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Methods

Synthesis of a-MnQO; nano-rod. The a-MnO, nano-rod was synthesized by a known literature
method'. Briefly, KMnO, (0.1264 g) and NH4ClI (0.0428 g) were homogeneously mixed with
distilled water (40 mL) until they are completely dissolved. The solution was then poured into a
Teflon-lined reactor and was subjected to hydrothermal condition at 140 °C for 24 h. Then, the
resulting powder was filtered and washed with plenty of distilled water. Finally, the filtered

powder was dried in a vacuum oven at 80 ‘C overnight.

Rechargeable Zn battery test. The cathode was prepared by uniformly mixing synthetic a-MnO,
powder (70 mg) and carbon black (10 mg) with a spatula, where polyvinylidene fluoride (PVdF)
binder (20 mg) was then added to make homogeneous mixture. Then, the whole mixture was ball-
milled in N-methyl-2-pyrrolidone (NMP). The a-MnO; slurry was cast onto stainless steel foil (25
um thickness) at a loading of approximately 5.0 mg cm. The electrochemical performance was
evaluated using type-2032 coin cells composed of the as-prepared cathode, a zinc foil anode (10
um thickness), a glass wool separator, and a 1.0 M aqueous zinc sulfate (ZnSQO,) electrolyte. The
cells were tested with a MACCOR cycler between 0.7 —2.0 V at a C/20 rate for the initial 2 cycles,

then at a C/5 rate for the remaining cycles (1 C =210 mA g! of a-MnO,).

GITT measurements and the calculation of the diffusion coefficients. For GITT measurement,
rectangular current pulses were applied to the cell containing a-MnO, cathode repeatedly until it
completes the first discharge-charge process. The current pulse lasted for 40 min at a rate of 0.1 C
and then the cell was subject to relaxation for 1 h to allow the voltage profile to reach the
equilibrium. The chemical diffusion coefficient of Zn** ions passing through the a-MnO, electrode

can be calculated based on the equation (1) from the literatures.>>
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,where m and M are the mass (g) and the molecular weight (g/mol) of the active material,
respectively. Vy is the molar volume (cm?/mol) of a-MnO,, obtainable from the crystallographic
information. S is the effective surface area (cm?) between the active material and the electrolyte
and can be considered to be Brunauer-Emmett-Teller surface area (Sggr). Sggr for a-MnO, nano-

rod is 22 m?/g. dE¢/dS is the slope of the coulometric titration curve which can be obtained by

plotting the equilibrium electrode voltage measured after each titration step 8. dE/ VT denotes the

slope of the linearized region of the potential E; during the current pulse of duration time 7 (sec).

This equation is valid when T<L?/ m?t , where L (cm) is the thickness of the electrode and can

be simplified as the right hand of the equation if dET/d\ﬁ shows a linear behavior.

Characterization. The crystallographic structures were measured by powder X-ray diffraction
(XRD) using Cu-Ka radiation (1=1.5405 A, Rigaku D/MAX-2500/PC). The morphology of the a-
MnO, electrodes was observed by high resolution transmission electron microscopy (HR-TEM,
FEI Tecnai G2 operating at 200 KeV) and field-emission scanning electron microscopy (FE-SEM,

Hitachi S-4000).

In-situ XRD measurements. The in-situ XRD patterns were collected using an X-ray diffracto

metry system (Rigaku MicroMAX 007HF with R-AXIS [V++ image plate) with using Mo-Ka radi



ation (4=0.7107 A). The electrochemical cell specially designed for in-situ XRD analysis was insta
lled on the diffractometer and was connected to the potentiostat (WBCS3000, WonA tech). The ¢
ell was galvanostatically cycled at a scan rate of C/20 while XRD patterns were measured successi
vely every eight minute. To compare the results with those reported in the literature, the 20 value

s were converted to the ones that correspond to Cu-Ka radiation (A\=1.5405 A).
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Figure S1. (a) In-situ X-ray diffraction (XRD) patterns of the zinc/a-MnO, rechargeable battery
during the first cycle and (b) the corresponding potential profiles. The regions of interest are
described as I, I1, II1, and IV in (b).
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Figure S2. The structural development of a-MnO, after the insertion of zinc ions (buserite) and
drying in the oven (birnessite).



10 mm
—

Figure S3. High-resolution transmission electron microscopy (HR-TEM) images of cathodes
during the first discharge and charge processes. HR-TEM images for (a), (b) the original cathode
containing an a-MnO, nanorod, (c), (d) the discharged cathode, and (e), (f) the discharged and
then recharged cathode.
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Figure S4. (a) Transmission electron microscopy (TEM) image of the oven-dried discharged
electrode containing regions B, C, D and (b), (c), (d) EDX compositional analysis for the marked
area B, C, D in the discharged electrode, respectively. Note that the regions with scraps on the
nano-rod, i.e., C and D, are rich in Zn, but the nano-rod contains very little zinc.



Reference

1. Gao, Y.; Wang, Z.; Wan, J., Zou, G.; Qian, Y. J. Cryst. Growth 2005, 279, 415.

2. Li, Z.; Du, F.; Bie, X.; Zhang, D.; Cai, Y.; Cui, X.; Wang, C.; Chen, G.; Wei, Y. J. Phys. Chem.

C. 2010, 114, 22751.

3. Zhu, Y.; Wang, C. J. Phys. Chem. C. 2010, 114, 2830.



