Electronic Supplementary Information

Virus-templated FRET platform for rational design of ratiometric fluorescent nanosensors

Limin Chen,^a Yehong Wu,^a Yuan Lin*^a and Qian Wang*^{ab}

 ^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China. <u>linyuan@ciac.ac.cn</u>
^b Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA wang263@mailbox.sc.edu

Materials

β-Cyclodextrin (β-CD), succinic anhydride (SA), pyridine, 4-dimethylaminopyridine (DMAP), rhodamine B (RhB), 1-adamantanemethanol, 1-adamantanamine hydrochloride, *N*-hydroxysuccinimide (NHS) and *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (EDC·HCl) were purchased from Aladdin Chemistry Co., Ltd., Shanghai, China. Fluorescein isothiocyanate (FITC) was purchased from J & K Scientific Co., Ltd., Beijing, China. Dubelcco's Modified Eagle's Medium (DMEM) was purchased from Thermo Fisher Scientific Inc. Other reagents were local commercial products and used as received.

Preparation of M13-β-CD/Ada-FITC/Ada-RhB

M13-\beta-CD. M13- β -CD was prepared from bacteriophage M13 and NHS-activated β -CD-COOH as our previous report.¹

Ada-RhB. Ada-RhB was prepared from RhB and 1-adamantanemethanol as our previous report.²

Ada-FITC. FITC (20.0 mg, 0.05 mmol), 1-adamantanamine hydrochloride (9.3 mg, 0.05 mmol), triethylamine (28.0 μ L, 0.2 mmol), DMSO (10 mL) and 100 mM pH 9.5 sodium carbonate buffer solution (10 mL) were mixed and stirred at room temperature for 24 h. The resulting Ada-FITC was separated by silica gel column chromatography (CH₃OH/CH₂Cl₂, 1/5) as an orange solid (16.9 mg, 62 %). ¹H NMR (400 MHz, CD₃OD) δ (ppm): 8.26 (s, 1 H), 7.84 (d, *J* = 8.0 Hz, 1 H), 7.17 (d, *J* = 8.0 Hz, 1 H), 6.73 (d, *J* = 8.6 Hz, 2 H), 6.70 (d, *J* = 2.3 Hz, 2 H), 6.58 (dd, *J_I* = 8.6 Hz, *J_Z* = 2.3 Hz, 2 H), 2.07 (s, 3 H), 1.74-1.64 (m, 6 H), 1.54 (s, 6 H).

M13-\beta-CD/Ada-FITC/Ada-RhB. M13- β -CD was first incubated with various molar ratios of Ada-FITC and Ada-RhB in 10 mM pH 7.8 K-phos buffers for 30 min at 4 °C, and purified by precipitation twice with PEG_{8K} and NaCl to give the M13- β -CD/Ada-FITC/Ada-RhB.

$n_{Ada-FITC}$: $n_{Ada-RhB}$	approximate values of Ada-FITC per M13-β-CD particle	approximate values of Ada-RhB per M13-β-CD particle
6:0	1416	0
4:2	859	242
3:3	577	503
2:4	456	835
0:6	0	1410

Table S1 The approximate number of Ada-FITC and Ada-RhB anchored on a M13-β-CD particle

Characterization of M13-β-CD/Ada-FITC/Ada-RhB

UV-Vis spectra of M13-β-CD/Ada-FITC/Ada-RhB K-phos buffer solutions (10 mM, pH 7.8) were acquired on a

TU-1901 spectrometer (Beijing Purkinje General Instrument Co., Ltd.). For transmission electron microscopy (TEM) analysis, a drop of M13- β -CD/Ada-FITC/Ada-RhB aqueous solution was placed on a carbon-coated grid for 30 seconds and most of the solution was then removed by filter paper, which was then stained with uranyl acetate and observed by a JEOL JEM-1011 microscope operating at an accelerating voltage of 100 kV. The fluorescence spectra were acquired on a Hitachi F-2500 FL spectrophotometer. The pH-dependent ratiometric response of the M13 nanosensor was determined based on the fluorescence emission ratio (I_{515 nm}/I_{580 nm}) of M13- β -CD/Ada-FITC/Ada-RhB K-phos buffer solution (10 mM) as a function of pH (3.4 ~ 9.4). Time-resolved fluorescence decay measurements were performed on a time-correlated single photon counting FLSP-920 system with excitation at 377 nm and detection at 515 nm.

Fig. S1 TEM image of uranyl acetate-stained M13- β -CD/Ada-FITC/Ada-RhB ($n_{Ada-FITC}$: $n_{Ada-RhB} = 1 : 1$). The scale bar represents 100 nm.

Fig. S2 The fluorescence emission ratios ($I_{515 \text{ nm}}/I_{580 \text{ nm}}$) of M13- β -CD/Ada-FITC/Ada-RhB ($n_{Ada-FITC}$: $n_{Ada-RhB} = 1$: 2) when pH was changed from 5.0 to 8.4 repeatedly.

Intracellular imaging

RAW 264.7 macrophages were seeded into a 24-well plate at a density of 1.5×10^4 cells mL⁻¹ in 500 µL of DMEM supplemented with 10 % FBS, 100 units mL⁻¹ of penicillin and 100 µg mL⁻¹ of streptomycin. After 24 h of cell attachment, the cells were incubated with DMEM containing M13- β -CD/Ada-FITC/Ada-RhB for 12 h. Then the media were removed. The cells were washed three times with PBS buffer and observed by a LSM 700 confocal laser scanning microscope imaging system (Carl Zeiss). With excitation at 488 nm, the cells were imaged by collecting fluorescence channel of 510-520 nm (Ada-FITC) and 575-585 nm (Ada-RhB).

- 1. L. Chen, X. Zhao, Y. Lin, Z. Su and Q. Wang, Polym. Chem., 2014, 5, 6754-6760.
- 2. L. Chen, X. Zhao, Y. Lin, Y. Huang and Q. Wang, Chem. Commun., 2013, 49, 9678-9680.