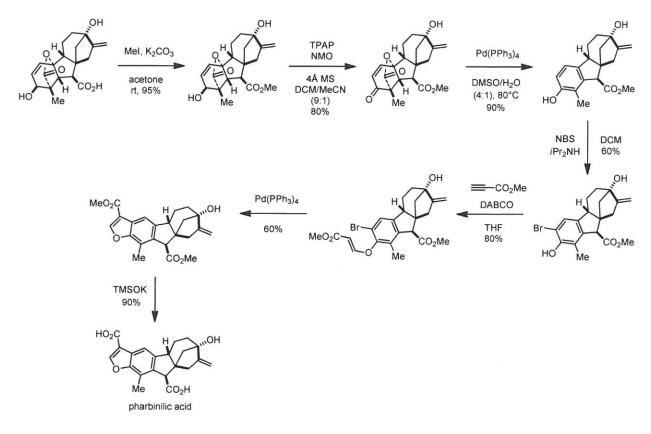
# Synthesis and Biological Evaluation of Pharbinilic Acid and Derivatives as Potent Inhibitors of NF-KB

James R. Annand, Paul A. Bruno, Anna K. Mapp and Corinna S. Schindler<sup>‡</sup>

<sup>‡</sup>University of Michigan, Department of Chemistry and Life Sciences Institute, 930 North University Ave., Ann Arbor, MI 48109, US

### **Supporting Information**

| 1. | General Information                                     |   | S2         |
|----|---------------------------------------------------------|---|------------|
| 2. | Synthesis of Pharbinilic Acid                           | X | S3         |
| 3. | Synthesis of Gibberellin analogues                      |   | <b>S</b> 8 |
| 4. | Approaches to Direct Palladium-Catalyzed Cross Coupling |   | S11        |
| 5. | NMR Spectra                                             |   | S12        |
| 6. | Plasmids, Cell Culture and Transfections                |   | S24        |
| 7. | References                                              |   | S24        |


### 1. General Information

**General Laboratory Procedures**. All moisture-sensitive reactions were performed under an atmosphere of nitrogen in flame-dried round bottom flasks or glass vials fitted with rubber septa and/or septa equipped screw caps. For reactions run at low temperatures the caps were wrapped with Teflon<sup>®</sup> tape and parafilm to minimize the introduction of adventitious water. Stainless steel syringes were used to transfer air or moisture-sensitive liquids. Flash chromatography was performed using silica gel Silia Flash<sup>®</sup> 40-63 micron (230-400 mesh) from Silicycle.

Materials and Instrumentation. All chemicals were purchased from Sigma-Aldrich, VWR or Acros and were used as received unless otherwise stated. Solvents were dried by passing through columns of activated alumina. Triethylamine and N,N-diisopropylethylamine were distilled from CaH2 at 760 Torr. Proton Nuclear Magnetic Resonance NMR (<sup>1</sup>H NMR) spectra and carbon nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were recorded on a Varian Unity Plus 400, Varian MR400, Varian vnmrs 500, Varian Inova 500, Varian Mercury 500, and Varian vnmrs 700 spectrometers. Chemical shifts for protons are reported in parts per million and are references to the NMR solvent peak (CDCl3: 87.27). Chemical shifts for carbons are reported in parts per million and are referenced to the carbon resonances of the NMR solvent (CDCl<sub>3</sub>: d77.0). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), and coupling constants in Hertz (Hz). Mass spectroscopic (MS) data was recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Michigan in Ann Arbor, MI on a Agilent Q-TOF HPLC-MS with ESI high resolution mass spectrometer. Infrared (IR) spectra were obtained using either an Avatar 360 FT-IR or Perkin Elmer Spectrum BX FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm-1), intensity of absorption (s = strong, m = medium, w = weak) and b = broad. Luciferase assay signal was collected using a Molecular Devices LMax luminometer. β-Gal assay signal was collected using a Molecular Devices VersaMax Microplate Reader. RT-qPCR was performed using the Applied Biosystems StepOnePlus system.

Abbreviations used:  $Et_3N$  = triethylamine, EtOAc = ethyl acetate, AcOH = acetic acid, DCM = dichloromethane, HCl = hydrogen chloride,  $NaHCO_3$  = sodium bicarbonate, NaOAc = sodium acetate, NaOMe = sodium methoxide, MeOH = methanol, DIPEA = N,N-diisopropylethylamine, TFA - trifluoroacetic acid, THF = tetrahydrofuran.

### 2. Synthesis of Pharbinilic Acid

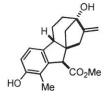


### gibberellic acid methyl ester (2).



To a stirred solution of Gibberellic Acid (1) (5.00g, 14.4 mmol) in acetone (500mL) at room temperature was added solid  $K_2CO_3$  (3.00g, 21.7 mmol) and then CH<sub>3</sub>I (2.50 g, 17.6 mmol). Stirring at room temperature, under nitrogen was continued overnight.

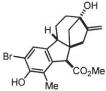
The mixture was then separated in 250mL water and 250mL ethyl acetate. The aqueous layer was extracted twice with 200mL ethyl acetate. The combined organic layer was washed with water, dried using MgSO<sub>4</sub>, and concentrated to give gibberellic acid methyl ester (2) (4.98 g, 95.4% yield) as a white powder, the spectral characteristics of which matched that previously reported in the literature.<sup>1</sup> <sup>1</sup>H NMR (400 MHz, acetone-d6)  $\delta$  6.30 (d, J = 9.3 Hz, 1H), 5.89 (dd, J = 9.3, 3.7 Hz, 1H), 5.19 (s, 1H), 4.86 (s, 1H), 4.66 (s, 1H), 4.15 (d, J = 3.7 Hz, 1H), 3.73 (s, 3H), 3.20 (d, J = 10.7 Hz, 1H), 2.78 (d, J = 10.7 Hz, 1H), 2.23 – 1.62 (m, 10H), 1.23 (s, 3H); <sup>13</sup>C NMR (100 MHz, cdcl<sub>3</sub>)  $\delta$  178.55, 172.66, 156.31, 132.89, 132.30, 107.94, 90.54, 78.51, 77.19, 69.79, 53.44, 52.76, 52.27, 50.93, 50.52, 44.63, 42.94, 38.06, 16.95, 14.35; HRMS calculated for C<sub>20</sub>H<sub>24</sub>O<sub>6</sub>: 360.1573; found: 360.1460.


### keto-gibberellic acid methyl ester (3).



To a solution of gibberellic acid methyl ester (2) (2.00 g, 5.55 mmol) over activated 4Å molecular sieves (3.0 g) in dry 9:1 methylene chloride: acetonitrile (90 mL) was added N-methylmorpholine N-oxide (1.30 g, 11.1 mmol) and TPAP (195.0 mg, 0.555 mmol) slowly at room temperature. Stirring at room temperature was continued for 4 hours under nitrogen. The reaction was quenched with 50 mL of saturated ammonium chloride. The aqueous phase was

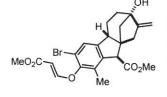
extracted once with methylene chloride (25 mL) and the combined organic phases were washed with brine, dried using MgSO<sub>4</sub> filtered and concentrated onto silica. The crude material was purified using column chromatography and hexane/EtOAc (1:1) as eluent to yield ketogibberellic acid methyl ester (**3**) (1.6 g, 80.5% yield) as a white solid, the spectral characteristics of which match those previously reported in the literature.<sup>2</sup> <sup>1</sup>**H** NMR (400 MHz, cdcl<sub>3</sub>)  $\delta$  7.25 (d, J= 9.4 Hz, 1H), 6.04 (d, J = 9.4 Hz, 1H), 5.29 (m, 1H), 4.98 (s, 1H), 3.73 (s, 3H), 3.51 (d, J = 10.5 Hz, 1H), 2.88 (d, J = 10.5 Hz, 1H), 2.27 – 1.68 (m, 10H), 1.26 (s, 3H); <sup>13</sup>**C** NMR (100 MHz, cdcl<sub>3</sub>)  $\delta$  191.51, 172.97, 171.56, 156.17, 147.13, 129.19, 108.04, 89.34, 77.98, 77.18, 64.91, 62.07, 52.39, 51.34, 49.95, 44.94, 42.92, 37.94, 16.99, 11.42; **IR** (thin film, cm<sup>-1</sup>) 3500.7, 2955.0, 1778.4, 1731.0, 1695.4, 1437.2, 1380.2, 1319.1, 1259.3, 1197.0, 1148.9, 1092.0, 1020.2, 991.6, 939.9, 896.5, 749.5; **HRMS** calculated for C<sub>20</sub>H<sub>23</sub>O<sub>6</sub>: 358.1416; found: 358.1309.


### 1-hydroxy-allogibberellic acid methyl ester (4).



To vacuum dried keto-gibberellic acid methyl ester (3) (1.26 g, 3.52 mmol) and vacuum dried anthraquinone 2-sulfonic acid sodium salt (167.3 mg, 0.540 mmol) palladium tetrakis (213 mg, 0.184 mmol) was added atmosphere free under nitrogen and the reaction vessel was sealed. Under nitrogen, to the sealed vessel was added 4:1 water: DMSO (6.75 mL) and the reaction was brought to 80°C. Stirring of the reaction mixture was continued for 24 hours at 80°C. Upon

completion, the reaction was added to a slurry 15mL of saturated ammonium chloride and 15mL ethyl acetate. The aqueous phase was then extracted twice with ethyl acetate (15 mL) and the combined organic phases were washed with brine, dried using MgSO<sub>4</sub>, filtered and concentrated onto silica. The crude reaction mixture was purified using column chromatography with hexanes/EtOAc (1:2) as eluent to yield the desired product as a white solid (966 mg, 89.5% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.84 (d, J = 7.9 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 5.22 (m, 1H), 5.06 (s, 1H), 3.68 (s, 3H), 3.65 (s, 1H), 3.37 (d, J = 7.5 Hz, 1H), 2.77 (dt, J = 16.3, 2.9 Hz, 1H), 2.50 (dd, J = 16.3, 2.2 Hz, 1H), 2.14 (s, 3H), 2.02 (m, 2H), 1.84 – 1.71 (m, 2H), 1.60 (ddd, J = 12.4, 10.7, 2.2 Hz, 2H); <sup>13</sup>C NMR (126 MHz, cdcl<sub>3</sub>)  $\delta$  172.54, 155.19, 152.48, 141.08, 138.56, 121.41, 120.19, 114.15, 106.77, 78.69, 56.44, 53.97, 51.77, 48.69, 47.46, 38.49, 38.24, 21.10, 12.08; IR (thin film, cm<sup>-1</sup>) 3397.5, 3010.5, 2934.8, 2863.8, 1716.0, 1603.8, 1495.7, 1435.3, 1330.4, 1248.0, 1215.4, 1163.1, 1118.0, 1091.0, 1051.4, 1015.6, 997.2, 893.7, 823.4, 747.3, 666.0, 632.9, 620.4, 613.9; HRMS calculated for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>: 314.1518; found: 314.1589.


### 1-hydroxy-2-bromo-allogibberellic acid methyl ester (5).



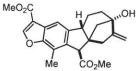
To dry 1-hydroxy-allogibberellic acid methyl ester (4) (400 mg, 1.27 mmol) was added a solution of diisopropylamine (2.54 mL, 0.127 mmol, 50 mM in methylene chloride) and the solution was placed in a room temperature water bath. To the reaction mixture was added a solution of freshly recrystallized NBS (6.36 mL, 1.27 mmol, 200mM in methylene chloride) over 20 minutes

under nitrogen. Stirring of the reaction mixture was continued for 5 minutes under nitrogen. The reaction mixture was acidified with 1 M HCl and diluted with one volume of water. The acidic aqueous layer was extracted twice with methylene chloride (10 mL). The combined organic phases were washed with brine, dried using MgSO<sub>4</sub>, and concentrated onto silica. The crude reaction mixture was purified using column chromatography with hexanes/EtOAc (1:2) as eluent to yield the desired product as a white solid. (300 mg, 60% yield). <sup>1</sup>H NMR (401 MHz, cdcl<sub>3</sub>)  $\delta$  7.06 (s, 1H), 5.47 (s, 1H), 5.17 (s, 1H), 5.04 (s, 1H), 3.65 (s, 3H), 3.59 (s, 1H), 3.36 (d, *J* = 7.6 Hz, 1H), 2.75 (d, *J* = 16.4 Hz, 1H), 2.46 (d, *J* = 16.3 Hz, 1H), 2.17 (s, 3H), 2.09 – 1.85 (m, 2H), 1.84 – 1.50 (m, 6H); <sup>13</sup>C NMR (101 MHz, cdcl<sub>3</sub>)  $\delta$  171.95, 154.92, 148.91, 140.82, 139.35, 123.15, 122.80, 109.35, 106.91, 78.38, 56.15, 53.95, 51.83, 48.75, 47.31, 38.32, 38.16, 20.97, 13.12; **IR** (thin film, cm<sup>-1</sup>) 3430.0, 2930.6,2858.1, 1716.4, 1434.1, 1327.5, 1285.6, 1213.7, 1159.2, 1118.4, 1090.3, 1053.1, 996.7, 893.7, 860.8, 750.6, 666.0, 649.9, 616.7; **HRMS** calculated for C<sub>19</sub>H<sub>21</sub>BrO<sub>4</sub>: 392.0623; found: 392.0676.

### 1-(propenoyl methyl ester vinyl ether)-2-bromo-allogibberellic acid (6).

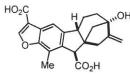


To dry 1-hydroxy-2-bromo-allogibberellic acid (5) (222.7 mg, 0.566 mmol) a dry solution of DABCO (2.00 mL, 0.0566 mmol, 28 mM in methylene chloride) and the reaction mixture was brought to 0°C under nitrogen. To the 0°C reaction mixture was dropwise added a dry solution of methyl propynoate (2.00 mL, 0.566 mmol, 280 mM in methylene chloride). The reaction mixture was allowed to come to


room temperature and stirring was continued for 90 minutes. Upon completion the reaction was quenched with 0.1 M HCl (10 mL) methylene chloride was added (10 mL) and the organic phase was separated. The organic phase was washed with saturated sodium bicarbonate, washed with brine, dried using MgSO<sub>4</sub>, and concentrated to yield the crude product as a clear oil. The resulting crude product was purified using column chromatography with hexane/EtOAc (1:1) as eluent to form the desired product (6) (3.01g, 80% yield) as a clear oil. <sup>1</sup>H NMR (500 MHz, cdcl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 12.4 Hz, 1H), 7.26 (s, 1H), 5.23 (dd, *J* = 2.9, 2.0 Hz, 1H), 5.16 (d, *J* = 12.4 Hz, 1H), 5.10 (s, 1H), 3.72 (s, 3H), 3.70 (s, 3H), 3.63 (s, 1H), 3.44 (d, *J* = 7.9 Hz, 1H), 2.81 (dt, *J* = 16.4, 2.9 Hz, 1H), 2.51 (dd, *J* = 16.4, 2.0 Hz, 1H), 2.14 (s, 3H), 2.12 – 2.08 (m, 1H), 2.04 – 1.96 (m, 1H), 1.85 – 1.73 (m, 2H), 1.65 – 1.57 (m, 2H); <sup>13</sup>C NMR (126 MHz, cdcl<sub>3</sub>)  $\delta$  171.42, 167.45, 160.17, 154.53, 148.31, 145.80, 141.11, 129.43, 125.06, 115.29, 107.16, 99.78, 78.25, 56.10, 54.07, 51.99, 51.32, 48.76, 47.65, 38.28, 38.14, 20.80, 13.34.; IR (thin film, cm<sup>-1</sup>) 3414.3, 3010.2, 2948.6, 2858.2, 1708.9, 1628.9, 1435.5, 1415.5, 1319.3, 1287.6, 1241.8, 1197.4, 1158.7,

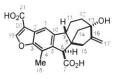
1119.9, 1046.5, 1016.7, 997.7, 958.1, 894.5, 869.6, 837.9, 747.4, 666.1, 623.7, 608.1; **HRMS** calculated for  $C_{23}H_{25}BrO_6$ : 476.0835; found: 476.0946.

To vacuum dried 1-(propenoyl methyl ester vinyl ether)-2-bromo-


allogibberellic acid (6) (74.4 mg, 0.156 mmol) under nitrogen was added

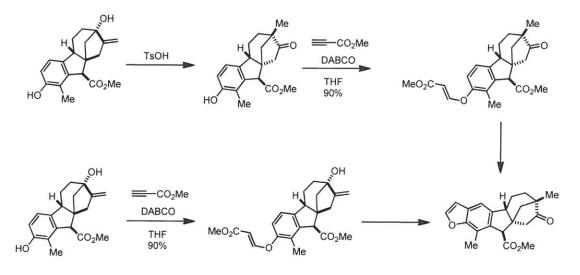
### Pharbinilic acid dimethyl ester (7).



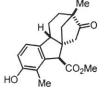

palladium tetrakis (18 mg, 0.016 mmol) and the reaction vessel was sealed under nitrogen. To the sealed reaction vessel, under nitrogen was added dry acetonitrile (5 mL) and dry triethylamine (0.5 mL). The reaction mixture was brought to 80°C and stirring of the reaction mixture was continued for 36 hours. The reaction mixture was quenched by adding 0.1 M HCl (10 mL) and the organic phase was separated in ethyl acetate (10 mL) The aqueous phase was extracted twice with ethyl acetate (10 mL) and the combined organic phases were washed with brine, dried using MgSO<sub>4</sub>, filtered and concentrated. The resulting crude oil was purified using column chromatography with hexane/diethyl ether (4:1) as eluent to form the desired product (7) (36.9 mg, 59.7% yield) as a colorless foam. <sup>1</sup>H NMR (400 MHz, cdcl<sub>3</sub>) δ 8.21 (s, 1H), 7.63 (s, 1H), 5.18 (m, 1H), 5.07 (s, 1H), 3.92 (s, 3H), 3.72 (s, 1H), 3.66 (s, 3H), 3.53 (d, J = 8.0 Hz, 1H), 2.81 (dt, J = 16.4, 2.8 Hz, 1H), 2.61 - 2.48(m, 1H), 2.41 (s, 3H), 2.31 (dd, J = 14.9, 6.4 Hz, 1H), 2.12 – 1.95 (m, 1H), 1.77 (m, 2H), 1.55 (m, 2H); <sup>13</sup>C NMR (100 MHz, cdcl<sub>3</sub>) δ 172.27, 164.08, 154.74, 153.94, 150.80, 142.84, 137.37, 123.87, 119.32, 114.54, 112.56, 106.94, 78.72, 55.52, 54.33, 51.81, 51.59, 48.85, 47.33, 38.36, 38.12, 20.87, 11.86; IR (thin film, cm<sup>-1</sup>) 3382.4, 2932.1, 2860.2, 1715.1, 1563.2, 1486.6, 1435.3, 1373.7, 1329.4, 1286.8, 1244.4, 1194.3, 1160.8, 1139.3, 1111.6, 1074.0, 997.7, 917.9, 882.8, 840.6, 811.5, 751.6, 666.7, 636.5, 621.8; HRMS calculated for C23H24O6: 396.1646; found: 396.1649.

### Pharbinilic acid (8).




To a solution of pharbinilic acid dimethyl ester (7) (25.0 mg, 0.0631 mmol) in dry THF (3.00mL) was added TMSOK (40.5 mg, 0.316 mmol) and stirring of the reaction mixture was continued for 24 hours at room temperature. The solvent was subsequently removed in vacuum and the oil

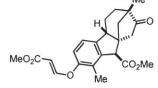
residue was dissolved in TFA acidified (0.1%) 2:1 Acetonitrile: water (300 uL). The crude product was purified under reversed phase conditions (Agilent 1100 system, Phenomenex LUNA 5u (C18) using acetonitrile/water/0.1% TFA as eluent) to form the desired product (8) (21.0 mg, 90.4% yield) as a white crystalline solid.  $[\alpha]_D^{23} = -25.3^{\circ}$  (c = 0.265, MeOH); <sup>1</sup>H NMR (400 MHz, cd<sub>3</sub>od)  $\delta$  8.36 (s, 1H), 7.63 (s, 1H), 5.15 (s, 1H), 5.06 (s, 1H), 3.69 (s, 1H), 3.50 (d, J = 8.0 Hz, 1H), 2.86 (dt, J = 16.4, 2.9 Hz, 1H), 2.57 (d, J = 16.4 Hz, 1H), 2.43 (s, 3H), 2.29 (dd, J = 14.7, 5.5 Hz, 1H), 2.09 – 1.96 (m, 1H), 1.78 – 1.59 (m, 3H), 1.41 (dd, J = 10.6, 2.5 Hz, 1H); <sup>13</sup>C NMR (126 MHz, cd<sub>3</sub>od)  $\delta$  174.01, 165.35, 154.77, 153.93, 151.20, 142.81, 138.07, 123.84, 118.92, 114.80, 111.91, 105.76, 77.58, 55.47, 53.95, 48.02, 47.85, 38.35, 37.99, 20.30, 10.39; IR (thin film, cm<sup>-1</sup>) 3348, 2946, 2835, 2514, 2073, 1659, 1453, 1122, 1029; HRMS calculated for C<sub>21</sub>H<sub>20</sub>O<sub>6</sub>: 369.1260; found: 368.1840.




|        | natural pharbinilic acid       |                | synthetic pharbinilic acid            | synthetic pharbinilic acid |  |  |  |
|--------|--------------------------------|----------------|---------------------------------------|----------------------------|--|--|--|
| number | δн                             | δ <sub>C</sub> | δ <sub>H</sub>                        | δ <sub>c</sub>             |  |  |  |
| 1      | 7.67 (s)                       | 113.5          | 7.63 (s, 1H)                          | 111.91                     |  |  |  |
| 2      |                                | 125.4          |                                       | 123.84                     |  |  |  |
| 3      |                                | 155.5          |                                       | 153.93                     |  |  |  |
| 4      |                                | 120.4          |                                       | 118.92                     |  |  |  |
| 5      |                                | 139.7          |                                       | 138.07                     |  |  |  |
| 6      | 3.72 (s)                       | 57.2           | 3.69 (s, 1H)                          | 55.47                      |  |  |  |
| 7      |                                | 175.8          |                                       | 174.01                     |  |  |  |
| 8      |                                | 55.5           |                                       | 53.95                      |  |  |  |
| 9      | 3.54 (br, d, $J = 8.0$ Hz)     | 48.9           | 3.50 (d, J = 8.0 Hz, 1H)              | 47.85                      |  |  |  |
| 10     |                                | 144.3          |                                       | 142.81                     |  |  |  |
| 11     | 2.31 (m)                       | 21.9           | 2.29 (dd, $J = 14.7$ , 5.5 Hz, 1H)    | 20.30                      |  |  |  |
|        | 2.06 (m)                       |                | 2.09 – 1.96 (m, 1H)                   |                            |  |  |  |
| 12     | 1.75 (m)                       | 39.5           |                                       | 37.99                      |  |  |  |
|        | 1.72 (m)                       |                | 1.78 – 1.59 (m, 3H)                   |                            |  |  |  |
| 13     |                                | 79.1           |                                       | 77.58                      |  |  |  |
| 14     | 1.67 (d, J = 11.0 Hz)          | 49.6           | see 12                                | 48.02                      |  |  |  |
|        | 1.45 (dd, $J = 11.0$ , 2.5 Hz) |                | 1.41 (dd, J = 10.6, 2.5 Hz,<br>1H)    |                            |  |  |  |
| 15     | 2.90 (d, <i>J</i> = 16.5 Hz)   | 39.9           | 2.86 (dt, $J = 16.4$ , 2.9 Hz,<br>1H) | 38.35                      |  |  |  |
|        | 2.60 (d, J = 16.5 Hz)          |                | 2.57 (d, J = 16.4 Hz, 1H)             |                            |  |  |  |
| 16     |                                | 156.4          |                                       | 154.77                     |  |  |  |
| 17     | 5.19 (s)                       | 107.2          | 5.15 (s, 1H)                          | 105.76                     |  |  |  |
|        | 5.08 (s)                       |                | 5.06 (s, 1H)                          |                            |  |  |  |
| 18     | 2.46 (s)                       | 11.9           | 2.43 (s, 3H)                          | 10.39                      |  |  |  |
| 19     | 8.36 (s)                       | 152.5          | 8.36 (s, 1H)                          | 151.20                     |  |  |  |
| 20     |                                | 116.7          | 2                                     | 114.80                     |  |  |  |
| 21     |                                | 167.3          |                                       | 165.35                     |  |  |  |

### 3. Synthesis of Gibberellin analogues



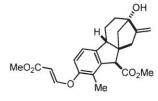

Epi-1-hydroxy-allogibberellic acid methyl ester (9).



To a solution of 1-hydroxy-allogibberellic acid methyl ester (4) (700 mg, 2.23 mmol) in toluene (16 mL) was added pTsOH (1.23 g, 6.68 mmol) and stirring of the reaction mixture was continued for 20 minutes at reflux. The hot reaction mixture was added to a mixture of saturated sodium bicarbonate (50 mL) and ethyl acetate (50 mL). The organic phase was separated, the aqueous phase was extracted twice with ethyl acetate (20 mL), the combined organic phases were

washed with brine, dried using MgSO<sub>4</sub>, and concentrated onto silica. The resulting crude product was purified using column chromatography with hexane/ethyl acetate (1:2) as eluent to form the desired product (9) (699 mg, quantitative yield) as a white solid. <sup>1</sup>H NMR (401 MHz, cdcl<sub>3</sub>)  $\delta$  6.75 (d, J = 7.9 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 3.70 (s, 1H), 3.69 (s, 3H), 3.41 (dd, J = 12.5, 5.0 Hz, 1H), 2.22 (d, J = 3.6 Hz, 1H), 2.17 (d, J = 3.5 Hz, 1H), 2.10 (s, 3H), 2.07 – 1.89 (m, 4H), 1.71 – 1.55 (m, 2H), 1.37 (ddd, J = 26.0, 12.9, 5.8 Hz, 1H), 1.08 (s, 3H); <sup>13</sup>C NMR (126 MHz, cdcl<sub>3</sub>)  $\delta$  220.71, 172.18, 152.96, 140.32, 137.00, 121.41, 120.62, 114.46, 56.32, 52.09, 51.96, 50.85, 48.81, 48.57, 44.41, 36.67, 22.48, 19.66, 12.16; IR (thin film, cm<sup>-1</sup>) 3772.7, 3696.6, 3660.0, 3407.7, 3016.3, 2926.8, 2868.7, 1725.2, 1641.0, 1602.2, 1548.0, 1499.0, 1453.6, 1433.9, 1400.7, 1338.9, 1266.5, 1226.3, 1196.8, 1161.8, 1085.7, 1056.3, 1004.3, 972.2, 940.8, 835.4, 816.1, 746.2, 665.9, 631.0, 619.4; HRMS calculated for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>: 314.1518; found: 314.1410.

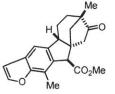
### Epi-1-(propenoyl methyl ester vinyl ether)-allogibberellic acid (10).




To a solution of epi-1-hydroxy-allogibberellic acid methyl ester (9) (570 mg, 1.81 mmol) in dry THF (10.0 mL) was added anhydrous DABCO (20.3 mg, 0.181 mmol) and the solution was cooled to 0°C. To the 0°C solution was added methyl propynoate (167.7 mg, 1.99 mmol). The reaction was allowed to come to room temperature. Stirring of the

reaction mixture was continued for 40 minutes at room temperature. The reaction was quenched by addition of 10 mL saturated ammonium chloride. The aqueous layer was extracted twice with ethyl acetate (10 mL). The organic layers were combined, washed with brine, dried using MgSO<sub>4</sub>, and concentrated onto silica. The resulting crude product was purified using column chromatography with hexane/EtOAc (2:1) as eluent to form the desired product (10) (648 mg, 89.7% yield) as a colorless foam. <sup>1</sup>H NMR (500 MHz, cdcl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 12.3 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 5.41 (d, *J* = 12.3 Hz, 1H), 3.76 (s, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 3.50 (dd, *J* = 12.0, 5.7 Hz, 1H), 2.30 – 2.24 (m, 1H), 2.22 (dd, *J* = 18.6, 3.7 Hz, 1H), 2.13 (s, 3H), 2.10 – 1.94 (m, 3H), 1.63 (td, *J* = 12.8, 5.1 Hz, 1H), 1.51 – 1.41 (m, 1H), 1.12 (s, 3H); <sup>13</sup>C NMR (101 MHz, cdcl<sub>3</sub>)  $\delta$  218.46, 171.30, 167.68, 160.36, 152.88, 142.23, 141.19, 126.04, 121.16, 118.22, 100.69, 56.26, 52.11, 51.90, 51.22, 50.62, 49.02, 48.46, 44.48, 36.48, 22.31, 19.65, 12.36;

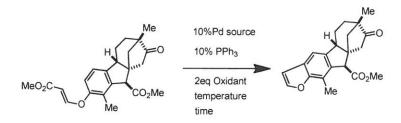
**IR** (thin film, cm<sup>-1</sup>) 3023.5, 2952.0, 2927.9, 2873.2, 1731.9, 1712.4, 1644.2, 1628.2, 1599.1, 1471.4, 1434.7, 1402.1, 1376.6, 1319.6, 1287.0, 1226.1, 1201.7, 1160.0, 1122.0, 1044.1, 1004.3, 956.4, 836.6, 748.0, 666.2, 647.7, 625.9; **HRMS** calculated for  $C_{23}H_{26}O_6$ : 398.1729; found: 398.1810.


### 1-(propenoyl methyl ester vinyl ether)-allogibberellic acid (11).



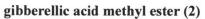
To a solution of *Epi*-1-(propenoyl methyl ester vinyl ether)allogibberellic acid (10) (80.0 mg, 0.201 mmol) in dry THF (0.700 mL) was added a solution of anhydrous DABCO (0.500 mL, 0.0254 mmol, 50 mM in dry THF) and the reaction was brought to 0°C. To the cold reaction mixture was added a dry solution of methyl propynoate (0.100 mL, 0.254 mmol, 2.54 M in dry THF) and stirring was continued for 90

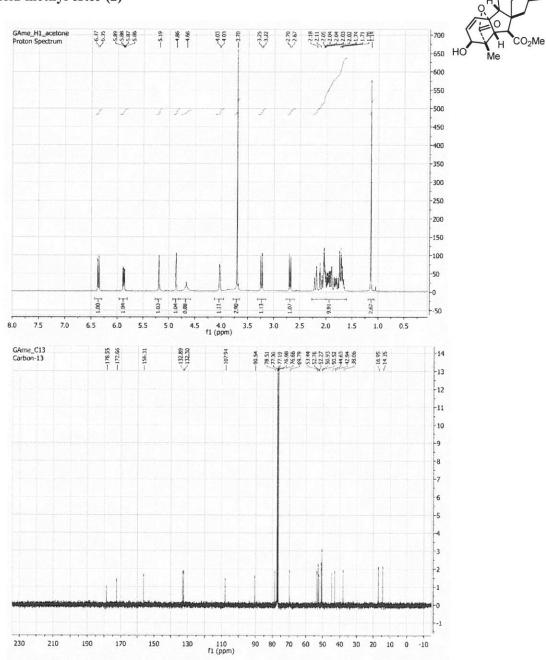
minutes at room temperature. The reaction was quenched with saturated ammonium chloride (10mL) and to the aqueous phase was added ethyl acetate (10 mL). The aqueous phase was then extracted twice with ethyl acetate (10 mL) and the combined organic phases were washed with brine, dried using MgSO<sub>4</sub>, filtered and concentrated onto silica. The resulting crude product was purified using column chromatography with hexane/EtOAc (1:1) as eluent to form the desired product (**11**) (91 mg, 90% yield) as a colorless foam. <sup>1</sup>H **NMR** (500 MHz, cdcl<sub>3</sub>)  $\delta$  7.76 (d, *J* = 12.3 Hz, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 5.40 (d, *J* = 12.3 Hz, 1H), 5.22 (dd, *J* = 2.9, 2.0 Hz, 1H), 5.08 (m, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 3.67 (s, 1H), 3.43 (d, *J* = 7.6 Hz, 1H), 2.80 (dt, *J* = 16.4, 2.9 Hz, 1H), 2.52 (d, *J* = 16.4 Hz, 1H), 2.14 – 2.18 (m, 1H), 2.13 (s, 3H), 2.01 (ddt, *J* = 15.0, 10.7, 8.0 Hz, 1H), 1.84 – 1.72 (m, 2H), 1.60 (s, 2H); <sup>13</sup>C **NMR** (101 MHz, cdcl<sub>3</sub>)  $\delta$  171.91, 167.78, 160.56, 154.96, 152.58, 143.58, 141.77, 126.24, 120.64, 117.96, 106.86, 100.50, 78.41, 56.28, 54.03, 51.78, 51.22, 48.74, 47.63, 38.42, 38.23, 20.94, 12.32; **IR** (thin film, cm<sup>-1</sup>) 3424.2, 2926.6, 2856.3, 1719.7, 1644.5, 1629.1, 1598.1, 1470.9, 1435.1, 1381.9, 1318.6, 1282.7, 1233.8, 1191.9, 1159.6, 1125.2, 1071.7, 1046.3, 1015.9, 997.0, 959.5, 890.6, 834.4, 743.2, 627.0, 619.8; **HRMS** calculated for C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: 398.1729; found: 398.1800.


# (4bR,7S,9aS,10R)-methyl,7,11-dimethyl-8-oxo-5,6,7,8,9,10-hexahydro-4bH-7,9a-methanocyclohepta[1,2]indeno[5,6-b]furan-10-carboxylate (12).



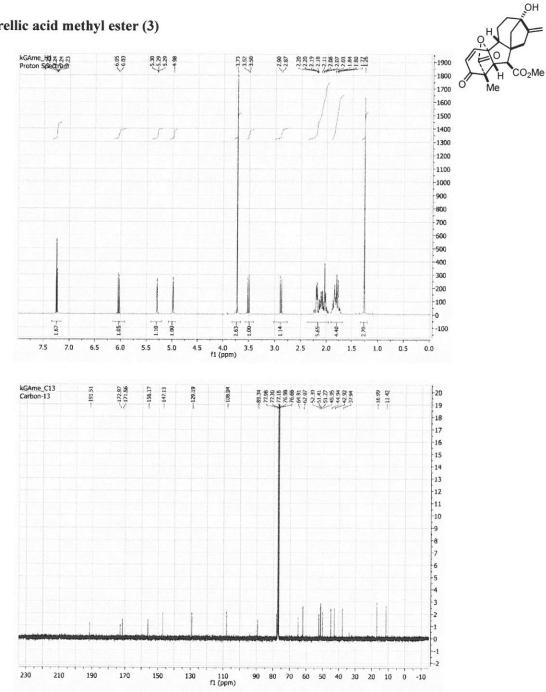
Dry 1-hydroxy-allogibberellic acid methyl ester (11) (50.0 mg, 0.125 mmol), dry palladium tetrakis (14.5 mg, 0.0125 mmol), dry triphenylphosphine (3.3 mg, 0.013 mmol), and dry silver trifluoroacetate (55.2 mg, 0.250 mmol) were combined in a dry flask which was purged with dry nitrogen. To the reaction vessel was added dry benzene (0.700 mL) and the reaction was brought to  $80^{\circ}$ C and allowed to stir for 24 hr. The reaction was quenched with water


(4mL) and to the aqueous phase was added ethyl acetate (4 mL). The aqueous phase was then extracted twice with ethyl acetate (4 mL) and the combined organic phases were washed with brine, dried using MgSO<sub>4</sub>, filtered and concentrated onto silica. The resulting crude product was purified using column chromatography with hexane/EtOAc (1:1) as eluent to form the desired product (12) (22 mg, 56% yield) as a colorless foam.<sup>1</sup>H NMR (401 MHz, cdcl<sub>3</sub>)  $\delta$  7.69 (d, J = 9.5 Hz, 1H), 7.08 (s, 1H), 6.43 (d, J = 9.5 Hz, 1H), 3.87 (s, 1H), 3.76(s, 3H), 3.55 (dd, J = 12.2, 4.9 Hz, 1H), 2.38 (s, 3H), 2.32 (ddd, J = 10.8, 5.0, 3.7 Hz, 1H), 2.21 – 1.96 (m, 4H), 1.65 (dtd, J = 17.8, 12.8, 5.3 Hz, 2H), 1.52 – 1.39 (m, 1H), 1.10 (s, 3H); <sup>13</sup>C NMR (126 MHz, cdcl<sub>3</sub>)  $\delta$  218.13, 170.90, 161.05, 151.83, 143.84, 141.13, 123.49, 119.21, 118.38, 115.85, 56.31, 52.15, 51.94, 50.61, 48.73, 48.27, 44.43, 36.38, 22.39, 19.66, 12.09; IR (thin film, cm<sup>-1</sup>) 2927.4, 2851.4, 1721.2, 1617.7, 1573.3, 1434.7, 1403.3, 1329.7, 1247.8, 1194.1, 1162.8, 1126.2, 1097.6, 1053.1, 997.3, 911.4, 877.9, 825.6, 726.7


# 4. Approaches to Direct Palladium-Catalyzed Cross Coupling

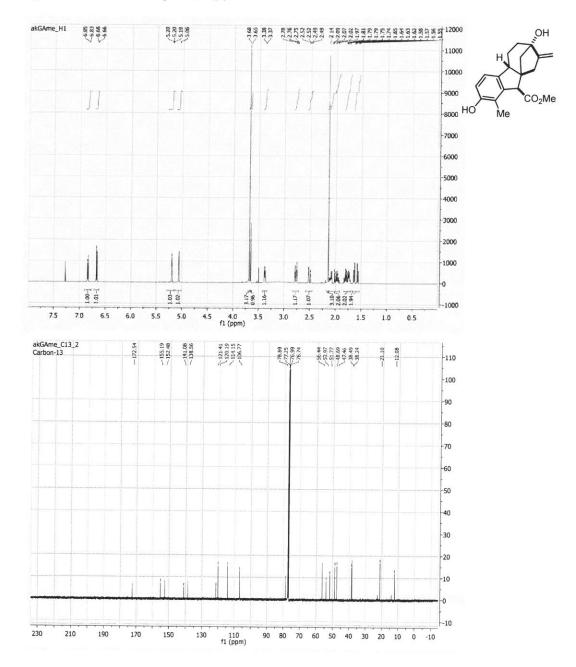


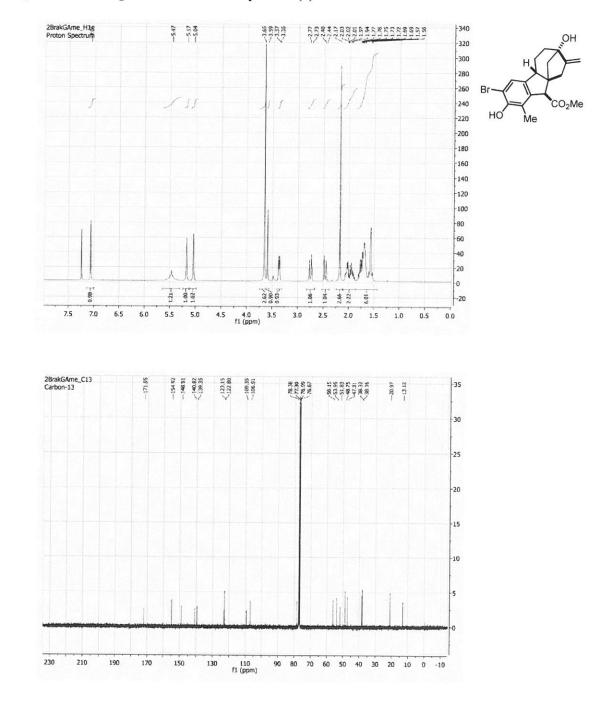
| Catalyst             | Oxidant           | Solvent | temp | time | yield       |
|----------------------|-------------------|---------|------|------|-------------|
| Pd(OAc) <sub>2</sub> | AgTFA             | toluene | 110  | 24   | 30          |
| Pd(OAc) <sub>2</sub> | AgTFA             | toluene | 80   | 24   | 32          |
| Pd(OAc) <sub>2</sub> | AgTFA             | toluene | 65   | 48   | 33          |
| Pd(OAc) <sub>2</sub> | AgTFA             | toluene | 55   | 48   | 28          |
| Pd(OAc) <sub>2</sub> | AgTFA             | benzene | 80   | 24   | 35          |
| Pd(OAc) <sub>2</sub> | AgOTf             | toluene | 110  | 24   | 31          |
| Pd(OAc) <sub>2</sub> | AgCl              | toluene | 110  | 24   | complex mix |
| Pd(OAc) <sub>2</sub> | O <sub>2</sub>    | toluene | 110  | 24   | no reaction |
| $Pd(OAc)_2$          | DMP               | toluene | 110  | 24   | no reaction |
| $Pd(OAc)_2$          | DAIB              | toluene | 110  | 24   | noreaction  |
| $Pd(OAc)_2$          | NaIO <sub>4</sub> | toluene | 110  | 24   | no reaction |
| Pd(OAc) <sub>2</sub> | stoichiometric    | toluene | 110  | 24   | 52          |
| Pdtetrakis           | AgTFA             | toluene | 110  | 24   | 56          |
| Pdtetrakis           | AgTFA             | toluene | 80   | 24   | 56          |
| Pdtetrakis           | AgTFA             | toluene | 65   | 48   | 50          |
| Pdtetrakis           | AgTFA             | toluene | 55   | 48   | 43          |
| Pdtetrakis           | AgTFA             | benzene | 80   | 24   | 56          |
| Pdtetrakis           | AgCl              | toluene | 110  | 24   | complex mix |
| Pdtetrakis           | O <sub>2</sub>    | toluene | 110  | 24   | no reaction |
| Pdtetrakis           | DMP               | toluene | 110  | 24   | no reaction |
| Pdtetrakis           | DAIB              | toluene | 110  | 24   | complex mix |
| Pdtetrakis           | NaIO4             | toluene | 110  | 24   | no reaction |
| Pdtetrakis           | stoich            | toluene | 110  | 24   | 62          |
| PdCl <sub>2</sub>    | AgTFA             | toluene | 80   | 24   | complex mix |
| PdCl <sub>2</sub>    | DAIB              | toluene | 80   | 24   | no reaction |
| Pd(OTf) <sub>2</sub> | AgTFA             | toluene | 80   | 24   | 32          |
| Pd(OTf) <sub>2</sub> | DAIB              | toluene | 80   | 24   | no reaction |
| none                 | AgTFA             | toluene | 110  | 24   | no reaction |


### 5. NMR Spectra

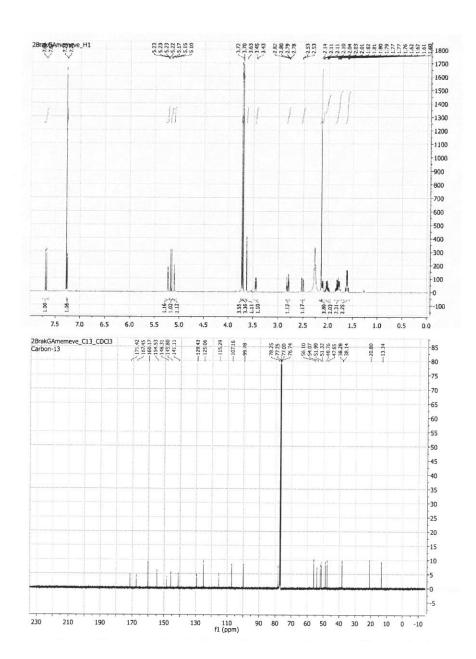





OH


### keto-gibberellic acid methyl ester (3)




Solvent peak present under proton shift at 7.26 ppm in H<sup>1</sup>-NMR

### 1-hydroxy-allogibberellic acid methyl ester (4)





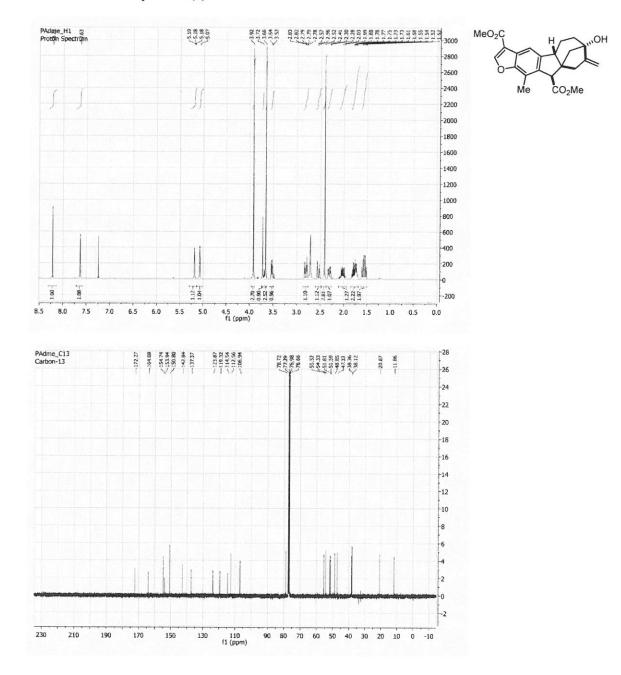
# 1-hydroxy-2-bromo-allogibberellic acid methyl ester (5)

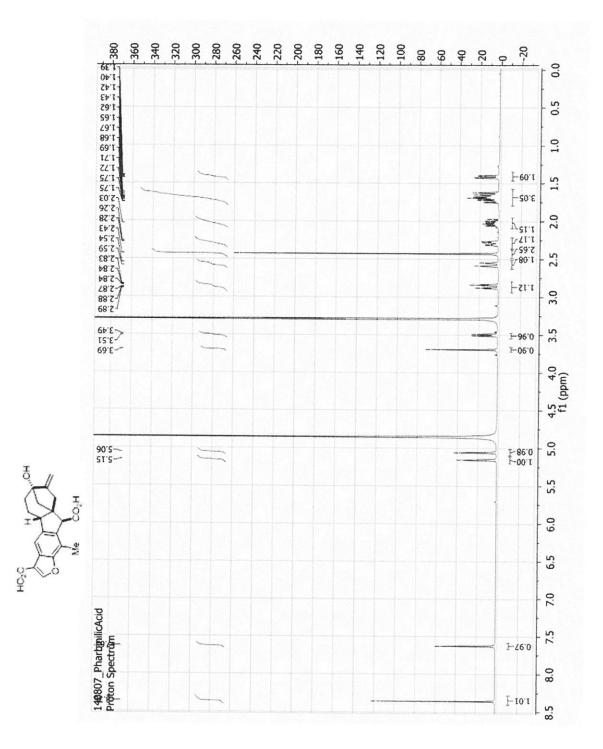


## 1-(propenoyl methyl ester vinyl ether)-2-bromo-allogibberellic acid (6)

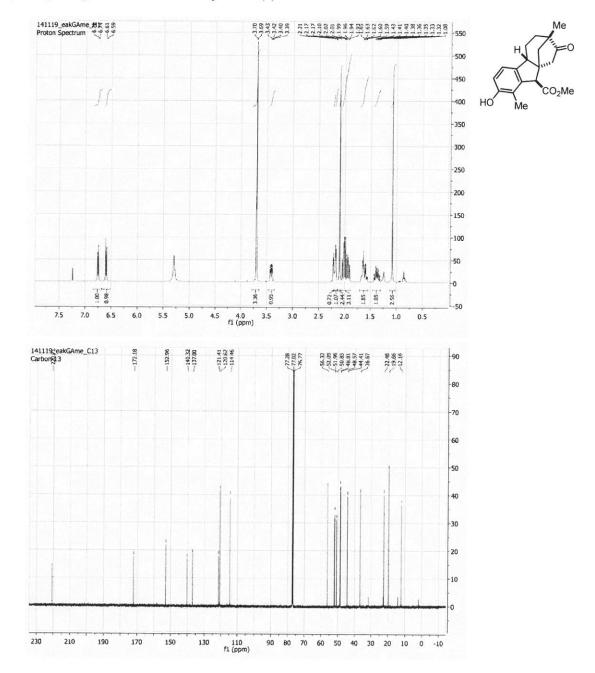


OH


CO<sub>2</sub>Me

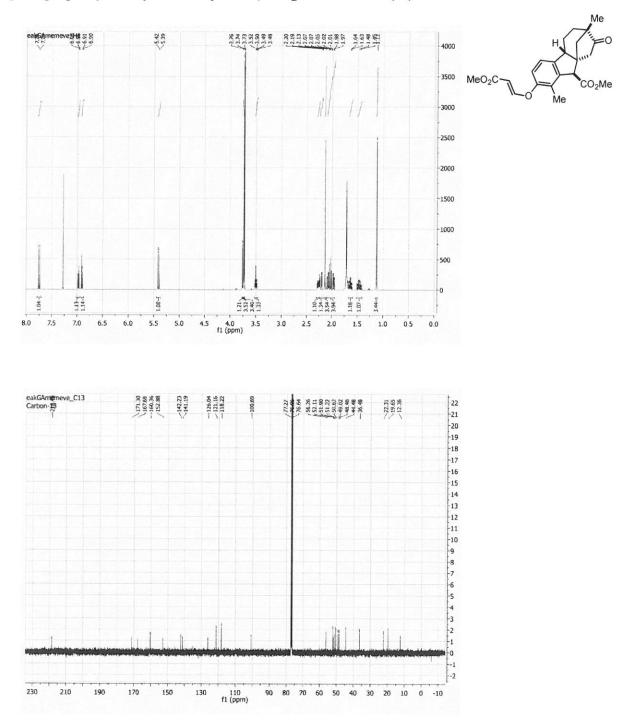

Me

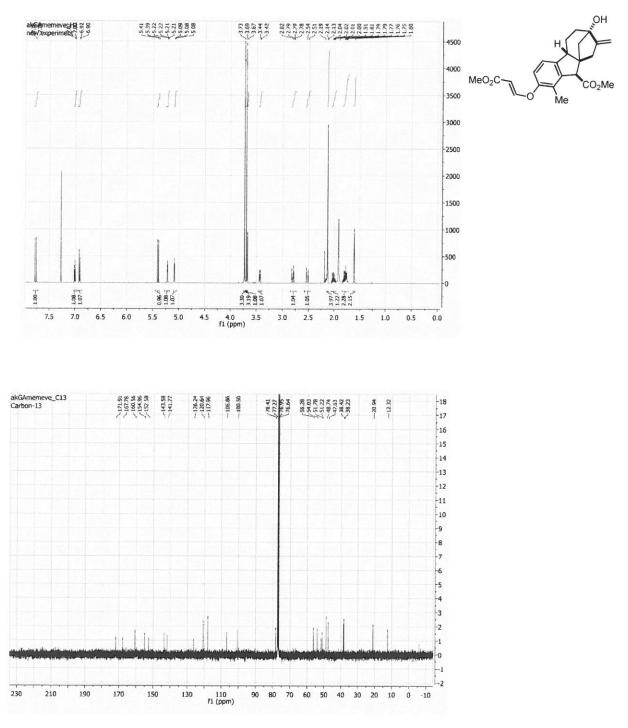
Br


MeO<sub>2</sub>C-

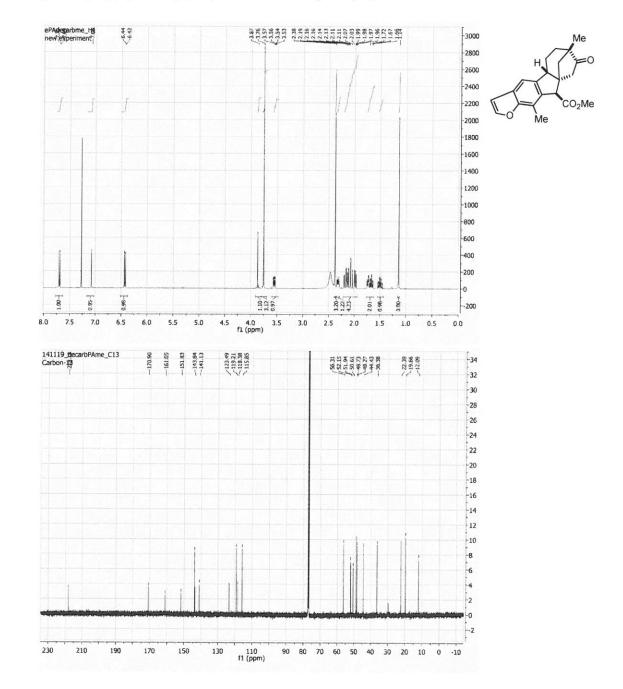
## Pharbinilic acid dimethyl ester (7)



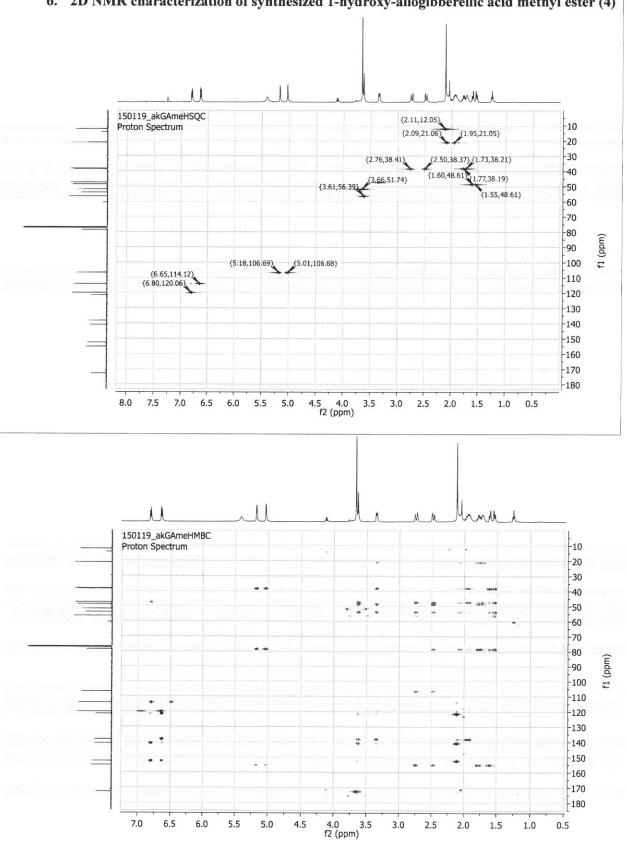




|                     | -22   |               | i <u></u> oo oo           | 4.0.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-------|---------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |       |               | abit another construction |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 66'28               |       |               | 80                        | n                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$6.26              |       |               |                           |                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 77'/b-              |       |               |                           |                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0+2+                |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$L'L\$-            |       |               |                           |                                                                                                                                                                                                                                   | 5 F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16'2+-              |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80.84-              |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$6.£2 <sub>1</sub> |       |               |                           |                                                                                                                                                                                                                                   | 1 - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 85'22               |       |               |                           |                                                                                                                                                                                                                                   | 17 - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0344                |       |               |                           | -                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           | -                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   | and the second s |
| 2.201-              |       |               | ****                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6'111~              |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6'8II               |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~173'8              |       |               |                           | The second second second second                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                   |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -138.0              |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -145.8              |       | Sector Sector |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       |               | -                         |                                                                                                                                                                                                                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5'EST<br>('+ST      | £,    |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 9     | 1             |                           |                                                                                                                                                                                                                                   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E'S9T               | T     | T             |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.471-              | 5     | L             |                           |                                                                                                                                                                                                                                   | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | 17    |               |                           |                                                                                                                                                                                                                                   | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | 1     | 2.            |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 1     | 1 -           |                           |                                                                                                                                                                                                                                   | - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | OF OF | 0             |                           | a de solo de seconda d<br>A de seconda | 230 210 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Carbon-13           | Ť     |               |                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                   |       |               |                           | and the second second                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |       |               |                           |                                                                                                                                                                                                                                   | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |       |               |                           |                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                   |       |               |                           | 3                                                                                                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ś                   |       |               |                           | 4                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . ē                 |       |               |                           | 1                                                                                                                                                                                                                                 | Fio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |       |               |                           |                                                                                                                                                                                                                                   | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

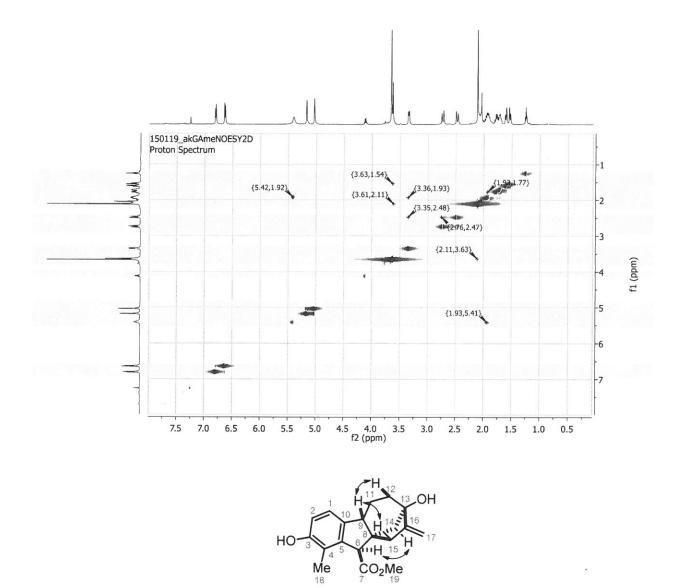



# Epi-1-hydroxy-allogibberellic acid methyl ester (9)

*Epi*-1-(propenoyl methyl ester vinyl ether)-allogibberellic acid (10)







### 1-(propenoyl methyl ester vinyl ether)-allogibberellic acid (11)



(4bR,7S,9aS,10R)-methyl,7,11-dimethyl-8-oxo-5,6,7,8,9,10-hexahydro-4bH-7,9a-methanocyclohepta[1,2]indeno[5,6-b]furan-10-carboxylate (12)



6. 2D NMR characterization of synthesized 1-hydroxy-allogibberellic acid methyl ester (4)



Arrows indicating key NOESY interactions required for assigning stereo centers. Interactions are observed between H9 and H12 and H15 as expected of the assigned stereo centers. H6 displays NOESY interactions with H14. Importantly no NOESY interaction is observed between H9 and H6.

### 7. Plasmids, Cell Culture and Transfections

The NF-κB luciferase reporter plasmid carrying 6 tandem κB-sites, NF-κB-luc, CMV-β-Gal, and pBSSK were generously provided by Dr. Jorge Iñigues-Lluhí (The University of Michigan Pharmacology Department).<sup>3</sup> All cells were maintained in 5% CO<sub>2</sub> at 37°C. HeLa cells were grown in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) supplemented with 10% FBS. For luciferase assays, 4x10<sup>5</sup> cells were seeded in a 6-well dish and allowed to adhere overnight. The media was removed and cells were transfected in Opti-Mem (Invitrogen) with 400 ng NF-κB-luc, 200 ng CMV-β-Gal, and 1,400 ng pBSSK using Lipofectamine 2000 (Life Technologies) according to manufacturer's instructions. After 4.5 h, transfection solution was removed and replaced with DMEM containing 10% FBS. At 24 h after transfection, cells were trypsinized and resuspended in DMEM supplemented with 10% FBS and seeded into a 96-well plate at a density of 8x103 cells per well. After an additional 16 h, media was removed and replaced with Opti-Mem containing vehicle or molecules delivered in DMSO (0.1% v/v) at the indicated concentrations. After cells incubated with either vehicle or compound for 1 h, cells were treated with either PBS or IL-1β at a final concentration of 2 ng/mL. After an additional 3 h, media was removed and cells were lysed with 60 µL of passive lysis buffer. Luciferase and β-Galactosidase activities were determined as previously described.<sup>4</sup> NF-kB luciferase activity IC508 were determined using 5 point dose curves. Response curve analysis was performed using GraphPad software. For endogenous gene expression analysis, 1x10<sup>5</sup> cells were seeded into a 24-well plate and allowed to adhere overnight. Media was removed and replaced with Opti-Mem media containing vehicle or molecule delivered in DMSO (0.1% v/v) at the indicated concentrations. After incubating for 1 h, cells were treated with either PBS or IL-1ß at a final concentration of 2 ng/mL. After 2 h, the media was removed and total RNA was isolated using RNeasy Plus RNA isolation kits (Qiagen) according to manufacturer's instructions. Each RNA sample was used to synthesize cDNA using iScript cDNA synthesis kits (Bio-Rad). Quantitative real-time PCR (qRT-PCR) reactions were carried out in triplicate in an Applied Biosystems StepPlusOne using SYBR green master mix and primers for human RPL19 (Forward, 5'-ATGTATCACAGCCTGTACCTG-3'; Reverse, 5'-TTCTTGGTCTCTCTTCCTCCTTG-3') MIP3a<sup>5</sup> and (Forward, 5'-CCTGGGGGAATATTCTGGTGGTGA-3'; Reverse, 5'-CATCGCTGCCTTGGGTGTTGTAT-3'). RTqPCR analysis was carried out using the comparative  $C_T$  Method ( $\Delta\Delta C_T$  Method) as previously described<sup>6</sup> to estimate MIP3a mRNA levels relative to the reference RPL19 mRNA levels.

#### 8. References

<sup>1</sup> S. Chamni ACS Chem. Bio. 2011. 11, 1175-1181

<sup>2</sup>B. Voigt, G. Adam, N.S. Kobrina, E.P. Serebryakov, N.D. Zeloinsky Z. Chem. 1977. 17, 372-374

<sup>3</sup>J.W. Højfeldt, O. Cruz-Rodríguez, Y. Imaeda, A.R. Van Dyke, J.P. Carolan, A.K. Mapp, J.A. Iñigues-Lluhí. *Mol. Endocrinol.* **2014**. 28, 249-259.

<sup>4</sup> J.A. Iñigues-Lluhí, D. Pearce. Mol. Cell Biol. 2000. 20, 6040-6050.

<sup>5</sup> T.Nakayama, R. Fujisawa, H. Yamada, T. Horikawa, H. Kawasaki, K. Hieshima, D. Izawa, S. Fujiie, T. Tezuka, O. Yoshie. *International Immunology*. **2001**, 13, 95-103.

<sup>6</sup> K.J. Livak, T.D. Schmittigen. *Methods*. 2001. 25, 402-408.