Supporting Information

Contents:

I. Reagents	S1
II. Preparation of Catalyst	S2
III. Characterization of Catalysts	S2
IV. H ₂ generation from FA/SF aqueous solution	S3
V. The calculation of the initial TOF	S3
VI. Table S1 Activity of catalysts reported	S4
VII. Table S2 Ea of catalysts reported	S5
VIII. Table S3 Contents of Au and Pd in L-Au ₆ Pd ₄	S6
IX. Figure S1 Arrhenius plot (In TOF vs 1/T)	S7
X. Figure S2 GC spectrum of CO and CO ₂	S8
XI. Figure S3 GC spectrum of H ₂	S9
XII.Figure S4 XRD of catalysis synthesized with Mg ²⁺ assistance	S10
XIII.Figure S5 XRD of catalysts thermally treated	S11
XIV. Figure S6 UV-Vis of catalysts supported on Al ₂ O ₃	S12
XV.Figure S7 EDS and element mapping of Au ₆ Pd ₄ -L-Mg	S13
XVI.Figure S8 Gas generation for Au _x Pd _(1-x) -L-Mg at room temperature	S14
XVII.Figure S9 XRD of catalysts synthesized in different conditions	S15
XVIII.Figure S10 TEM images of R-Au ₆ Pd ₄ and Au ₆ Pd ₄ -L S16	
XIX.Figure S11 Activity of catalysis synthesized in different conditions	S17
XX.Figure S12 the activity of Pd-L-Mg and Pd-L S1	8
XXI. Figure S13 TEM images of Pd-L-Mg and Pd-L	S19
XXII. Figure S14 The activity of Au ₆ Pd ₄ -L-xMg	S20
XXIII. Figure S15 TEM images of Au ₆ Pd ₄ -L-Mg recycled	S21

I. Reagents.

Tetrachloroauric (III) acid (Aladdin, 99.99%, Shanghai) Sodium tetrachloropalladate (II) (Aladdin, 98%, Shanghai) Magnesium nitrate hexahydrate (Aladdin, 99%, Shanghai) sodium borohydride (NaBH₄, Aladdin, 98%, Shanghai) Formic acid (HCOOH, FA, Aladdin, 98%, Shanghai) Sodium formate (Aladdin, 96%, Shanghai) Ethanol (Tianjin Chemical Reagents, >98%, China) De-ionized water All the chemicals were used as received without further purification.

II. Preparation of Catalyst.

The synthesis of Au₆Pd₄-L-Mg is carried out in ethanol-water bath (the whole process of reduction was performed at -3 °C, the temperature was controlled and maintained through circulating cold pump). Typically, 167 mg carbon (VXC-72) and 100 mg Mg(NO₃)₂ is dispersed into a mixture of 10 ml distilled water and 5 ml ethanol, sonicated for 1 h. Add 5 ml aqueous solution (containing 0.018 mmol HAuCl₄ and 0.012 mmol Na₂PdCl₄) as precursor and stir for 30 min. Then, 10 ml fresh NaBH₄ aqueous solution (containing 0.1 g NaBH₄) is added into above mixture with magnetic stirring (800 r/min). After reduction for 5 h, the catalyst is separated by centrifugation, washed with distilled water and ethanol for several times respectively and dried in vacuum oven for 24 h at 25 °C. At last, the catalyst is triturated to be ready for characterization and H₂ generation.

Catalysts with different Au-Pd ratio is synthesized by replacing precursor with solution of different concentration of HAuCl₄ and Na₂PdCl₄.

The synthesis of Au₆Pd₄-L is carried out in ethanol-water bath (-3 $^{\circ}$ C) in the same condition except for adding magnesium ion.

The synthesis of Au₆Pd₄-R is carried out in water bath (25 °C) in the same condition as Au₆Pd₄-L.

For UV-Vis characterization needs, Au, Pd and AuPd nano-catalysts were prepared in the same condition with aluminum oxide as carrier, (separately labeled as Au-Al₂O₃, Pd-Al₂O₃ and Au₆Pd₄-Al₂O₃)

III. Characterization of Catalysts.

Powder X-ray diffraction (XRD) patterns were recorded using a Bruker diffractometer with Cu K a radiation (D8 Advance X-ray diffractometer, Cu K a, λ =1.5406 Å 40 kV and 40 m A). The composition of the catalysts was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES, USA Thermo Jarrell-Ash Corp. ICP-9000 (N+M)). Field-emission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), Oxford EDXS system and Inca software were used to collect and process STEM-EDX data and EELS elemental mapping observations were performed on a Philips Tecnai F20 microscope, working at 200 kV. All samples subjected to TEM measurements were dispersed in ethanol ultrasonically and were dropped on copper grids. Concentration of H₂, CO₂ and CO is measured on SP-2100A with thermal conductivity detector (TCD) and flame ionization detector (FID)-Methanator (Detailed gas analysis for H₂ was conducted by GC-TCD. The CO₂ and CO compositions were determined by GC-FID-Methanator using calibrating gas containing 100 ppm CO. Normalization method was adopted to quantify the CO concentration). The UV-Vis spectra of solid catalyst were recorded with a Shimadzu UV-2450 dual beam spectrometer in the 190-900 nm regions with 0.1 nm resolution, barium sulfate was as reference substance.

To clarify the AuPd alloy structure clearly, the catalysts Au₆Pd₄-L-Mg, Au-L-Mg and Pd-L-Mg were thermally treated at 300 °C to improve the crystalline structure of

nanoalloy. The thermal treatment was carried out under a 10 % H_2 in He mixture. The samples were heated at 10 °C min⁻¹ up to 300 °C, kept at final temperature for 1 h and finally cooled in the reducing atmosphere. The annealed samples were denoted as $Au_6Pd_4-L-Mg-T$.

IV. H₂ generation from FA/SF aqueous solution.

Generally, 127 mg as-prepared catalyst is placed in a two-neck round bottom flask with one opening connected to gas burette and the other one connected to a pressure-equalization funnel. Add 10 ml formic acid (1.1 mol•L⁻¹) and sodium formate (4.0 mol•L⁻¹) aqueous solution into the flask through the funnel with magnetic stirring (800 r•min⁻¹). Hydrogen generation starts once the solution is added. The reaction is carried out in water bath (25 °C) and ice-water bath (0 °C) respectively.

V. The calculation of the initial TOF.

The TOF in this research is calculated by following equation,

$$TOF = \frac{p_{atm}V_{H_2}}{RTn_{Au+Pd}t}$$

Where p_{atm} is the pressure of atmosphere, V_{H_2} is the volume of hydrogen generated in certain time, T is the temperature dehydrogenation is carried out, n_{Au+Pd} is the total mole number of Au and Pd used in the synthesis and t is reaction time.

VI. Table S1 Activity of catalysts reported.

Catalyst	Solvent/Medium	Temp. (°C)	TOF (h ⁻¹)	Ref
AuPd-L-Mg	Aqueous HCOONa	25 25 25 25	1530 (5 min) 1120 (10min) 795 (20 min) 250 (overall)	This work
Au-Pd/C	Aqueous HCOONa	25	1075ª	40
Au/ZrO ₂ NC ₈	5HCOOH/2NEt ₃	25	292 ^b	13
Ag@Pd/C	Aqueous	20	192°	31
CoAuPd /C	Aqueous	25	80 ^b	30
Pd/C with citric acid	Aqueous HCOONa	25	64 ^c	14
Pd/MSC-30	Aqueous HCOONa	25	750 °	28
$Ag_{0.1}Pd_{0.9}/rGO$	Aqueous HCOONa	25	105.2 ^b	17
Au@Pd-N-mrGO	Aqueous	25	89.1 ^b	39
Pd-poly (allyl-amine)	Aqueous	22	46.1 ^b	27
PdNi@Pd/GNs-CB	Aqueous HCOONa	25	577ª	33
PdNi /GNs-CB	Aqueous HCOONa	25	529ª	33
B-Pd/C	Aqueous HCOONa	30	1184 ^a	34

Activity of catalysts for dehydrogenation of formic acid reported in literature.

^{a,b} initial TOF values calculated at the initial stages of the catalytic reactions. (^a t=10 min, ^b t=20 min), ^c TOF values were calculated according to the amount of released H_2 in overall testing time.

VII. Table S2 Ea of catalysts reported.

Catalyst	E _a (kJ/mol)	Ref
AuPd-L-Mg	18.5	This work
L-Au ₆ Pd ₄	21.98	40
Au-ZrO ₂	49.3	13
PdAg/C	115	37
PdAu/C	115	37
Pd-Au/C-CeO ₂	84.2±7.4	36
1 wt% Au/TiO ₂	63	15
0.8 wt% Au/C	55	15
1 wt% Pd/C	65	15
1 wt% Pd/C with 2 wt% K	97	26
PtRuBiOx	37	32
Ag@Pd	30	31
AgPd	22	31
Pd-MCM-30	39	28
2 wt% Pt/Norit	70±3	16

Activation energy for dehydrogenation of formic acid reported.

VIII. Table S3 Contents of Au and Pd in Au₆Pd₄-L-Mg.

Catalyst	Au	Pd	Mg
ICP- Au ₆ Pd ₄ - L-Mg EDS-	2.07 (wt, %)	0.69 (wt, %)	0.11 (wt, %)
L-Au ₆ Pd ₄ -L-Mg	67.2 (mol, %)	32.8 (mol, %)	not detected

ICP-AES results and EDS results of catalysts of content of Au and Pd in catalysts

IX. Figure S1 Arrhenius plot (In TOF vs 1/T).

X. Figure S2 GC spectrum using GC-FID-Methanator and GC-TCD for the gas generated from FA/SF solution (1.1 M FA, 4.0 M SF) and magnified image.

XI. Figure S3 GC spectrum using TCD for H₂ quantitative analysis.

GC spectrum using GC-FID-Methanator and GC-TCD for the gas generated from FA/SF solution (1.1 M FA, 4.0 M SF)

XIII. Figure S5 XRD of catalysts thermally treated.

The catalysts.Au₆Pd₄-L-Mg, Au-L-Mg and Pd-L-Mg were thermally treated at 300 °C to improve the crystalline structure of nanoalloy. The annealed samples were denoted as Au₆Pd₄-L-Mg-T.

XRD data were collected in the step- scanning mode in the angel interval of 35-43° (2 θ) using steps of 0.01° (2 θ) and the scanning speed was 1°/min.

XIV. FigureS6 UV-Vis of Au-Al₂O₃, Pd-Al₂O₃ and Au₆Pd₄-Al₂O₃.

For UV-Vis characterization needs, Au, Pd and AuPd nano-catalysts were prepared in the same condition with aluminum oxide as carrier, (separately labeled as Au-Al₂O₃, Pd-Al₂O₃ and Au₆Pd₄-Al₂O₃)

XV. FigureS7 EDS (a) and element mapping (b) of Au₆Pd₄-L-Mg.

XVI. Figure S8 Gas generation for Au_xPd_(1-x)-L-Mg at room temperature.

Gas generation of the decomposition of FA/SF (1.1 M FA, 4.0 M SF) solution in present of $Au_xPd_{(1-x)}$ -L- Mg with different x value at room temperature.

XVII. Figure S9 XRD patterns of Au₆Pd₄-L-Mg, Au₆Pd₄-L and Au₆Pd₄-R.

The synthesis of Au₆Pd₄-L is carried out in ethanol-water bath (-3 °C) in the same condition except for adding magnesium ion.

The synthesis of Au₆Pd₄-R is carried out in water bath (25 °C) in the same condition as Au₆Pd₄-L.

XVIII. Figure S10 TEM images of Au₆Pd₄-R and Au₆Pd₄-L.

1.TEM images of Au₆Pd₄-R (a, b). 2.TEM images of Au₆Pd₄-L (c, d).

XIX. Figure S11 Catalytic performance of catalysts synthesized in different conditions.

Gas generation of the decomposition of FA/SF (1.1 M FA, 4.0 M SF) solution at room temperature in present of catalysts Au₆Pd₄-L-Mg, Au₆Pd₄-L, Au₆Pd₄-R synthesized in different conditions.

XX. Figure S12 the activity of Pd-L-Mg and Pd-L at room temperature from FA/SF (1.1 M FA, 4.0 M SF).

XXI. Figure S13 TEM images of Pd-L-Mg and Pd-L.

1.TEM images of Pd-L(a, b, c).
2.TEM images of Pd-L-Mg(d, e, f).

XXII. Figure S14 The activity of catalysts (Au $_6$ Pd $_4$ -L-xMg) prepared with different Mg²⁺ concentrations.

XXIII. Figure S14 TEM images of Au₆Pd₄-L-Mg recycled.

