 2005, *44*, 2364 -2367,
 (b) H. Goldwhite, J. Kaminski, G. Millhauser, J. Ortiz, M. Vargas, L. Vertal, M. Lappert, S. J. Smith, *J. Organomet. Chem.* 1986, *310*. 21-25, (c) M. Scherer, D. Stein, F. Breher, J. Geier, H. Schönberg, H. Grützmacher, *Z. Anorg. Allg. Chem.* 2005, *631*, 2770-2774,
 (d) R. Köster, G. Seidel R. Boese, B. Wrackmeyer, *Chem. Ber.* 1988, *121*, 1955-1966,
 (e) J. Masuda, A. J. Hoskin, T. W. Graham, C. Beddie, M. C. Fermin, N. Etkin, D. W. Stephan, *Chem. Eur. J.* 2006, *12*, 8696-8707, (f) I. Kalinina, F. Mathey, *Organometallics* 2006, *25*, 5031-5034.
- [S8] M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.