KO'Bu-Mediated annulation of acetonitrile with aldehyde: synthesis of substituted dihydropyridin-2(1H)-ones, pyridin-2(1H)-ones, and thiopyridin-2(1H)-ones

Abhimanyu Yadav, Ajay Verma, Saket Patel, Amit Kumar, Vandana Rathore, Meenakshi, Shailesh Kumar and Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-pass Road, Bhauri, Bhopal, Madhya Pradesh, India, Pin: 462 066

*E-mail: *sangitkumar@iiserb.ac.in*

Table of content

¹H, ¹³C and Mass spectra of dihydropyridin-2(1H)-ones

pyridin-2(1H)-ones, and thiopyridin-2(1H)-ones

S1

S2-S164

Pages

Figure S1¹H NMR spectra of **1**

Figure S2 ¹³C NMR spectra of **1**

Figure S5 ¹H NMR spectra of **3**

Figure S6¹³C NMR spectra of **3**

Figure S8¹H NMR spectra of 4

Figure S9¹³C NMR spectra of 4

Figure S11 ¹H NMR spectra of **5**

Figure S12 ¹³C NMR spectra of **5**

m⁄ z-->

Figure S16¹³C NMR spectra of **6**

Figure S18¹H NMR spectra of **7**

Figure S19¹³C NMR spectra of 7

Figure S20 DEPT-135NMR spectra of 7

Figure S23 ¹³C NMR spectra of 8

Figure S25 ¹H NMR spectra of **9**

Figure S26¹³C NMR spectra of **9**

Figure S28 ¹H NMR spectra of **10**

Figure S29¹³C NMR spectra of **10**

Figure S30 HRMS spectra of 10

Abundance

Figure S31 ¹H NMR spectra of **11**

Figure S32 ¹³C NMR spectra of **11**

Figure S34 ¹H NMR spectra of **12**

Figure S35 13 C NMR spectra of **12**

Figure S38 ¹H NMR spectra of **13**

Figure S39¹³C NMR spectra of **13**

Figure S41 ¹H NMR spectra of **14**

Figure S42 ¹³C NMR spectra of **14**

Figure S44 ¹H NMR spectra of **15**

Figure S45 ¹³C NMR spectra of **15**

Figure S47 ¹H NMR spectra of **16**

Figure S48¹³C NMR spectra of **16**

Figure S50 ¹H NMR spectra of **17**

Figure S51 ¹³C NMR spectra of **17**

Figure S53 ¹H NMR spectra of **18**

Figure S54 ¹³C NMR spectra of **18**

Figure S56 ¹H NMR spectra of **19**

210 12 Spectral Width 24038.5 13 Lowest -1958.9 Frequency 11 Spectrometer Frequency σ 9 00 7 S ω N 1 16 Spectral Size 15 Acquired Size 14 Nudeus 10 Number of 4 200 Modification Date Acquisition Date Data File Name G:/Sangit-VR-56-B/ 2/ fid Pulse Solvent Origin Scans Temperature Owner Title Sequence Parameter 190 Parameters 65536 32768 100.61 nmrsu 298.4 DMSO Bruker BioSpin GmbH 253 zgpg30 Sangit-VR-56-B 130 2014-08-21T03:55:25 180 Value 170 -170.21 160 -154.50 -151.42 150 140 /131.74 -130.22 129.17 130 120 ~119.56 ~118.14 110 100 f1 (ppm) Br NC -110.81 юн 90 -85.63 80 70 60 50 40 --35.60 --33.57 30 20 -18.53 10 0 -

Figure S57 ¹³C NMR spectra of **19**

Figure S59 ¹H NMR spectra of **20**

Figure S60 ¹³C NMR spectra of **20**

Figure S62 ¹H NMR spectra of **21**

Figure S63 ¹³C NMR spectra of **21**

Figure S65 ¹H NMR spectra of **22**

Figure S66¹³C NMR spectra of **22**

Figure S68 ¹H NMR spectra of **23**

Figure S69¹³C NMR spectra of **23**

Figure S71 ¹H NMR spectra of **24**

Figure S72 ¹³C NMR spectra of 24

Figure S74 ¹H NMR spectra of **25**

Figure S75¹³C NMR spectra of **25**

Figure S76 GC HRMS spectra of 25

Data Filename Sample Type	AY-235.D		Sample Position	Name	AY-235 1
Instrument Name	GCQTOF		User Na	me	Agilent-PC\admin
Acq Method	IISER_GENERAL_H	P5_80.M	Acquired	l Time	09-Sep-14 3:33:48 PM
IRM Calibration Statu	s Success		DA Meth	od	iiSER13MAY 2013.m
Comment					
Expected Barcode		Sample Amo	unt		
Dual Inj Vol	0.1	TuneName		Install_tu une.xml	ine.ei.tune_1_4_13.t
TunePath	D:\MassHunter\GCMS\1\7200 \	TuneDateStamp 4142		41421.21	309
MSFirmwareVersion	G.7200.01.09	OperatorNan	ne	Agilent-P	C\admin
RunCompletedFlag	TRUE				

User Chromatograms

Qualitative Analysis Report

--- End Of Report ---

Figure S77 ¹H NMR spectra of **26**

Figure S78¹³C NMR spectra of 26

Figure S80 ¹H NMR spectra of **27**

Figure S81 ¹³C NMR spectra of **27**

Figure S83 ¹H NMR spectra of **28**

0.5

0.0

Figure S84 ¹³C NMR spectra of **28**

Figure S86 ¹H NMR spectra of **29**

Figure S87 ¹³C NMR spectra of **29**

Figure S90 ¹³C NMR spectra of **30**

Figure S92 ¹H NMR spectra of **31**

Figure S93 ¹³C NMR spectra of **31**

Figure S95 ¹H NMR spectra of **32**

200 12 Spectral Width 13 Lowest Frequency 11 Spectrometer Frequency 9 8 Modification Date σ ωN 16 Spectral Size S 4 1 Data File Name 15 Acquired Size 14 Nudeus 10 Number of Scans 7 Acquisition Date Pulse Sequence Solvent Owner Origin Temperature Title 190 Parameter 180 65536 -2306.2 29761.9 512 zgpg30 CDCl3 32768 125.76 298.0 nmrsu G:/ Abhi by Ajay/ Sangit-AV-216-2-f(500MHz)/ 2/ fid Bruker BioSpin GmbH Sangit-AV-216-2-f(500MHz) 13C 2014-11-05T08:36:57 170 -170.68 Value 160 -159.06 $<^{150.08}_{149.13}$ 150 140 -137.10 130 ⊥^{122.88} 121.77 120 -118.44 NC 110 100 f1 (ppm) 90 77.34 77.08 76.83 80 70 60 50 -40.97 40 -35.05 30 20 -18.87 10

Figure S96¹³C NMR spectra of **32**

0 -

Figure S98 ¹H NMR spectra of **33**

Figure S99¹³C NMR spectra of **33**

Figure S102 ¹H NMR spectra of **34**

Figure S103 ¹³C NMR spectra of **34**

12.0 2 Title 15 Acquired Size 8 Modification Date 6 Pulse Sequence ω Data File Name 16 Spectral Size 14 Nudeus 13 Lowest Frequency 11 Spectrometer Frequency 400.13 10 Number of Scans 9 Temperature 7 Acquisition Date 5 Solvent 4 12 Spectral Width Owner Origin 11.5 Parameter 11.0 10.5 65536 32768 298.2 CDCl3 Ħ -1713.7 8196.7 zg30 nmrsu Bruker BioSpin GmbH Sangit-AV-311-3 PROTONRO CDCl3 / opt/ topspin/ nmrsu/ Sangit/ NOV 14 nmrsu G:/ Abhi by Ajay/ Sangit-AV-311-3/ 1/ fid 16 2014-11-11T12:11:06 10.0 9.5 Value + 9.0 1.00 8.5 8.0 7.5 NC 7.0 ١H 6.5 6.0 f1 (ppm) 5.5 5.0 4.5 4.0 **3.5** 3.0 2.5 3.00-= 2.0 1.5 1.13-I 2.99-I 1.0 3.06 ----0.5 0.0

Figure S105 ¹H NMR spectra of 35

-

Figure S106¹³C NMR spectra of **35**

Figure S108 ¹H NMR spectra of 36

Figure S109¹³C NMR spectra of **36**

Figure S112 ¹³C NMR spectra of **37**

S114

Figure S114 ¹H NMR spectra of **38**

S115

Figure S115¹³C NMR spectra of **38**

30

20

10

0

S116

-29.33

26.18 -24.84 -22.68

-18.68 -14.11

Figure S117 ¹H NMR spectra of **39**

0.0

Figure S118 ¹³C NMR spectra of **39**

Figure S120 ¹H NMR spectra of 40

Figure S121 ¹³C NMR spectra of **40**

S123

Figure S123 ¹H NMR spectra of **41**

Figure S124 ¹³C NMR spectra of **41**

		Display	/ Report			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\user data\ tune_low.m VR-107-A-2	2014\DECEMBER\15 DEC	NDr.S.Kumar-VF	Acquisition Date R-107-A-2.d Operator Instrument	12/15/2014 4:20:4 RUCHI micrOTOF-Q II 10	0 PM 0330
Acquisition Para Source Type Focus Scan Begin Scan End	am eter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4600 V -500 V 130.0 Vpp	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	er 0.4 Bar ter 180 °C 4.0 l/min alve Waste	
Intens x10 ⁵ 4 3 2 2	0.2 0.4		1.0	1.2 1.4	1.6	Time
TIC	+All MS					
- 6000- - 4000-			368.2101		* WG, 0.0-0.7 m	in π (2)
2000-	302.3042 300.3042	0.0667 338.3411	360 3		416.2020	440
Intens. 800 600 400	318.0667				+MS, 0.5-0.7mi	in #(21
200- 0- 2500- 2000- 1500-	318.0688		319.0700		C17H15FeN3, M+r	nH ,31
1000 500 0	318.0	318.5 3	319.0721 	319.5	320.0755 320.0	
	Data Analysis 4.0	printed:	4/6/2015 11:	25·51 AM	Page 1 o	F 1

Figure S128 ¹³C NMR spectra of **42**

15 14 1.00-I 13 12 = 10 9 8 fl (ppm) CH₃ NC 3.04~± 1.04~± NН 7 1.03-I 6 S 4 w 3.09---3.04--2 -0

Figure S131 ¹H NMR spectra of 43

Figure S132 ¹³C NMR spectra of **43**

Figure S134 ¹H NMR spectra of **44**

Figure S135 ¹³C NMR spectra of 44

Figure S138 ¹³C NMR spectra of **45**

S140

Figure S140¹H NMR spectra of **46**

Figure S141 ¹³C NMR spectra of **46**

Figure S143 ¹H NMR spectra of **47**
Figure S144 ¹³C NMR spectra of **47**

Figure S147 ¹³C NMR spectra of **48**

Figure S148 135-DEPT spectra of 48

Figure S150 ¹H NMR spectra of **49**

Figure S151 ¹³C NMR spectra of **49**

Figure S152 135-DEPT spectra of 49

Figure S154 ¹H NMR spectra of **50**

Figure S155 ¹³C NMR spectra of **50**

¹H NMR spectra of **2,6-Dimethylpyrimidin-4-amine**

¹³C NMR spectra of **2,6-Dimethylpyrimidin-4-amine**

GCMS spectra of 2,6-Dimethylpyrimidin-4-amine

Sample ID: SS-52-2

<u>Instrument:</u> Agilent 7890A GC with 5975C MS system

<u>Supervisor:</u> Dr. S. Kumar <u>Column</u>: HP-5 <u>Method:</u> General <u>1 HP5</u> 80 DEG.M Acquisition date: 26/02/14 <u>Operator:</u> IISERB-CIF-Mass Facility <u>Ionization:</u> EI (70 eV) <u>MSD</u>: Single Quad.

Abundance

Abundance

¹H NMR spectra of *N*-(2,6-Dimethylpyrimidin-4-yl)acetamide

S161

¹³C NMR spectra of *N*-(2,6-Dimethylpyrimidin-4-yl)acetamide

Mass spectra for optimization of reaction with benzaldehyde, KOH in acetonitrile (see optimization table)

