Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Organocatalytic Enantio- and Diastereoselective Synthesis of Highly Substituted δ-Lactones *via* Michael-Cyclization Cascade

Santosh Agrawal,^{a,‡} Nagaraju Molleti^{a,‡} and Vinod K. Singh^{*,a,b}

^{*a*} Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal– 462 066, India

^b Department of Chemistry, Indian Institute of Technology, Kanpur–208 016, India.

Fax: +91-512-2597436; E-mail: vinodks@iitk.ac.in

Supporting information

Table of contents:

General methods	S2
Optimization of reaction conditions for Michael-cyclization cascade	S3
General procedure and characterization data for Michael- cyclization cascade	
products 4a-f, 5a-g, 6a-8a, 11a,c-f and 12	S3-S14
Procedures and characterization data for the synthesis of lactone (13)	S14-S15
Procedure and characterization data for 14	S15- S16
References	S16
X-ray Crystallographic Data of 7a	S17- S18
¹ H Spectra cross over experiment	S19
¹ H, ¹³ C NMR Spectra and HPLC graph	S20-S69

General Methods

All reactions were carried out in oven dried glassware with magnetic stirring. All solvents were purified and dried according to standard methods prior to use. Catalysts 3a-c, 3,5dimethylpyrazole and α , β -unsaturated aldehydes are commercially available and used without further purification. Starting materials pyrazoleamides (1a-f) were prepared by earlier reported methods.¹ ¹H spectra were recorded on 400 MHz or 500 or 700 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 100 or 125 or 175 MHz in CDCl₃ using TMS or residual protio solvent signals as internal standard. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained by the ESI (Q-TOF) ionization sources. IR spectra were measured with Bruker FT/IR Vector 22 spectrometer. Optical rotations were measured on a commercial automatic polarimeter and reported as follows: $[\alpha]^T_D$ (c = g/100 mL, solvent). Routine monitoring of reactions were performed using precoated silica gel TLC plates from E-Merck. All the chromatographic separations were carried out by using silica gel (Acme's, 100-200 mesh). Melting points were recorded by using a melting point apparatus and are uncorrected. The enantioselectivity was determined by chiral HPLC analysis using chiralpak IA, IB, IC and OJH columns with a 200 UV-detector by using iso-propanol and *n*-hexane as eluents at 25 °C

Table S1. Optimization of reaction conditions for Michael-cyclization cascade^a.

Entry	Solvent	Tempt. (°C)	Time (h)	Yield ^b (%)	ee ^c (%)
1	Toluene	35	12	89	85
2	Water	35	12	15	88
3	Tolune:water	35	12	87	82
4	Acetonitrile	35	12	74	72
5	1,4-dioxane	35	12	79	85
6	Chloroform	35	12	79	80
7	Mesitylene	35	12	88	88
8	Toluene	25	24	85	94
9	Toluene	0	24	40	96
10	Mesitylene	25	24	88	96

^{*a*}All reactions were carried out using 0.2 mmol of **1a** and 0.3 mmol of **2a**. ^{*b*} Isolated yield after column chromatography as single diastereomer (dr was determined by ¹H NMR). ^{*c*} Determined by HPLC using Diacel chiralpak IC column.

General Procedure for the Synthesis of highly substituted lactones:

The pyrazoleamide **1** (0.2 mmol) was added to a mixture of α , β -unsaturated aldehyde **3** (0.3 mmol) and the catalyst **3a** (6.5 mg, 0.02 mmol) and 4-NBA (0.04 mmol) in mesitylene (0.5 mL) at room temperature. The reaction mixture was stirred at 25 °C and the progress of the reaction was monitored by TLC (40% ethyl acetate in hexane). After complete conversion of the pyrazoleamide, the reaction mixture was diluted with CH₂Cl₂ and washed with saturated aq NaHCO₃ (2 times). Organic layer was dried over anhydrous NaSO₄, filtered and concentrated

under reduced pressure. The product was purified by column chromatography over silica gel. (40% ethyl acetate in hexane). Enantiomeric excess of the lactones was determined by chiral HPLC analysis.

(*3R*,*4R*,*6R*)-3-(2-nitrophenyl)-4-phenyl-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (4a):

The compound **4a** was obtained as a white solid in 88% yield and 95.5% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 27.14 min, $t_{\rm R}$ (minor) = 34.32 min, $[\alpha]_{\rm D}^{25}$ = -157.6 (*c* 0.25 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J*

= 2.4 Hz, 1H), 7.66 (d, J = 1.3 Hz, 1H), 7.42 – 7.35 (m, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.26 – 7.18 (m, 4H), 7.06 – 6.98 (m, 2H), 6.64 (dd, J = 11.1, 2.6 Hz, 2H), 6.40 – 6.34 (m, 1H), 3.92 (d, J = 61.3 Hz, 1H), 3.73 – 3.63 (m, 1H), 3.30 (td, J = 13.6, 11.3 Hz, 1H), 2.61 (dt, J = 14.1, 2.9 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 168.2, 146.5, 141.3, 139.9, 135.3, 133.8, 132.8, 130.3, 129.0, 128.9, 127.8, 127.3, 126.2, 107.0, 87.0, 56.1, 43.4, 34.4; IR (film): 2920, 2856, 1737, 1604, 1527, 1349, 1198, 1076 cm⁻¹; HRMS (ES+) calc. for C₂₀H₁₈N₃O₄ [M+H]⁺ : 364.1292 found: 364.1317

(*3R*,*4R*,*6R*)-4-(2-methoxyphenyl)-3-(2-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2Hpyran-2-one (4b):

The compound **4b** was obtained as a pale yellow solid in 84% yield and 85% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 19.91 min, $t_{\rm R}$ (minor) = 45.62 min, $[\alpha]_{\rm D}^{25}$ = -131.20 (*c* 0.25 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 7.9 Hz, 1H),

7.73 (d, J = 2.3 Hz, 1H), 7.66 (d, J = 0.9 Hz, 1H), 7.39 – 7.26 (m, 2H), 7.17 – 7.11 (m, 1H), 6.89 (bs, 1H), 6.75 (d, J = 6.6 Hz, 1H), 6.63 (dd, J = 11.1, 2.5 Hz, 2H), 6.39 – 6.35 (m, 1H), 4.37 – 3.71 (m, 2H), 3.40 (bs, 4H), 2.47 (dt, J = 13.9, 2.6 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 168.6, 156.4, 146.9, 141.2, 134.9, 133.6, 133.1, 130.2, 128.8, 125.7, 121.1, 110.4, 106.9, 87.4,

56.99, 54.85, 33.04; IR (film): 2930, 2851, 1738, 1599, 1525, 1387, 1344, 1246, 1081 cm⁻¹; HRMS (ES+) calc. for C₂₁H₂₀N₃O₅ [M+H]⁺: 394.1397 found: 394.1424

(3R,4R,6R)-3,4-bis(2-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (4c):

The compound **4c** was obtained as a pale yellow solid in 81% yield and 95% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 33.57 min, $t_{\rm R}$ (minor) = 51.07 min, $[\alpha]_{\rm D}^{25} = -38.4$ (*c* 0.25 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.79 (d, *J* = 7.5 Hz,

1H), 7.73 (d, J = 2.3 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.65 (d, J = 1.3 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.30 (t, J = 7.4 Hz, 1H), 6.67 (dd, J = 10.8, 2.4 Hz, 2H), 6.38 – 6.34 (m, 1H), 4.66 (t, J = 11.1 Hz, 1H), 4.05 (s, 1H), 3.43 – 3.27 (m, 1H), 2.71 – 2.55 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 149.9, 141.4, 134.3, 134.0, 133.4, 131.6, 130.7, 129.5, 128.7, 128.0, 126.6, 124.5, 107.1, 86.6, 53.4, 36.0, 34.1; IR (film): 2931, 2851, 1734, 1525, 1346, 1195, 1079 cm⁻¹; HRMS: calculated for C₂₀H₁₇N₄O₆ [M+H]⁺: 409.1143 found: 409.1166

(*3R*,*4R*,*6R*)-4-(4-methoxyphenyl)-3-(2-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2Hpyran-2-one (4d):

The compound **4d** was obtained as a pale yellow solid in 90% yield and 91% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 30.45 min, $t_{\rm R}$ (minor) = 36.57 min, $[\alpha]_{\rm D}^{25} = -159.3$ (*c* 0.15 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ

8.19 (d, J = 7.7 Hz, 1H), 7.73 (bs, 1H), 7.65 (bs, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 8.5 Hz, 2H), 6.76 – 6.66 (m, 3H), 6.63 (dd, J = 11.1, 2.4 Hz, 1H), 6.36 (d, J = 1.8 Hz, 1H), 3.85 (bs, 1H), 3.74 (s, 3H), 3.67 – 3.57 (m, 1H), 3.38 – 3.12 (m, 1H), 2.59 – 2.51 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 158.9, 141.1, 135.2, 133.8, 132.9, 132.0, 130.4, 128.9, 128.3, 126.2, 114.2, 107.0, 87.0, 56.2, 55.2, 42.6, 34.6, 31.5; IR (film): 2967, 2847, 1732, 1609, 1519, 1344, 1253, 1041, 953 cm⁻¹; HRMS (ES+) calc. for C₂₁H₂₀N₃O₅ [M+H]⁺: 394.1397 found: 394.1419

(*3R*,*4R*,*6R*)-3-(2-nitrophenyl)-4-(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2one (4e):

The compound **4e** was obtained as a white solid in 75% yield and 89% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 30.79 min, $t_{\rm R}$ (minor) = 53.37 min, $[\alpha]_{\rm D}^{25}$ = -138.8 (*c* 0.17 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.2 Hz, 1H),

8.08 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 2.3 Hz, 1H), 7.63 (t, J = 3.0 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 6.66 (dd, J = 10.8, 2.4 Hz, 2H), 6.36 – 6.33 (m, 1H), 4.05 (bs, 1H), 3.94 – 3.82 (m, 1H), 3.43 – 3.31 (m, 1H), 2.60 (dt, J = 13.8, 2.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 147.4, 147.3, 146.6, 141.4, 135.0, 134.2, 131.9, 130.5, 129.5, 128.5, 126.5, 124.1, 107.2, 86.7, 43.2, 33.9, 31.5; IR (film): 2883, 1731, 1609, 1519, 1349, 1193, 950 cm⁻¹; HRMS: calc. for C₂₀H₁₇N₄O₆ [M+H]⁺: 409.1143 found: 409.1160

(*3R*,*4R*,*6R*)-4-(4-chlorophenyl)-3-(2-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (4f):

The compound **4f** was obtained as a pale yellow solid in 89% yield and 91% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 20.47 min, $t_{\rm R}$ (minor) = 35.28 min, $[\alpha]_{\rm D}^{25} = -142.7$ (*c* 0.11 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.21

(d, J = 7.7 Hz, 1H), 7.71 (d, J = 2.1 Hz, 1H), 7.64 (s, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.3 Hz, 1H), 7.20 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.72 – 6.53 (m, 2H), 6.36 (s, 1H), 3.94 (bs, 1H), 3.73 - 3.64 (m, 1H), 3.33 - 3.21 (m, 1H), 2.62 - 2.53 (m, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 167.9, 146.4, 141.4, 138.5, 135.3, 134.1, 133.6, 132.4, 130.4, 129.2, 129.1, 129.1, 128.7, 126.4, 107.1, 86.8, 56.1, 42.8, 34.2; IR (film): 3085, 2857, 1732, 1522, 1344, 1193, 1088 cm⁻¹; HRMS (ES+) calc. for C₂₀H₁₇ClN₃O₄ [M+H]⁺: 398.0902 found: 398.0932

(*3R*,*4R*,*6R*)-3-(4-nitrophenyl)-4-phenyl-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (5a):

The compound **5a** was obtained as a pale yellow solid in 80% yield and 92% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}(\text{minor}) = 33.73$ min, $t_{\rm R}(\text{major}) = 40.49$ min, $[\alpha]_{\rm D}^{25} = -196.6$ (*c* 0.14 in CHCl₃); ¹H NMR (400 MHz,

CDCl₃) δ 8.03 (d, J = 8.5 Hz, 2H), 7.67 (bs, 2H), 7.27 – 7.11 (m, 5H), 7.07 – 7.01 (m, 2H), 6.53 (dd, J = 10.3, 4.1 Hz, 1H), 6.38 (bs, 1H), 4.16 (d, J = 12.0 Hz, 1H), 3.44 (td, J = 12.6, 2.8 Hz, 1H), 3.35 – 3.24 (m, 1H), 2.70 – 2.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 147.1, 144.2, 141.4, 139.0, 130.0, 129.9, 129.0, 127.9, 127.0, 123.7, 107.4, 87.1, 55.0, 44.7, 35.0; IR (film): 2924, 1732, 1517, 1349, 1182, 952 cm⁻¹; HRMS (ES+) calc. for C₂₀H₁₈N₃O₃ [M+H]⁺: 364.1292 found: 364.1296

(*3R*,*4R*,*6R*)-4-(2-methoxyphenyl)-3-(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2Hpyran-2-one (5b):

The compound **5b** was obtained as a pale yellow solid in 89% yield and 91% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (minor) = 25.76 min, $t_{\rm R}$ (major) = 32.79 min, $[\alpha]_{\rm D}^{25} = -70.0$ (*c* 0.15 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03

(d, J = 8.7 Hz, 2H), 7.69 – 7.63 (m, 2H), 7.21 (d, J = 8.7 Hz, 1H), 7.18 – 7.12 (m, 1H), 7.09 (d, J = 7.3 Hz, 1H), 6.84 (t, J = 7.4 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 6.50 (dd, J = 10.7, 4.0 Hz, 1H), 6.38 – 6.36 (m, 1H), 4.39 (d, J = 12.1 Hz, 1H), 3.97 – 3.87 (m, 1H), 3.68 (s, 3H), 3.31 (dd, J = 24.5, 13.3 Hz, 1H), 2.57 (dt, J = 14.1, 3.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 156.6, 147.0, 144.6, 141.3, 130.5, 129.9, 129.6, 128.9, 127.9, 126.9, 123.4, 122.9, 121.1, 110.9, 107.2, 87.5, 55.2, 53.1, 33.9; IR (film): 2918, 1739, 1522, 1346, 1246, 952 cm⁻¹; HRMS (ES+) calc. for C₂₁H₂₀N₃O₅ [M+H]⁺: 394.1397 found: 394.1409

(*3R*,*4R*,*6R*)-4-(2-nitrophenyl)-3-(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2one (5c):

The compound **5c** was obtained as a white solid in 85% yield and 92% ee. The optical purity was determined by chiral HPLC on

Chiralpak OJH column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 96.24$ min, $t_R(minor) = 145.23$ min, $[\alpha]_D^{25} = +26.6$ (*c* 0.15 in CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.7 Hz, 2H), 7.75 – 7.53 (m, 5H), 7.40 – 7.29 (m, 1H), 7.17 (d, J = 8.7 Hz, 2H), 6.54 (dd, J = 9.5, 4.9 Hz, 1H), 6.38 (t, J = 2.0 Hz, 1H), 4.42 – 4.26 (m, 2H), 3.38 – 3.20 (m, 1H), 2.92 – 2.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 149.8, 147.4, 142.8, 141.7, 133.6, 133.4, 130.6, 129.8, 128.7, 127.8, 124.8, 123.9, 107.4, 86.3, 53.6, 37.3, 34.6; IR (film): 2919, 1731, 1599, 1525, 1348, 1182, 949 cm⁻¹; HRMS (ES+) calc. for C₂₁H₁₇N₄O₆ [M+H]⁺: 394.1397 found: 394.1403

(*3R*,*4R*,*6R*)-4-(4-methoxyphenyl)-3-(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2Hpyran-2-one (5d):

The compound **5d** was obtained as a pale yellow solid in 74% yield and 92% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 69.74$ min, $t_R(\text{major}) = 81.69$ min, $[\alpha]_D^{25} = -157.62$ (*c* 0.42 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ

8.05 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 2.7 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 8.6 Hz, 2H), 6.51 (dd, J = 10.4, 4.1 Hz, 1H), 6.39 – 6.36 (m, 1H), 4.09 (d, J = 12.0 Hz, 1H), 3.72 (s, 3H), 3.39 (td, J = 12.6, 2.8 Hz, 1H), 3.27 – 3.18 (m, 1H), 2.63 (dt, J = 14.1, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 159.0, 147.1, 144.4, 141.4, 131.0, 130.0, 129.8, 128.1, 123.7, 114.3, 107.3, 87.1, 55.3, 55.2, 44.0, 35.1, 31.5; IR (film): 2929, 2854, 1732, 1611, 1516, 1348, 1249, 1180, 1041, 952 cm⁻¹; HRMS (ES+) calc. for C₂₁H₂₀N₃O₅ [M+H]⁺: 394.1397 found: 394.1403

(3R,4R,6R)-3,4-bis(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (5e):

The compound **5e** was obtained as a pale yellow solid in 65% yield and 91% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 67.32$ min, $t_R(\text{major}) = 91.97$ min, $[\alpha]_D^{25} = -160.0$ (*c* 0.10 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.16

-8.03 (m, 4H), 7.69 (bs, 1H), 7.30 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.6 Hz, 2H), 6.52 (dd, J =

9.3, 4.8 Hz, 1H), 6.41 (bs, 1H), 4.26 (d, J = 12.3 Hz, 1H), 3.63 (td, J = 12.5, 3.6 Hz, 1H), 3.44 – 3.31 (m, 1H), 2.76 (dt, J = 14.2, 4.2 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 168.5, 147.5, 147.4, 146.4, 143.1, 141.7, 130.3, 129.9, 129.6, 128.2, 124.3, 124.0, 123.9, 107.6, 86.4, 54.3, 44.3, 34.3; IR (film): 2839, 1730, 1516, 1347, 1158, 1040 cm⁻¹; HRMS (ES+) calc. for C₂₀H₁₇N₄O₆ [M+H]⁺: 409.1143 found: 409.1133

(*3R*,*4R*,*6R*)-4-(4-chlorophenyl)-3-(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (5f):

The compound **5f** was obtained as a pale yellow solid in 90% yield and 90% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 44.47$ min, $t_R(\text{major}) = 58.11$ min, $[\alpha]_D^{25} = -165.2$ (*c* 0.17 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ

8.06 (d, J = 8.7 Hz, 2H), 7.69 – 7.65 (m, 2H), 7.22 – 7.13 (m, 4H), 6.99 (d, J = 8.4 Hz, 2H), 6.49 (dd, J = 10.1, 4.4 Hz, 1H), 6.39 – 6.37 (m, 1H), 4.12 (d, J = 12.1 Hz, 1H), 3.44 (td, J = 12.6, 3.1 Hz, 1H), 3.33 – 3.20 (m, 1H), 2.66 (dt, J = 14.1, 3.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 147.2, 143.8, 141.5, 137.6, 133.8, 130.0, 129.9, 129.3, 128.4, 123.8, 107.4, 86.8, 54.9, 44.1, 34.7; IR (film): 3085, 2852, 1739, 1520, 1344, 1178, 1090, 950 cm⁻¹; HRMS (ES+) calc. for C₂₀H₁₇ClN₃O₄ [M+H]⁺: 398.0902 found: 398.0918

(*3R*,*4R*,*6R*)-4-(4-hydroxy-3-methoxyphenyl)-3-(4-nitrophenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (5g):

The compound **5g** was obtained as a pale yellow solid in 59% yield and 72% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (minor) = 44.89 min, $t_{\rm R}$ (major) = 65.52 min, [α]_D²⁵ = -95.5 (*c* 0.18 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.06

(d, J = 8.6 Hz, 2H), 7.67 (d, J = 1.9 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 8.1 Hz, 1H), 6.54 – 6.45 (m, 3H), 6.38 (t, J = 2.0 Hz, 1H), 5.56 (s, 1H), 4.08 (d, J = 11.8 Hz, 1H), 3.75 (s, 3H), 3.39 – 3.21 (m, 2H), 2.69 – 2.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 147.1, 146.8, 145.1, 144.4, 141.5, 130.9, 130.0, 123.7, 120.0, 114.8, 109.2, 107.4, 87.0, 55.9, 55.4, 44.5,

35.0; IR (film): 3015, 2901, 1739, 1519, 1347, 1247, 1158, 1014, 950 cm⁻¹; HRMS (ES+) calc. for C₂₁H₂₀N₃O₆ [M+H]⁺: 410.1347 found: 410.1360

(*3R*,*4R*,*6R*)-3-(4-bromophenyl)-4-(4-methoxyphenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2Hpyran-2-one (6a):

The compound **6a** was obtained as a pale yellow solid in 75% yield and 96.7% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 20.71 min, $t_{\rm R}$ (minor) = 23.13 min, $[\alpha]_{\rm D}^{25} = -204.4$ (*c* 0.25 in CHCl₃); ¹H NMR (400 MHz,

CDCl₃) δ 7.65 (dd, J = 7.5, 1.9 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 6.46 (dd, J = 10.6, 3.8 Hz, 1H), 6.39 – 6.33 (m, 1H), 3.87 (d, J = 11.8 Hz, 1H), 3.74 (s, 1H), 3.33 (td, J = 12.8, 2.8 Hz, 1H), 3.20 – 3.10 (m, 1H), 2.60 (dt, J = 14.0, 3.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 158.8, 141.2, 136.1, 131.7, 130.5, 129.5, 128.1, 121.4, 114.2, 107.2, 87.2, 55.2, 55.1, 44.0, 35.3; IR (film): 3028, 2924, 2843, 1731, 1612, 1515, 1388, 1041 cm⁻¹; HRMS (ES+) calc. for C₂₁H₂₀BrN₂O₃ [M+H]⁺ : 427.0652, found: 429.0621

(*3R*,*4R*,*6R*)-3-(4-chlorophenyl)-4-(4-methoxyphenyl)-6-(1H-pyrazol-1-yl)tetrahydro-2Hpyran-2-one (7a):

The compound 7a was obtained as a pale yellow solid in 85% yield and 97% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 70:30];

flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(major) = 20.36$ min, $t_R(minor) = 22.90$ min, $[\alpha]_D^{25} = -182.4$ (*c* 0.25 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 6.1, 1.7 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.96 - 6.89 (m, 4H), 6.74 (d, J = 8.6 Hz, 2H), 6.46 (dd, J = 10.6, 3.8 Hz,

1H), 6.37 - 6.35 (m, 1H), 3.88 (d, J = 11.8 Hz, 1H), 3.73 (s, 3H), 3.33 (td, J = 12.6, 2.9 Hz, 1H), 3.21 - 3.10 (m, 1H), 2.59 (dt, J = 14.0, 3.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 158.8, 141.2, 135.7, 133.3, 131.7, 130.2, 129.6, 128.7, 128.1, 114.2, 107.2, 87.2, 55.2, 55.1, 44.1, 35.3; IR (film): 2909, 1745, 1513, 1265, 1088, 947 cm⁻¹; HRMS: calculated for C₂₁H₂₀ClN₂O₃ [M+H]⁺ expected: 383.1157 found: 383.1163

(*3S*,*4R*,*6R*)-4-(4-methoxyphenyl)-6-(1H-pyrazol-1-yl)-3-(thiophen-2-yl)tetrahydro-2Hpyran-2-one (8a):

The compound **8a** was obtained as a yellow solid in 74% yield and 94% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 27.77 min, $t_{\rm R}$ (minor) = 33.29 min,

 $[\alpha]_D{}^{25} = -128.6 (c \ 0.15 \text{ in CHCl}_3); {}^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 7.68 - 7.62 (m, 2H), 7.15 (d, J = 5.1 Hz, 1H), 7.07 (d, J = 8.7 Hz, 2H), 6.85 - 6.71 (m, 4H), 6.45 (dd, J = 10.7, 3.6 Hz, 1H), 6.37 (d, J = 1.7 Hz, 1H), 4.26 (d, J = 11.5 Hz, 1H), 3.74 (s, 3H), 3.44 (td, J = 12.7, 3.2 Hz, 1H), 3.17 - 3.07 (m, 1H), 2.61 (dt, J = 14.2, 3.4 Hz, 1H); {}^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3) \delta 169.0, 158.8, 141.1, 138.5, 132.3, 129.6, 128.0, 127.5, 126.7, 125.0, 114.2, 107.2, 87.0, 55.2, 50.0, 44.5, 35.8; IR (film): 2909, 2844, 1738, 1613, 1515, 1388, 1251, 1041, 949 cm⁻¹; HRMS (ES+) calc. for C₁₉H₁₈N₂O₃S [M+H]⁺: 355.1111 found: 355.1103$

(*3R*,*4R*,*6R*)-4-(4-methoxyphenyl)-3-(naphthalen-1-yl)-6-(1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (9a):

The compound **9a** was obtained as a white solid in 61% yield and 93% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 28.33 min, $t_{\rm R}$ (minor) = 44.05 min, $[\alpha]_{\rm D}^{25}$ = -208.0 (*c* 0.15 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.80 (m, 1H), 7.75 (d,

J = 2.1 Hz, 1H), 7.73 – 7.66 (m, 3H), 7.46 (td, J = 13.5, 6.6 Hz, 2H), 7.28 – 7.19 (m, 2H), 7.03 (d, J = 6.5 Hz, 1H), 6.81 (d, J = 8.5 Hz, 2H), 6.69 (dd, J = 10.9, 3.1 Hz, 1H), 6.62 (d, J = 8.6 Hz, 2H), 6.40 (bs, 1H), 4.40 (d, J = 11.2 Hz, 1H), 3.77 – 3.70 (m, 1H), 3.67 (s, 3H), 3.30 – 3.19 (m, 1H), 2.67 (dt, J = 14.0, 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 158.6, 141.1, 134.2, 133.2, 132.3, 129.4, 129.3, 128.5, 127.9, 126.4, 125.5, 125.1, 123.2, 113.9, 107.3, 87.4, 55.1, 42.8, 35.5; IR (film): 2941, 1738, 1514, 1387, 1250, 1182, 1040, 950 cm⁻¹; HRMS (ES+) calc. for C₂₅H₂₃N₂O₃ [M+H]⁺: 399.1703 found: 399.1726

(*3R*,*4R*,*6R*)-3-(4-nitrophenyl)-4-phenyl-6-(3-phenyl-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (11a): The compound **11a** was obtained as a white solid in 89% yield and 93.5% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate

1 mL/min; $\lambda = 254$ nm; $t_{\rm R}(\text{minor}) = 16.20$ min, $t_{\rm R}(\text{major}) = 49.60$ min, $[\alpha]_{\rm D}^{25} = -113.20$ (*c* 0.14 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.7 Hz, 2H), 7.87 – 7.81 (m, 2H), 7.71 (d, J = 2.5 Hz, 1H), 7.46 – 7.32 (m, 3H), 7.28 – 7.19 (m, 3H), 7.16 (d, J

= 8.7 Hz, 2H), 7.10 – 7.04 (m, 2H), 6.68 (d, J = 2.5 Hz, 1H), 6.51 (dd, J = 9.9, 4.2 Hz, 1H), 4.20 (d, J = 11.7 Hz, 1H), 3.49 – 3.42 (m, 1H), 3.36 (td, J = 13.2, 9.9 Hz, 1H), 2.77 – 2.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 153.4, 147.1, 144.2, 139.1, 132.7, 131.1, 129.9, 129.1, 128.7, 128.4, 127.9, 127.1, 126.0, 123.7, 104.8, 87.4, 55.0, 44.8, 34.9. IR (film): 3027, 2936, 2856, 1738, 1604, 1519, 1348, 1265, 1073 cm⁻¹; HRMS (ES+) calc. for C₂₆H₂₂N₃O₄ [M+H]⁺: 440.1605 found: 440.1605

(*3R*,*4R*,*6R*)-4-(2-nitrophenyl)-3-(4-nitrophenyl)-6-(3-phenyl-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (11c):

The compound **11c** was obtained as a white solid in 78% yield and 92% ee. The optical purity was determined by chiral HPLC on Chiralpak IA column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 25.07 min, $t_{\rm R}$ (minor) = 50.90 min, $[\alpha]_{\rm D}^{25} = +37.8$ (*c* 0.14 in CHCl₃); ¹H NMR (400

MHz, CDCl₃) δ 8.04 (d, J = 8.5 Hz, 2H), 7.86 – 7.80 (m, 2H), 7.78 – 7.57 (m, 4H), 7.46 – 7.34 (m, 4H), 7.17 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 2.3 Hz, 1H), 6.54 (dd, J = 9.3, 4.9 Hz, 1H), 4.46 – 4.31 (m, 2H), 3.46 – 3.32 (m, 1H), 2.92 (dd, J = 10.5, 5.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 153.7, 149.8, 147.4, 142.8, 133.7, 133.4, 132.7, 131.9, 129.7, 128.7, 128.4, 127.9, 126.0, 124.8, 123.9, 104.9, 86.6, 53.6, 37.4, 34.5; IR (film): 3027, 2941, 2856, 1737, 1601, 1522, 1349, 1071 cm⁻¹; HRMS (ES+) calc. for C₂₆H₂₁N₄O₆ [M+H]⁺: 485.1456 found: 485.1456

(*3R*,*4R*,*6R*)-4-(4-methoxyphenyl)-3-(4-nitrophenyl)-6-(3-phenyl-1H-pyrazol-1yl)tetrahydro-2H-pyran-2-one (11d):

The compound **11d** was obtained as a white solid in 88% yield and 87% ee. The optical purity was determined by chiral HPLC on Chiralpak IA column [*n*-hexane/2-propanol 60:40]; flow rate

1 mL/min; $\lambda = 254$ nm; $t_R(minor) = 42.54$ min, $t_R(major) = 46.55$ min, $[\alpha]_D^{25} = +27.2$ (*c* 0.25 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 2H), 7.86 – 7.81 (m, 2H), 7.70 (d, J = 2.3 Hz, 1H), 7.43 (t, J = 7.4 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 6.75 (d, J

= 8.6 Hz, 2H), 6.68 (d, J = 2.3 Hz, 1H), 6.49 (dd, J = 9.8, 4.2 Hz, 1H), 4.14 (d, J = 11.6 Hz, 1H), 3.73 (s, 2H), 3.46 – 3.24 (m, 2H), 2.71 (d, J = 13.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 159.0, 153.4, 147.3, 147.1, 144.4, 132.7, 131.1, 130.0, 128.7, 128.3, 128.1, 126.0, 123.7, 114.4, 104.8, 87.4, 55.3, 55.2, 44.1, 35.0; IR (film): 3028, 2926, 2856, 1734, 1601, 1495, 1347, 1073 cm⁻¹; HRMS (ES+) calc. for C₂₇H₂₄N₃O₅ [M+H]⁺: 470.1710 found: 470.1712

(*3R*,*4R*,*6R*)-3,4-bis(4-nitrophenyl)-6-(3-phenyl-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (11e):

The compound **11e** was obtained as a pale yellow solid in 80% yield and 89.7% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}(\text{minor}) = 20.60$ min, $t_{\rm R}(\text{major}) = 41.19$ min, $[\alpha]_{\rm D}^{25} = -204.2$ (*c* 0.26 in CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ 8.13 – 8.07 (m, 4H), 7.86 – 7.81 (m, 2H), 7.71 (d, J = 2.5 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 7.40 – 7.29 (m, 3H), 7.19 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 2.5 Hz, 1H), 6.53 (dd, J = 9.3, 4.8 Hz, 1H), 4.31 (d, J = 12.2 Hz, 1H), 3.65 (td, J = 12.4, 3.8 Hz, 1H), 3.52 – 3.38 (m, 1H), 2.80 (dt, J = 14.3, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 153.7, 147.5, 146.5, 143.1, 132.5, 131.6, 129.9, 128.8, 128.6, 128.2, 126.0, 124.3, 124.0, 105.1, 86.7, 54.3, 44.4, 34.2; IR (film): 2936, 2856, 1734, 1604, 1517, 1344, 1158 cm⁻¹; HRMS (ES+) calc. for C₂₆H₂₁N₄O₆ [M+H]⁺: 485.1456 found: 485.1470

(*3R*,*4R*,*6R*)-4-(4-chlorophenyl)-3-(4-nitrophenyl)-6-(3-phenyl-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-one (11f):

The compound **11f** was obtained as a white solid in 83% yield and 91% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 60:40]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_R(\text{minor}) = 13.30$ min, $t_R(\text{major}) = 32.97$ min, $[\alpha]_D^{25} = -183.2$ (*c* 0.12 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.7 Hz, 2H), 7.86 – 7.80 (m, 2H), 7.69 (d, J = 2.5 Hz, 1H), 7.43 (t, J = 7.4 Hz, 2H), 7.36 (dd, J = 8.3, 6.3 Hz, 1H), 7.28 – 7.11 (m, 5H), 7.02 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 2.5 Hz, 1H), 6.49 (dd, J = 9.7, 4.4 Hz, 1H), 4.17 (d, J = 11.9 Hz, 1H), 3.45 (td, J = 12.3, 3.0 Hz, 1H), 3.39 – 3.28 (m, 1H), 2.75 – 2.68 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 153.5, 147.3, 143.8, 137.7, 133.8, 132.6, 131.3, 129.9, 129.3, 128.7, 128.4, 126.0, 123.8, 104.9, 87.1, 54.9, 44.2, 34.6; IR (film): 2936, 2856, 1737, 1604, 1522, 1453, 1347, 1084 cm⁻¹; HRMS (ES+) calc. for C₂₆H₂₁N₄O₆ [M+H]⁺: 485.1456 found: 485.1470

(*3R*,*4R*,*6R*)-6-(3,5-dimethyl-1H-pyrazol-1-yl)-3-(4-nitrophenyl)-4-phenyltetrahydro-2Hpyran-2-one (12):

The compound **12** was obtained as a white solid in 35% yield and 94% ee. The optical purity was determined by chiral HPLC on Chiralpak IB column [*n*-hexane/2-propanol 80:20]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}(\text{minor}) = 27.01$ min, $t_{\rm R}(\text{major}) = 37.19$

min, $[\alpha]_D^{25} = -135.0$ (*c* 0.10 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.7 Hz, 2H), 7.24 – 7.12 (m, 5H), 7.10 – 7.04 (m, 2H), 6.37 (dd, J = 9.9, 4.1 Hz, 1H), 5.91 (s, 1H), 4.13 (dd, J = 12.0, 5.5 Hz, 1H), 3.57 – 3.37 (m, 2H), 2.60 – 2.51 (m, 1H), 2.39 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 150.1, 147.1, 144.5, 140.9, 139.3, 130.0, 128.9, 127.8, 127.1, 123.6, 107.5, 83.8, 55.2, 45.0, 34.2, 13.7, 10.7; IR (film): 2944, 2852, 1728, 1653, 1601, 1515, 1344, 1171, 1053 cm⁻¹; HRMS (ES+) calc. for C₂₂H₂₂N₃O₄ [M+H]⁺: 392.1605 found: 392.1617

Procedure for the Cleavage of pyrazole and Synthesis Lactone (13): ^{1, 2}

To a 5 mL round bottom flask with magnetic stirring bar was added the lactone (0.2 mmol, 1.0 equiv) in CHCl₃ (1.6 mL) and MeOH (0.8 mL) at room temperature, then 20 mol% DABCO (0.04 mmol) was added to the solution. After 72 hours, evaporate the solvent and the crude reaction mixture was dissolved in MeOH (4.2 mL) and reaction mixture cooled to 0 °C. Then NaBH₄ (0.44 mmol) was added to the reaction mixture and stirred at this temperature for 10 minutes, then reaction mixture warmed to room temperature and allowed to stir for 1.30 hours,

then reaction mixture was quenched with ice cold water and extracted with DCM (thrice). The combined organic layers were washed with 10% HCl. Then organic layer dried over Na₂SO₄, filtered and concentrated in vacuo gave a crude product. The crude product was dissolved in DCM (8.0 mL) was added TFA (8 drops) and the solution stirred at room temperature for 1.30 hours. Then evaporate under vacuo and gave crude product. The crude product was purified by flash chromatography using 230-400 silica gel (25% EtOAc in hexane as an eluent) gave a colorless solid in 65% yield.

(3R,4R)-4-(4-chlorophenyl)-3-(2-nitrophenyl)tetrahydro-2H-pyran-2-one (13):

The compound **13** was obtained as a white solid in 65% yield and 92% ee. The optical purity was determined by chiral HPLC on Chiralpak OJH column [*n*-hexane/2-propanol 70:30]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (major) = 28.60 min, $t_{\rm R}$ (minor) = 62.77 min, $[\alpha]_{\rm D}^{25} = -165.6$ (*c* 0.16 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.9 Hz, 1H), 7.40 – 7.28

(m, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.67 (s, 1H), 4.76 (td, J = 11.9, 2.5 Hz, 1H), 4.63 (ddd, J = 11.4, 4.5, 2.3 Hz, 1H), 3.89 (s, 1H), 3.51 (td, J = 11.8, 3.7 Hz, 1H), 2.43 – 2.30 (m, 1H), 2.20 – 2.12 (m, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 169.4, 146.8, 139.7, 134.7, 133.7, 133.2, 132.9, 129.0, 128.9, 128.6, 126.1, 68.7, 56.4, 44.7, 30.4; IR (film): 2930, 1724, 1586, 1530, 1344, 1262, 954 cm⁻¹; HRMS (ES+) calc. for C₁₇H₁₅ClNO₄ [M+H]⁺: 332.0684 found: 332.0705

Procedure for the Synthesis of Benzazapine derivative (14):^{1,3}

To a 5 mL round bottom flask with magnetic stirring bar was added the lactone (0.2 mmol, 1.0 equiv) in CHCl₃ (1.6 mL) and MeOH (0.8 mL) at room temperature, then 20 mol% DABCO (0.04 mmol) was added to the solution. After 48 hours, evaporate the solvent and the crude reaction mixture was dissolved in THF/ACOH(10:1) 3.85 mL. To a stirred solution of ester in THF/ACOH was added Zn dust. Saturated aq. CuSO4 solution was added slowly at 0 °C and

then warm to RT. After 1.5 hours, the mixture was filtered, diluted with EtOAc, and washed twice with sat. aq. NaHCO₃ solution. The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo gave a crude product. The crude product was purified by flash chromatography using 230-400 silica gel (15% EtOAc in hexane as a eluent) gave a colorless semi solid in 50% yield.

methyl (4R,5R)-4-phenyl-2,3,4,5-tetrahydro-1H-benzo[b]azepine-5-carboxylate (13):

The compound **14** was obtained as a colorless semisolid in 50% yield and 92% ee. The optical purity was determined by chiral HPLC on Chiralpak IC column [*n*-hexane/2-propanol 97:03]; flow rate 1 mL/min; $\lambda = 254$ nm; $t_{\rm R}$ (minor) = 44.47 min, $t_{\rm R}$ (major) = 58.11 min, $[\alpha]_{\rm D}^{25} = 25.88$ (*c* 0.34 in CHCl₃); ¹H NMR

(400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 4H), 7.27 – 7.08 (m, 3H), 6.87 (t, *J* = 7.4 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 4.02 (d, *J* = 1.9 Hz, 1H), 3.61 – 3.56 (m, 1H), 3.53 (s, 3H), 3.35 – 3.28 (m, 1H), 3.14 – 3.06 (m, 1H), 2.96 – 2.82 (m, 1H), 2.06 – 1.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 149.8, 145.0, 132.3, 128.3, 128.1, 128.1, 127.9, 126.5, 120.8, 120.1, 57.0, 51.6, 47.8, 45.4, 31.7; IR (film): 3372, 2911, 1731, 1601, 1474, 1365, 1265, 1158, 1004 cm⁻¹; HRMS (ES+) calc. for C₁₈H₂₀NO₂ [M+H]⁺: 282.1489 found: 282.1510

References:

- 1. B. B. Tan, G. Hernandez-Torres and C. F. Barbas III, Angew. Chem. Int. Ed. 2012, 51, 5381.
- S. R. Smith, S. M. Leckie, R. Holmes, J. Douglas, C. Fallan, P. Shapland, D. Pryde, A. M. Z. Slawin and A. D. Smith, *Org. Lett.* 2014, 16, 2506.
- 3. L. D. Amico, X. Companyó, T. Naicker, T. M. Bräuer and K. A. Jørgensen, *Eur. J. Org. Chem.* 2013, 5262.

Figure 1. Molecular structure of 7a shown with 50% ellipsoidal probability. (CCDC 1045015)

Table S2.

Crystal data	
Chemical formula	$C_{21}H_{19}CIN_2O_3$
M_{i}	382.83
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.1999 (5), 13.2765 (11), 23.277 (2)
$V(\text{\AA}_3)$	1916.0 (3)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	0.22
Crystal size (mm)	××
Data collection	
Diffractometer	?
Absorption correction	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11558, 3390, 2041
R _{int}	0.051
$(\sin \theta / \lambda)_{max} (\text{\AA}_{-1})$	0.595
Refinement	
$R[F_2 > 2\sigma(F_2)], wR(F_2), S$	0.054, 0.152, 1.03
No. of reflections	3390
No. of parameters	245
H-atom treatment	H-atom parameters constrained
$\Delta ho_{\text{max}}, \Delta ho_{\text{min}} \left(e \text{ \AA}_{-3} \right)$	0.19, -0.28
Absolute structure	Flack x determined using 643 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.07 (7)

Computer programs: SHELXL2014/6 (Sheldrick, 2014).

Cross over experiment

r / ...)

500 MHz ¹H NMR spectra of crude reaction mixture in CDCl₃

175 MHz ¹³C NMR spectra of compound **4a** in CDCl₃

HPLC graph of compound 4a (racemic)

HPLC graph of compound **4a** (enantioenriched)

400 MHz ¹H NMR spectra of compound 4b in CDCl₃

175 MHz ¹³C NMR spectra of compound 4b in CDCl₃

HPLC graph of compound 4b (racemic)

HPLC graph of compound 4b (enantioenriched)

400 MHz $^1\!\mathrm{H}$ NMR spectra of compound 4c in CDCl3

100 MHz ¹³C NMR spectra of compound **4c** in CDCl₃

182.29631 50.3409

5.8814 6.43298e4

2 52.976 MM

#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.148	BB	1.0085	1.15733e5	1752.48999	97.7295
2	34.321	BB	1.5475	2688.78125	26.37119	2.2705

HPLC graph of compound 4c (enantioenriched)

100 MHz ¹H NMR spectra of compound **4d** in CDCl₃

HPLC graph of compound 4d (racemic)

HPLC graph of compound 4d (enantioenriched)

400 MHz ¹H NMR spectra of compound 4e in CDCl₃

100 MHz ¹H NMR spectra of compound 4e in CDCl₃

HPLC graph of compound 4e (racemic)

HPLC graph of compound 4e (enantioenriched)

HPLC graph of compound 4f (racemic)

HPLC graph of compound 4f (enantioenriched)

100 MHz ¹³C NMR spectra of compound **5a** in CDCl₃

2 40.497 BB 2.6859 2.82961e4 153.69820 96.0902

S34

100 MHz ¹³C NMR spectra of compound **5b** in CDCl₃

HPLC graph of compound 5b (enantioenriched)

400 MHz ¹H NMR spectra of compound 5c in CDCl₃

100 MHz ^{13}C NMR spectra of compound 5c in CDCl_3

HPLC graph of o	compound 5c	(racemic)

12.54156 48.7700

2 137.334 MM 21.7938 1.63997e4

HPLC graph of compound 5c (enantioenriched)

100 MHz ^{13}C NMR spectra of compound 5d in CDCl_3

HPLC graph of compound 5d (racemic)

HPLC graph of compound 5d (enantioenriched)

400 MHz ¹H NMR spectra of compound 5e in CDCl₃

175 MHz ^{13}C NMR spectra of compound 5e in CDCl_3

HPLC graph of compound 5e (racemic)

HPLC graph of compound 5e (enantioenriched)

Comparison of the second seco O_2N [][CI 2.12H ^{2,14}⊥ 2.03Å T. Ţ 6.5 9.5 8.0 7.0 5.0 4.5 f1 (ppm) 4.0 9.0 8.5 7.5 6.0 5.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

400 MHz ¹H NMR spectra of compound $\mathbf{5f}$ in CDCl₃

100 MHz ^{13}C NMR spectra of compound 5f in CDCl_3

HPLC graph of compound 5f (racemic)

	[[[]	[]	
1	44.471	MM	4.8775	1422.69238	4.86136	5.0268
2	58.117	MM	7.6999	2.68797e4	58.18158	94.9732

HPLC graph of compound 5f (enantioenriched)

\$\$ 0,005<

400 MHz ¹H NMR spectra of compound 5g in CDCl₃

100 MHz ^{13}C NMR spectra of compound 5g in CDCl_3

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	43.001	BB	4.0849	2.91866e4	95.78594	49.9824
2	64.695	MM	6.6468	2.92072e4	73.23571	50.0176

HPLC graph of compound **5g** (racemic)

HPLC graph of compound 5g (enantioenriched)

100 MHz ^{13}C NMR spectra of compound 6a in CDCl_3

				L		
1	20.840	BV	0.9112	1.52855e4	268.08002	49.6953
2	22,953	VB	0.7757	1.54729e4	306.12219	50,3047

HPLC graph of compound 6a (racemic)

HPLC graph of compound 6a (enantioenriched)

100 MHz ^{13}C NMR spectra of compound 7a in CDCl_3

HPLC graph of compound 7a (racemic)

HPLC graph of compound 7a (enantioenriched)

400 MHz ¹H NMR spectra of compound 8a in CDCl₃

100 MHz 13 C NMR spectra of compound **8a** in CDCl₃

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.053	BB	0.7798	2810.26440	56.94290	47.1477
2	33.409	BB	1.0093	3150.28516	47.77608	52.8523

HPLC graph of compound 8a (racemic)

HPLC graph of compound 8a (enantioenriched)

100 MHz ^{13}C NMR spectra of compound 9a in CDCl_3

#	[min]		[min]	[mAU*s]	[mAU]	%	
1	28.495	BB	1.0905	3.30943e4	465.99896	48.6040	
2	42.947	BBA	2.0320	3.49954e4	251.41054	51.3960	

HPLC graph of compound 9a (racemic)

HPLC graph of compound 9a (enantioenriched)

100 MHz ^{13}C NMR spectra of compound 11a in CDCl_3

HPLC graph of compound **11a** (racemic)

HPLC graph of compound 11a (enantioenriched)

400 MHz ¹H NMR spectra of compound 11c in CDCl₃

100 MHz ^{13}C NMR spectra of compound 11c in CDCl_3

eak	recitile	rype	winturn	Allea	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	26.106	BB	0.9283	3.14569e4	510.94553	49.9772	
2	52.212	BBA	1.6859	3.14856e4	284.32440	50.0228	

HPLC graph of compound **11c** (racemic)

HPLC graph of compound 11c (enantioenriched)

100 MHz ¹³C NMR spectra of compound **11d** in CDCl₃

HPLC graph of compound 11d (racemic)

HPLC graph of compound 11d (enantioenriched)

400 MHz ¹H NMR spectra of compound 11e in CDCl₃

100 MHz 13 C NMR spectra of compound 11e in CDCl₃

Реак	Retlime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	21.230	BB	1.4450	3966.74512	40.55978	50.6689	
2	43.570	MM	3.2267	3862.00928	19.94848	49.3311	

HPLC graph of compound **11e** (racemic)

HPLC graph of compound 11e (enantioenriched)

100 MHz ¹H NMR spectra of compound 11f in CDCl₃

Реак	Recitile	туре	WIUCH	Area	nergiit	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.867	BB	0.6234	1.09882e4	268.54688	50.6048
2	31.131	BB	1.3356	1.07256e4	123.70191	49.3952

HPLC graph of compound **11f** (racemic)

HPLC graph of compound **11f** (enantioenriched)

100 MHz ¹H NMR spectra of compound **12** in CDCl₃

HPLC graph of compound 12 (racemic)

HPLC graph of compound 12 (enantioenriched)

400 MHz ¹H NMR spectra of compound 13 in $CDCl_3$

175 MHz $^1\!\mathrm{H}$ NMR spectra of compound 13 in CDCl3

HPLC graph of compound 13 (racemic)

HPLC graph of compound 13 (enantioenriched)

4.0184 4.0136 4.0136 3.5790 3.5797 3.5799 3.5797 3.5799 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5709 3.5005 3.5000

400 MHz ¹H NMR spectra of compound 14 in CDCl₃

100 MHz ^{13}C NMR spectra of compound 14 in CDCl_3

HPLC graph of compound 14 (racemic)

HPLC graph of compound 14 (enantioenriched)