Supporting Information

FeCl₃ Mediated Synthesis of Substituted Indenones by Formal [2+2] Cycloaddition/Ring Opening of *o*-Keto-Cinnamates.

Dattatraya H. Dethe* and Ganesh M. Murhade

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur – 208016, India

Tel: + 91-512-2596537, Fax: + 91-512-2597436.

Table of Contents:

General Information
Synthesis of Compound 26a and 26b:4
Synthesis of Compound 26c:5
Synthesis of Compound 27a, 27b and 27c:6
Synthesis of Compound 27d, 27e and 27f:7
Synthesis of Compound 27g and 27h:8
Synthesis of Compound 13f, 13i and 13j:9
Synthesis of Compound 13l, 13n and 13o:10
Synthesis of Compound 13p, 13q and 13r:11
Synthesis of Compound 13s and 15:12
Synthesis of Compound 13b, 13d and 13c14
Synthesis of Compound 13e, 13g and 13h:15
Synthesis of Compound 16:16
Synthesis of Compound 14a:17
Synthesis of Compound 14b, 14c and 14d:18
Synthesis of Compound 14e, 14f and 14g:19
Synthesis of Compound 14h, 14i and 14j:20
Synthesis of Compound 14k, 14l and 14m:21
Synthesis of Compound 14n, 14o and 14p:22
Synthesis of Compound 14q, 14r and 14s:23
Synthesis of Compound 7:24
NMR Spectra:

General Information

All reactions were carried out under nitrogen or argon atmosphere with dry solvents under anhydrous conditions, unless otherwise mentioned. Anhydrous THF and diethyl ether were distilled from sodium- benzophenone and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically pure material, unless otherwise stated.

Reaction were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and an p - anisaldehyde or ninhydrine stain, and heat as developing agents. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography.

Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. NMR spectra were recorded on either a Bruker Avance 200 (¹H: 200 MHz, ¹³C: 50MHz), Bruker Avance 400 (¹H: 400 MHz, ¹³C: 100MHz), Bruker Avance 500 (¹H: 500 MHz, ¹³C: 125 MHz), JEOL ECX 500 (¹H: 500 MHz, ¹³C: 125 MHz) Mass spectrometric data were obtained using WATERS-Q-Tof Premier-ESI-MS.

The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of a doublet of a doublet, dm = doublet of a multiplet, m = multiplet, br = broad.

A) General procedure for the Preparation of hydrazones.

The carbohydrazides was added at room temperature to a solution of the desired aldehyde in ethanol. The reaction mixture was refluxed for 30 min., poured on ice and the resulting solid was filtered, washed with water and solid was taken in to round bottom flask, added methanol and refluxed for another 15 min. Solid was filtered again, washed with methanol and dried under vacuum.

Compound 26a: According to the general procedure A for the preparation of hydrazones.

26b

aldehyde 24a (500 mg, 3.28 mmol) and hydrazide 25a^{1a} (700 mg, 3.28 mmol) in ethanol (15 ml), were used to furnish the product **26a** (1.0 gm, 89%) as a light yellow solid; IR (neat): v_{max}/cm^{-1} 3561, 3215, 3083, 1654, 1622, 1606, 1589, 1574, 1479, 1241, 1072; ¹H NMR (400 MHz, DMSOd₆) δ 3.82 (s, 3H), 6.87 (t, J =

7.9 Hz, 1H), 7.04 (d, J = 7.9 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.81 -7.97 (m, 2H), 8.66 (s, 1H), 10.88 (br. s., 1H), 12.14 (br. s., 1H); ¹³C NMR (100 MHz, DMSOd₆) δ 55.8, 113.8, 119.0, 119.1, 120.7, 125.8, 129.8, 131.6, 132.0, 147.2, 148.0, 148.3, 161.9; **HRMS:** m/z calcd for $C_{15}H_{14}BrN_2O_3$ [(M+H)⁺]: 349.0188; Found: 349.0189.

Compound 26b: According to the general procedure A for the preparation of hydrazones, aldehyde 24b (390 mg, 2.50 mmol) and hydrazide 25b^{1b} (500 mg, 2.50 mmol) in ethanol (15 ml), were used to furnish the CI product 26b (729 mg, 90%) (1:6 diastereomeric ratio) as a Ö ОН white solid; IR (neat): v_{max}/cm^{-1} 3153, 3008, 1643, 1621,

1591, 1566, 1478, 1310, 1295, 1254, 798, 729; ¹H NMR (400 MHz, DMSOd₆) δ 6.98 (d, J =8.7 Hz, 1H), 7.61 (d, J = 6.6 Hz, 3H), 7.71 (br. s., 1H), 7.80 (d, J = 6.7 Hz, 1H), 8.03 (d, J = 7.8Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 8.25 (d, J = 7.53 Hz, 1H), 8.54 (br. s., 1H), 11.24 (br. s., 1H), 12.32 (br. s., 1H); ¹³C NMR (100 MHz, DMSOd₆) δ 118.3, 120.8, 123.1, 125.0, 125.1, 126.2, 126.5, 127.2, 127.6, 128.4, 130.0, 130.9, 130.9, 132.1, 133.2, 145.7, 156.1, 164.6; **HRMS:** m/z calcd for C₁₈H₁₄ClN₂O₂ [(M+H)⁺]: 325.0744; Found: 325.0745.

Compound 26c: According to the general procedure A for the preparation of hydrazones, AcO OH OH COH COH

J = 2.7 Hz, 1H), 7.43 - 7.65 (m, 3H), 7.90 (d, J = 7.2 Hz, 2H), 8.60 (s, 1H), 11.04 (br. s., 1H), 12.09 (br. s., 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 20.8, 117.0, 119.4, 121.1, 124.7, 127.7, 128.5, 132.0, 132.8, 142.8, 146.4, 154.8, 162.9, 169.5; HRMS: m/z calcd for C₁₆H₁₅N₂O₄ [(M+H)⁺]: 299.1032; Found: 299.1036.

B) General procedure for the Preparation of keto-aldehyde

At room temperature, the appropriate hydrazone was dissolved in tetrahydrofuran (analytical grade). At 0°C, lead tetra acetate was gradually added to the solution. The resulting mixture was stirred during 3 - 4 h at rt. Progress of the reaction was monitored by the evolution of nitrogen. The solvent was removed under reduce pressure. Ethyl acetate was added to the residue. The suspension was filtered over celite. The organic layer was washed with a saturated solution of NaHCO3, with brine and dried over Na₂SO₄. The solvent was removed under vacuo and the residue was purified on a silica gel column using EtOAc-hexane as eluent to furnished product.

Compound 27a: According to the general procedure **B** for the preparation of keto-aldehyde, cHO compound 26d^{2a} (680 mg, 2.52 mmol) and Pb(OAc)₄ (1.67 gm, 3.78 mmol) in THF (15ml), were used to furnish the product 27a (478 mg, 79%) as a light yellow solid. Rf = 0.33 (EtOAc-hexane 20:80); **IR** (neat): $v_{max}/cm^{-1} 3087, 2941$, 1697, 1676, 1594, 1580, 1468, 1268, 953, 927 ; ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 7.26 (d, J = 9.2 Hz, 1H), 7.39 - 7.47 (m, 2H), 7.52 - 7.63 (m, 3H), 7.79 (d, J = 7.8Hz, 2H), 9.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.2, 116.8, 123.0, 128.6, 129.0, 130.4, 130.7, 133.5, 135.3, 137.3, 157.0, 190.4, 195.8; **HRMS:** m/z calcd for C₁₅H₁₃O₃ [(M+H)⁺]: 214.0865; Found: 241.0866.

Compound 27b: According to the general procedure **B** for the preparation of keto-aldehyde, cHO cmpound 26e (210 mg, 0.66 mmol) and Pb(OAc)₄ (439 mg, 0.99 mmol) in THF (15ml), were used to furnished the product 27b (141 mg, 74%) as a light yellow solid. Rf = 0.29 (EtOAc-hexane 10:90); **IR** (neat): v_{max}/cm^{-1} 3065, 1697, 1668, 1587, 1429, 1290, 1248, 1195, 1027, 930, 766, 739; ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.49 (m, 4H), 7.57 - 7.61 (m, 1H), 7.64 - 7.70 (m, 2H), 8.00 (dd, J = 7.7, 1.3 Hz, 1H), 10.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 120.6, 127.4, 129.0, 130.7, 130.7, 132.4, 132.5, 132.8, 133.8, 136.9, 139.4, 139.9, 191.5, 196.3; HRMS: m/z calcd for C₁₄H₁₀BrO₂ [(M+H)⁺]: 288.9864; Found: 288.9860.

Compound 27c: According to the general procedure **B** for the preparation of keto-aldehyde, CI CHO compound^{2b} 26f (475 mg, 1.56 mmol) and Pb(OAc)₄ (1.03 gm, 2.34 mmol) in THF (15ml), were used to furnish the product 27c (309 mg, 72%) as a light yellow solid. Rf = 0.33 (EtOAc-hexane 10:90); IR (neat): v_{max}/cm^{-1} 3074, 1697, 1628, 1598, 1584, 1569, 1508, 1282, 1295, 1260, 1181, 1150, 1018; ¹H NMR (500 MHz, CDCl₃) δ 3.88 (s, 3H), 6.93 - 6.97 (m, J = 8.9 Hz, 2H), 7.46 (d, J = 7.9 Hz, 1H), 7.59 - 7.65 (m, 1H), 7.76 - 7.80 (m, J = 9.2 Hz, 2H), 7.99

(s, 1H), 9.97 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 55.6, 114.1, 129.0, 129.8, 130.3, 132.5, 133.0, 136.7, 137.0, 140.1, 164.3, 189.2, 193.6; HRMS: m/z calcd for C₁₅H₁₂ClO₃ [(M+H)⁺]: 275.0475; Found: 275.0475.

Compound 27d: According to the general procedure **B** for the preparation of keto-aldehyde,

compound^{2c} **26g** (500 mg, 1.42 mmol) and Pb(OAc)₄ (944 mg, 2.13 mmol) in THF (15ml), were used to furnish the product 27d (339 mg, 72%) as a yellow solid. Rf = 0.36 (EtOAc-hexane 10:90); IR (neat): v_{max}/cm^{-1} 2967, 1697, 1668, 1459, 1270, 1187; ¹**H NMR** (500 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 1H), 7.61 - 7.68 (m, 6H), 7.99 (t, J = 2.0 Hz, 1H), 9.97 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 129.3, 130.1, 130.4, 131.3, 132.1, 133.2, 135.5, 136.9,

137.6, 138.7, 189.1, 194.3; **HRMS:** m/z calcd for C₁₄H₉BrClO₃ [(M+H)⁺]: 322.9474; Found: 322.9478.

Compound 27e: According to the general procedure **B** for the preparation of keto-aldehyde,

compound **26a** (400 mg, 1.15 mmol) and Pb(OAc)₄ (763 mg, 1.72 mmol) in THF (15ml), were used to furnish the product 27e (260 mg, 71%) as a light yellow solid. Rf = 0.29 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm^{-1} 3087, 2940, 1698, 1679, 1583, 1468, 1438, 1268, 1067, 924; ¹H NMR (500 MHz, CDCl₃) δ 3.76 (s, 3H), 7.26 (d, J = 8.3 Hz, 1H), 7.55 - 7.59 (m, 3H), 7.61 - 7.67 (m, 3H), 9.87 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 56.2, 116.9, 123.8, 128.6, 129.4, 130.4, 131.0, 131.9, 135.4, 136.1, 157.0, 190.4, 194.8; **HRMS:** m/z calcd for C₁₅H₁₂BrO₃ [(M+H)⁺]: 318.9970; Found: 318.9970.

Compound 27f: According to the general procedure **B** for the preparation of keto-aldehyde,

compound^{2d} 26h (500 mg, 1.62 mmol) and Pb (OAc)₄ (1.08gm, 2.43 mmol) in THF (15 ml), were used to furnish the product 27f (342 mg, 76%) as a light yellow solid. Rf = 0.3 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm^{-} 2969, 1712, 1665, 1488, 1285, 1250, 1054 ; ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.49 (m, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.57 - 7.62 (m, 1H), 7.70 - 7.78 (m, 2H), 7.84 (d, J = 1.9 Hz, 1H), 8.00 - 8.04 (m, 1H), 10.00 (s, 1H); ¹³C NMR (100 MHz,

CDCl₃) & 128.4, 128.5, 130.7, 130.9, 131.2, 131.5, 133.3, 133.7, 135.1, 136.5, 138.1, 139.7, 190.5, 194.4; **HRMS:** m/z calcd for $C_{15}H_{13}O_3$ [(M+H)⁺]: 278.9980; Found: 278.9980.

Compound 27g: According to the general procedure **B** for the preparation of keto-aldehyde,

compound **26b** (530 mg, 1.63 mmol) and Pb(OAc)₄ (1.08 gm, 2.44 mmol) in THF (15ml), were used to furnish the product 27g (421 mg, 88%) as a colorless oil. Rf = 0.24 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm^{-1} 3068, 2888, 1692, 1650, 1583, 1559, 1509, 1280, 1240, 1188, 1088, 946, 780; ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 - 7.46 (m, 1H), 7.47 - 7.50 (m, 1H), 7.54 - 7.60 (m, 3H), 7.63 (d, J = 6.9 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 1.7 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 8.69 (d, J = 8.6 Hz, 1H), 10.12 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 76.7, 77.2, 124.0, 125.6, 126.9, 128.5, 128.5, 129.0, 130.8, 131.5, 131.8, 132.7, 133.8, 133.9,

134.4, 137.9, 138.0, 140.6, 189.6, 196.6; **HRMS:** m/z calcd for $C_{18}H_{12}ClO_2$ [(M+H)⁺]: 295.0526; Found: 295.0520.

Compound 27h: According to the general procedure **B** for the preparation of keto-aldehyde,

compound **26c** (64 mg, 0.21 mmol) and Pb (OAc)₄ (142 mg, 0.32 mmol) in THF (5 ml), were used to furnish the product **27h** (49 mg, 85%) as a light yellow solid. Rf = 0.34 (EtOAc-hexane 20:80); IR (neat): $v_{max}/cm^{-}2853$,

1769, 1698, 1662, 1597, 1448, 1275, 1194; ¹**H NMR** (400 MHz, CDCl₃) δ 2.37 (s, 3H), 7.42 (dd, J = 8.0, 2.3 Hz, 1H), 7.47 - 7.51 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.59 -7.66 (m, 1H), 7.78 (d, J = 2.3 Hz, 1H), 7.80 - 7.87 (m, 2H), 10.03 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) & 21.1, 122.5, 126.2, 128.7, 130.1, 130.7, 133.8, 137.0, 137.4, 138.6, 152.4, 168.7, 189.5, 189.5, 195.4; **HRMS (EI):** m/z calcd for $C_{16}H_{12}O_4$ [M]⁺: 268.0736; Found: 268.0722.

C) General procedure for the preparation of keto-ester

- **27j**) R¹ = CI, R² = H, R³ = H, R⁴ = Ph **27k**) $R^1 = H$, $R^2 = OMe$, $R^3 = H$, $R^4 = Ph$ **27a**) $R^1 = H$, $R^2 = H$, $R^3 = OMe$, $R^4 = Ph$ **27b**) R¹ = H, R² = H, R³ = H, R⁴ = (o-Br)Ph **27c**) R¹ = CI, R² = H, R³ = H, R⁴ = (p-OMe)Ph **27d**) $R^1 = CI$, $R^2 = H$, $R^3 = H$, $R^4 = (p-Br)Ph$ **27e**) $R^1 = H$, $R^2 = H$, $R^3 = OMe$, $R^4 = (p-Br)Ph$ **27f**) $R^1 = H$, $R^2 = H$, $R^3 = H$, $R^4 = 3.4$ dichlorobenzene **27g**) $R^1 = CI$, $R^2 = H$, $R^3 = H$, $R^4 = \alpha$ - napthaline **27i**) $R^1 = H$, $R^2 = H$, $R^3 = H$, $R^4 =$ thiophene **27h**) R^1 = OAc, R^2 = H, R^3 = H, R^4 = Ph
- **13f**) R¹ = CI, R² = H, R³ = H, R⁴ = Ph **13i**) $R^1 = H, R^2 = OMe, R^3 = H, R^4 = Ph$ **13j**) $R^1 = H, R^2 = H, R^3 = OMe, R^4 = Ph$ **13I**) $R^1 = H$, $R^2 = H$, $R^3 = H$, $R^4 = (o-Br)Ph$ **13n**) $R^1 = CI$, $R^2 = H$, $R^3 = H$, $R^4 = (p-OMe)Ph$ **130**) R¹ = CI, R² = H, R³ = H, R⁴ = (p-Br)Ph **13p**) $R^1 = H$, $R^2 = H$, $R^3 = OMe$, $R^4 = (p-Br)Ph$ **13q**) $R^1 = H$, $R^2 = H$, $R^3 = H$, $R^4 = 3.4$ dichlorobenzene **13r**) $R^1 = CI$, $R^2 = H$, $R^3 = H$, $R^4 = \alpha$ - napthaline **13s**) $R^1 = H$, $R^2 = H$, $R^3 = H$, $R^4 =$ thiophene **15**) R^1 = OAc, R^2 = H, R^3 = H, R^4 = Ph

To a stirred solution of the aldehyde which was prepared according to reported literature procedure³ in CH_2Cl_2 was added $Ph_3P=CHCO_2Et$ and the reaction mixture was stirred for 6 h at RT. Evaporation of the solvent under reduced pressure and the crude product was purified on silica gel column chromatography using EtOAc-hexane as an eluent to furnish the product.

Compound 13f: According to the general procedure C for wittig reaction, compound 27j^{3a} (193

mg, 0.77 mmol) and Ph₃P=CHCO₂Et (821 mg, 2.4 mmol) in CH₂Cl₂ (15 ml), were used to furnish the product **13f** (215 mg, 89%) as a white solid. Rf = 0.20 (EtOAc-hexane 10:90); **IR** (neat): v_{max}/cm^{-1} 2979, 1713, 1655, 1598, 1509, 1314, 1285, 1257, 1177, 1149, 1029, 933; ¹H

NMR (500 MHz, CDCl₃) δ 1.25 (t, J = 7.2 Hz, 3H), 4.17 (q, J = 7.2 Hz, 2H), 6.36 (d, J = 15.7 Hz, 1H), 7.33 - 7.42 (m, 2H), 7.43 - 7.50 (m, 2H), 7.57 - 7.63 (m, 1H), 7.69 (dd, J = 8.7, 7.0 Hz, 2H), 7.73 - 7.81 (m, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 14.1, 60.6, 122.1, 127.2, 128.6, 129.0, 130.2, 130.7, 133.7, 135.9, 137.0, 137.0, 137.3, 140.3, 165.8, 196.0; **HRMS:** m/z calcd for C₁₈H₁₆ClO₃ [(M+H)⁺]: 315.0788; Found: 315.0784.

Compound 13i: According to the procedure C for wittig reaction, compound $27k^{3b}$ (900 mg,

CO₂Et 3.75 mmol) and Ph₃P=CHCO₂Et (2.61 gm, 7.5 mmol) in CH₂Cl₂ (20 ml), were used to furnish the product **13i** (1.03 gm, 89%) as a white solid. Rf = 0.30 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm^{-1} 2979, 1712, 1665, 1638, 1574, 1469, 1261, 1183, 1033; ¹H NMR (500

MHz, CDCl₃) δ 1.23 (t, J = 7.2 Hz, 3H), 3.82 (s, 3H), 4.14 (q, J = 7.4 Hz, 2H), 6.26 (d, J = 15.5 Hz, 1H), 6.89 (d, J = 2.9 Hz, 1H), 7.04 (dd, J = 8.9, 2.6 Hz, 1H), 7.40 - 7.50 (m, 2H), 7.52 - 7.66 (m, 2H), 7.68 (d, J = 9.2 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 55.5, 60.3, 113.7, 116.6, 118.5, 125.9, 128.5, 128.6, 130.3, 133.6, 137.0, 141.0, 141.1, 160.2, 166.5, 196.9; **HRMS:** m/z calcd for C₁₉H₁₉O₄ [(M+H)⁺]: 311.1283; Found: 311.1286.

 Compound 13j: According to the procedure C for wittig reaction, compound 27a (110 mg, 0.46

 CO_2Et mmol) and Ph₃P=CHCO₂Et (479 mg, 1.37 mmol) in CH₂Cl₂ (15 ml), were

 O used to furnish the product 13j (122 mg, 86%) as a white solid. Rf = 0.40

 OMe Ph (EtOAc-hexane 20:80); IR (neat): v_{max}/cm^{-1} 2979, 1713, 1670, 1638, 1574, 1469, 1261, 1183, 1033; ¹H NMR (500 MHz, CDCl₃) δ 1.22 (t, J = 7.0 Hz,

3H), 3.70 (s, 3H), 4.12 - 4.16 (m, 2H), 6.36 (d, J = 16.0 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.41 - 7.46 (m, 4H), 7.55 - 7.59 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 55.8, 60.5, 112.2, 118.8, 121.3, 128.6, 129.5, 129.8, 130.4, 133.6, 133.6, 137.4, 140.6, 156.9, 166.2, 196.6; **HRMS:** m/z calcd for C₁₉H₁₉O₄ [(M+H)⁺]: 311.1283; Found: 311.1286.

Compound 13I: According to the procedure C for wittig reaction, compound 27b (100 mg, 0.35

130

used to furnish the product **131** (113 mg, 90%) as a colourless oil. Rf = 0.33 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm^{-1} 2980, 1712, 1668, 1635, 1465, 1366, 1294, 1271, 1179, 1027; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, J =

mmol) and Ph₃P=CHCO₂Et (363 mg, 1.04 mmol) in CH₂Cl₂ (10 ml), were

131 7.10 Hz, 3H), 4.24 (q, J = 7.2 Hz, 2H), 6.35 (d, J = 15.8 Hz, 1H), 7.31 - 7.43 (m, 5H), 7.53 - 7.58 (m, 1H), 7.66 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 60.5, 120.4, 121.3, 127.3, 128.1, 129.1, 130.3, 131.3, 132.0, 132.4, 133.6, 136.0, 137.1, 140.6, 143.0, 166.3, 196.8; HRMS: m/z calcd for C₁₈H₁₆BrO₃ [(M+H)⁺]: 359.0283; Found: 359.0282.

Compound 13n: According to the procedure C for wittig reaction, compound 27c (86 mg, 0.27 CI CO_2Et mmol) and Ph₃P=CHCO₂Et (281 mg, 0.81 mmol) in CH₂Cl₂ (7 ml), were used to furnish the product 13n (82 mg, 89%) as a white solid. *Rf* = 0.30 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm⁻¹ 2979, 1714, 1655, 1598, 1508, 1421, 1314, 1285, 1257, 1177, 1149; ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, *J* = 7.2 Hz, 3H), 3.86 (s, 3H), 4.17 (q, *J* = 7.2 Hz, 2H), 6.36 (d, *J* = 15.9 Hz, 1H), 6.92 (d, *J* = 9.1 Hz, 2H), 7.30 - 7.46 (m, 2H), 7.55 - 7.70 (m, 2H), 7.75 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 55.5, 60.6, 113.9, 121.9,

127.0, 129.0, 129.9, 130.2, 132.7, 135.4, 136.4, 138.1, 140.3, 164.1, 165.9, 194.6; **HRMS:** m/z calcd for C₁₉H₁₈ClO₄ [(M+H)⁺]: 345.0894; Found: 345.0890.

Compound 130: According to the procedure C for wittig reaction, compound 27d (278 mg, 0.87 CI CO_2Et mmol) and Ph₃P=CHCO₂Et (904 mg, 2.60 mmol) in CH₂Cl₂ (10 ml), were used to furnish the product 13o (290 mg, 85%) as a white solid. *Rf* = 0.20 (EtOAc-hexane 10:90); IR (neat): v_{max}/cm⁻¹ 2979, 1713, 1663, 1638, 1584, 1395, 1312, 1280, 1179, 931; ¹H NMR (500 MHz, CDCl₃) δ 1.27 (t, J = 7.2 Hz, 3H), 4.20 (q, J = 7.1 Hz, 2H), 6.37 (d, J = 16.0 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.42 (dd, J = 8.3, 2.0 Hz, 1H), 7.57 - 7.68 (m, 5H), 7.70 (d, J = 2.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.2, 60.8, 122.4, 127.4, 129.1, 130.6, 131.6, 132.0, 135.8, 136.0, 136.8, 137.3, 140.1, 165.8, 195.0; HRMS: m/z calcd for C₁₈H₁₅BrClO₃ [(M+H)⁺]: 392.9893; Found: 392.9897.

Compound 13p: According to the procedure C for wittig reaction, compound 27e (130 mg, 0.41

60.6, 112.1, 118.9, 121.6, 129.0, 129.1, 130.7, 130.9, 132.0, 133.6, 136.2, 140.3, 156.8, 166.1, 195.6; **HRMS:** m/z calcd for C₁₉H₁₈BrO₄ [(M+H)⁺]: 389.0388; Found: 389.0381.

Compound 13g: According to the procedure C for wittig reaction, compound 27f (1.05 gm, 3.76

13r

CO2Etmmol) and Ph3P=CHCO2Et (2.62 gm, 7.52 mmol) in CH2Cl2 (15 ml), were
used to furnish the product 13q (1.2 gm, 91%) as a white solid. Rf = 0.33
(EtOAc-hexane 20:80); IR (neat): $v_{max}/cm^{-1} 3078$, 1714, 1663, 1636, 1578,
1556, 1461, 1386, 1314, 1242, 1184; ¹H NMR (400 MHz, CDCl3) δ 1.27
(t, J = 7.2 Hz, 3H), 4.20 (q, J = 7.1 Hz, 2H), 6.37 (d, J = 15.9 Hz, 1H), 7.38
- 7.42 (m, 1H), 7.45 - 7.49 (m, 1H), 7.52 - 7.62 (m, 3H), 7.67 - 7.77 (m,

2H), 7.88 (d, J = 1.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 60.6, 121.5, 127.5, 129.1, 129.3, 130.7, 131.3, 132.0, 133.3, 134.1, 136.9, 138.0, 138.2, 141.2, 166.1, 194.7; **HRMS:** m/z calcd for C₁₈H₁₈Cl₂NO₃ [(M+NH₄)⁺]: 366.0664; Found: 366.0660.

Compound 13r: According to the procedure **C** for wittig reaction, compound **27g** (294 mg, 0.83 **CI CO**₂**Et** mmol) and Ph₃P=CHCO₂Et (866 mg, 2.49 mmol) in CH₂Cl₂ (15 ml), were used to furnish the product **13r** (284 mg, 94%) as a white solid. *Rf* = 0.40 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm^{-1} 3060, 3001, 2894, 1699, 1650, 1509, 1475, 1296, 1281, 1039, 921; ¹H NMR (400 MHz, CDCl₃) δ 1.20 (t, *J* = 7.1 Hz, 3H), 4.14 (q, *J* = 7.1 Hz, 2H), 6.35 (d, *J* = 15.8 Hz, 1H), 7.31 - 7.42 (m, 2H), 7.42 - 7.47 (m, 1H), 7.52 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.58 (td, *J* = 7.6, 1.6 Hz, 2H), 7.68 (d, *J* = 2.1 Hz, 1H), 7.78 - 7.97 (m, 2H), 8.03 (d, *J* = 8.0 Hz, 1H), 8.40 - 8.58 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 60.6, 76.3, 76.7, 77.3, 77.7, 122.2, 124.2, 125.6, 126.8, 127.7, 128.2, 128.5, 129.0, 130.9, 131.0, 132.2, 133.4, 133.9, 135.3, 137.1, 137.8, 138.3, 141.2, 165.9, 197.6; HRMS: m/z calcd for C₂₂H₁₈ClO₃ [(M+H)⁺]: 365.0944; Found: 365.0941.

Compound 13s: According to the procedure C for wittig reaction, compound **27i**^{3c} (215 mg, 1.0

CO₂Et mmol) and Ph₃P=CHCO₂Et (1.04 gm, 3 mmol) in CH₂Cl₂ (10 ml), were used to furnish the product 13s (268 mg, 94%) as a white solid. *Rf* = 0.26 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm⁻¹ 1712, 1638, 1594, 1513, 1411, 1315, 1291, 1181, 1043, 977, 767, 727; ¹H NMR (500 MHz, CDCl₃) δ 1.25 (t, *J* = 7.2 Hz, 3H), 4.17 (q, *J* = 7.4 Hz, 2H), 6.38 (d, *J* = 16.04 Hz, 1H),

7.07 - 7.11 (m, 1H), 7.37 - 7.40 (m, 1H), 7.41 - 7.44 (m, 1H), 7.48 - 7.53 (m, 2H), 7.69 - 7.74 (m, 2H), 7.80 (d, J = 16.0 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 14.1, 60.4, 120.8, 127.1, 128.2, 128.6, 129.1, 130.7, 133.3, 135.5, 135.9, 139.0, 141.3, 144.2, 166.2, 188.8; **HRMS:** m/z calcd for C₁₆H₁₅O₃S [(M+H)⁺]: 287.0742; Found: 287.0745.

Compound 15: According to the procedure C for wittig reaction, compound 27h (42 mg, 0.16

CO₂Et mmol) and Ph₃P=CHCO₂Et (162 mg, 0.47 mmol) in CH₂Cl₂ (5 ml), were used to furnish the product **15** (48 mg, 90%) as a colourless oil. Rf = 0.4 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm⁻ 2925, 1769, 1713, 1661, 1638, 1368, 1316, 1266, 1195; ¹H NMR (400 MHz,

CDCl₃) δ 1.26 (s, 3H), 2.35 (s, 3H), 4.18 (q, J = 7.2 Hz, 2H), 6.35 (d, J = 15.9 Hz, 1H), 7.17 - 7.21 (m, 1H), 7.44 - 7.51 (m, 4H), 7.57 - 7.63 (m, 1H), 7.75 (d, J = 15.9 Hz, 1H), 7.80 (dd, J = 8.4, 1.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 21.1, 60.6, 120.3, 121.9, 122.2, 128.6, 130.4, 130.9, 133.6, 136.1, 136.6, 137.3, 140.9, 152.3, 166.0, 168.9, 196.2; **HRMS (EI):** m/z calcd for C₂₀H₁₈O₅ [M]⁺: 338.1154; Found: 338.1145.

D) General procedure for the preparation of keto-acid and keto-amid.

Step 1: To a solution of keto-ester in EtOH was added NaOH (3eq. dissolve in water) at room temperature and reflux for 2h, the mixture was adjusted to pH 1.0 with1N HCl, and then extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo and crude acid was directly used for next step. **Step 2**: To a solution of acid in CH₂Cl₂ were added Dimethylformamide (DMF) (1 drop) and oxalyl chloride at 0°C under argon atmosphere. After 40 min. of stirring, the mixture was concentrated in vacuo to afford the crude acid chloride as yellow oil and crude product was employed directly in the following reaction. A solution of the crude acid chloride in CH₂Cl₂was poured into 28% aqueous NH₃solution or NHMe₂1M solution in THF at 0 °C under an argon atmosphere. After 10 min of stirring, the mixture was extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄, filtered and the solvent was removed under vacuo and the residue was purified on a silica gel column using EtOAc-hexane to furnish product.

Compound 13b: According to the general procedure D (step-Ist), compound 13a^{3d,e} (200 mg,

Compound 13d: According to the general procedure D (step-Ist), compound 13j (279 mg, 0.90 CO_2H mmol) and NaOH (108 mg, 2.70 mmol), in ethanol (5ml) were used to furnish the product 13d (175 mg, 69%) as a light yellow solid. Rf = 0.46(EtOAc-hexane 80:20); IR (neat): v_{max}/cm^{-1} 3350, 2923, 1668, 1572, 1468, 13d 1266, 1068; ¹H NMR (500 MHz, CDCl₃) δ 3.71 (s, 3H), 6.35 (d, J = 15.9Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.44 (td, J = 7.8, 4.0 Hz, 3H), 7.51 (d, J = 15.3 Hz, 1H), 7.56 - 7.60 (m, 1H), 7.79 (d, J = 7.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 55.9, 112.6, 119.0, 120.1, 128.7, 129.5, 130.0, 130.5, 133.8, 137.3, 143.0, 156.9, 170.4, 196.5; HRMS: m/z calcd for C₁₇H₁₅O₄ [(M+H)⁺]: 283.0970; Found: 283.0977.

Compound 13c: According to the general procedure **D** (step 2nd), crude acid **13b** (98 mg, 0.39 **CONH₂** mmol) in CH₂Cl₂ (5 ml), Dimethylformamide (DMF) (1 drop) and oxalyl chloride (0.1 ml, 1.17 mmol), then 5 ml 28% aqueous NH₃ solution afforded product **13g** (68 mg, 70%) as a yellow solid. Rf = 0.40 (EtOAchexane 70:30); **IR** (neat): v_{max}/cm^{-1} 3348, 3135, 1663, 1611, 1448, 1390, 1272; ¹H NMR (500 MHz, CDCl₃) δ 5.99 (br. s., 2H), 6.39 (d, J = 15.9 Hz, 1H), 7.36 - 7.47 (m, 4H), 7.50 (td, J = 7.02, 2.44 Hz, 1H), 7.55 - 7.65 (m, 2H), 7.68 (d, J = 7.9 Hz, 1H), 7.74 - 7.82 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 122.9, 127.4, 128.5, 128.8, 129.1, 130.3, 130.7, 133.6,

Found: 252.1025.

134.1, 137.1, 139.1, 139.1, 167.6, 197.5; **HRMS:** m/z calcd for C₁₆H₁₃NO₂ [(M+H)⁺]: 252.1025;

Compound 13e: According to the general procedure **D** (step 2nd), crude acid **13d** (125 mg, 0.44

mmol) in CH₂Cl₂ (5 ml), Dimethylformamide (DMF) (1 drop) and oxalyl chloride (0.14 ml, 1.33 mmol), then 10 ml 28% aqueous NH₃ solution 0 afforded product 13e (90 mg, 73%) as a white solid. Rf = 0.25 (EtOAc-**OMe** Ph hexane 50:50); **IR** (neat): v_{max}/cm⁻¹ 3400, 3331, 3185, 2926, 1666, 1633, 13e 1576, 1469, 1386, 1269, 1068; ¹H NMR (500 MHz, CDCl₃) δ 3.70 (s, 3H), 5.71 (br. s., 1H), 6.36 (d, J = 14.7 Hz, 1H), 6.99 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 14.7 Hz, 1H), 7.42 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 73H), 7.55 - 7.59 (m, 1H), 7.78 (d, J = 7.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 55.9, 111.9, 119.3, 123.1, 128.7, 129.4, 129.5, 130.4, 132.0, 133.7, 133.8, 137.2, 138.4, 156.9, 167.3, 197.0; **HRMS:** m/z calcd for $C_{17}H_{16}NO_3$ [(M+H)⁺]: 282.1130; Found: 282.1136.

Compound 13g: According to the general procedure **D** (step 2nd), crude acid **13b** (115 mg, 0.46

mmol) in CH₂Cl₂ (5 ml), Dimethylformamide (DMF) (1 drop) and oxalyl

chloride (0.12 ml, 1.37 mmol), then 5 ml NHMe₂ (1M solution in THF), afforded product 13g (90 mg, 70%) as a yellow solid. Rf = 0.20 (EtOAchexane 50:50); IR (neat): v_{max}/cm⁻¹ 3454, 3060, 2926, 1653, 1611, 1596, 13g 1579, 1491, 1395, 1278, 1141, 973, 928 ; ¹H NMR (500 MHz, CDCl₃) δ 3.70 (s, 3 H), 5.71 (br. s., 1H), 6.36 (d, J = 14.66 Hz, 1H), 6.99 (d, J = 7.94 Hz, 1H), 7.35 (d, J = 14.66 Hz, 1H), 7.42 (t, J = 7.33 Hz, 3H), 7.54 - 7.58 (m, 1H), 7.78 (d, J = 7.33 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 36.0, 37.4, 121.2, 127.7, 128.4, 128.5, 128.6, 130.2, 130.3, 133.5, 134.6, 137.0, 139.1, 139.2, 166.3, 197.6; **HRMS:** m/z calcd for $C_{18}H_{18}NO_2$ [(M+H)⁺]: 280.1338; Found: 280.1339.

Compound 13h: According to the general procedure **D** (step 2nd), crude acid **13d** (118 mg, 0.42 **CONMe**₂ mmol) in CH_2Cl_2 (5 ml), Dimethylformamide (DMF) (1 drop) and oxalyl chloride (0.11 ml, 1.26 mmol), then 5 ml NHMe₂ (1M solution in THF), 0 afforded product 13h (93 mg, 72%) as a white solid. Rf = 0.24 (EtOAc-**OMe** Ph hexane 50:50); IR (neat): v_{max}/cm⁻¹ 3454, 3063, 2934, 1667, 1653, 1609, 13h 1596, 1573, 1469, 1365, 1259, 1144, 1068, ¹H NMR (500 MHz, CDCl₃) & 2.95 (s, 6H), 3.70 (s, 3H), 6.70 (d, J = 15.6 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.30 - 7.46 (m, 4H), 7.51 - 7.57 (m, 1H), 7.72 - 7.86 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 36.4, 55.9, 111.5,

119.8, 121.6, 128.6, 129.1, 129.5, 130.2, 133.6, 134.6, 137.2, 138.4, 156.9, 166.1, 197.0; **HRMS:** m/z calcd for $C_{19}H_{20}NO_3$ [(M+H)⁺]: 310.1443; Found: 310.1441.

Compound 16: Step 1- Compound 15 (40 mg, 0.12 mmol) was dissolved in methanol (2 ml) and Ph-CO₂Et Ph Ph 16 Compound 15 (40 mg, 0.12 mmol) was dissolved in methanol (2 ml) and added K₂CO₃ (25 mg, 0.18 mmol) at room temperature and stirred resultant reaction mixture for 2 h. Then reaction was quenched with water and extracted with ethyl acetate, washed with brine, dried over Na₂SO₄, filtered and the solvent was removed under vacuo and this hydrolysed product was used

for next step without further purification. **Step 2** - Crude ester, K₂CO₃ (49 mg, 0.36 mmol) and NaI (5.4 mg, 0.036 mmol) was dissolved in DMF and bromide (71 mg, 0.36 mmol) was added in reaction mixture. After 6 h reaction was quenched with water and extracted with diethyl ether, washed with brine, dried over Na₂SO₄, filtered and the solvent was removed under vacuo pressure and the crude product was purified on silica gel column chromatography using EtOAchexane 20:80); **IR** (neat): v_{max}/cm^2 2925, 1769, 1713, 1661, 1638, 1596, 1570, 1316, 1266, 1195; ¹**H NMR** (400 MHz, CDCl₃) δ 1.25 - 1.30 (m, 3H), 2.10 - 2.20 (m, 2H), 2.83 (t, *J* = 7.5 Hz, 2H), 4.04 (t, *J* = 6.3 Hz, 2H), 4.19 (q, *J* = 6.9 Hz, 2H), 6.32 (d, *J* = 15.9 Hz, 1H), 6.90 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.17 (d, *J* = 2.27 Hz, 1H), 7.18 - 7.24 (m, 3H), 7.26 - 7.34 (m, 2H), 7.39 - 7.47 (m, 3H), 7.53 - 7.60 (m, 1H), 7.76 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.87 (d, *J* = 15.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 14.2, 30.6, 32.0, 60.5, 67.2, 113.1, 114.8, 121.0, 126.1, 128.4, 128.5, 130.2, 131.4, 132.4, 132.9, 137.1, 138.2, 141.1, 142.5, 161.1, 166.3, 196.4; **LCMS:** m/z calcd for C₂₇H₂₆O₄ [M]⁺: 338.1145; Found: 338.1145.

E) General procedure for the cyclisation reaction

Under argon atmosphere to a magnetically stirred solution of keto-ester/amide/acid, in toluene was added FeCl₃ (2 eqv.) and refluxed for 1 h. When completion of the reaction was noticed by TLC, the reaction mixture was allow to come room temperature and added saturated solution of NaHCO₃ and reaction mixture filtered through a sintered funnel. The reaction mixture was then extracted with ethyl acetate. The combined organic extract was washed with brine and dried over Na₂SO₄. Evaporation of solvent and purification of residue on a silica gel column using EtOAchexane as eluent, afforded cyclised product.

Compound 14a: According to the general procedure E for cyclization reaction, compound 13a^{3d}

(30 mg, 0.11 mmol) and FeCl₃ (36 mg, 0.22 mmol), in toluene (5 ml) were used to furnished the product **14a** (26 mg, 87%) as a yellow semisolid. Rf = 0.29 (EtOAc-hexane 10:90); **IR** (neat): v_{max}/cm⁻¹ 2917, 1731, 1711, 1450, 1456, 1340, 1226, 1050; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (t, J = 7.1 Hz,

3H), 4.21 (q, *J* = 7.3 Hz, 2H), 7.17 - 7.22 (m, 1H), 7.39 - 7.44 (m, 2H), 7.46 - 7.57 (m, 5H), 7.59 - 7.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 60.9, 123.4, 123.4, 124.4, 128.1, 128.4, 130.4, 130.5, 131.0, 131.5, 133.5, 143.1, 163.0, 164.9, 192.1; HRMS: m/z calcd for C₁₈H₁₅O₃ [(M+H)⁺]: 279.1021; Found: 279.1029.

Compound 14b: According to the general procedure E for cyclization reaction, compound 13b

(30 mg, 0.12 mmol) and FeCl₃ (39 mg, 0.24 mmol), in toluene (5 ml) were used to furnish the product **14b** (21 mg, 71%) as a red solid. Rf = 0.44(EtOAc); **IR** (neat): v_{max}/cm^{-1} 3061, 2924, 1716, 1683, 1563, 1458, 1396, 1363, 1333, 1133; ¹H NMR ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 7.4

Hz, 1H), 7.46 - 7.52 (m, 2H), 7.53 - 7.60 (m, 3H), 7.67 (d, J = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 118.4, 124.4, 125.4, 128.3, 129.1, 130.0, 130.1, 131.8, 132.3, 134.9, 143.4, 161.2, 172.0, 198.2; **HRMS:** m/z calcd for C₁₆H₉O₂ [(M+H-H₂O)⁺]: 233.0603; Found: 233.0603.

Compound 14c: According to the general procedure **E** for cyclization reaction, compound **13c** (40 mg, 0.16 mmol) and FeCl₃ (52 mg, 0.32 mmol), in toluene (5 ml) were used to furnish the product **14c** (30 mg, 76%) as a red solid. Rf = 0.33(EtOAc-hexane 70:30); **IR** (neat): v_{max}/cm^{-1} 3416, 3330, 2923, 2851, 1699, 1672, 1592, 1457, 1361, 1291, 1193; ¹H NMR (500 MHz, CDCl₃) δ 5.60 (br. s., 1H), 7.15 (dd, J = 5.8, 2.1 Hz, 1H), 7.36 - 7.47 (m, 2H), 7.51 (m, 3H), 7.54 - 7.63 (m, 3H), 7.78 (br. s., 1H); ¹³C NMR (125 MHz, CDCl₃) δ 122.3, 123.5, 124.0, 128.0, 128.6, 130.3, 130.5, 131.3, 131.4, 134.1, 143.7, 162.8, 169.0, 196.4; **HRMS:** m/z calcd for C₁₆H₁₁NO₂Na [(M+Na)⁺]: 272.0687; Found: 272.0686.

Compound 14d: According to the general procedure E for cyclization reaction, compound 13d

(42 mg, 0.15 mmol) and FeCl₃ (49 mg, 0.30 mmol), in toluene (5 ml) were used to furnish the product **14d** (30 mg, 72%) as a red semisolid. Rf = 0.29 (EtOAc-hexane 50:50); **IR** (neat): v_{max}/cm^{-1} 3422, 2924, 2853, 1719, 1598, 1486, 1463, 1269, 1044; ¹H NMR (400 MHz, CDCl₃) δ 3.61 (br. s., 3H),

7.05 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 6.3 Hz, 1H), 7.45 (br. s., 4H), 7.51 (br. s., 3H); ¹³C NMR (125 MHz, CDCl₃) δ 55.7, 117.1, 118.3, 120.7, 124.5, 127.1, 127.2, 127.9, 130.4, 131.8, 132.5, 135.0, 156.5, 161.3, 174.7, 197.7; **HRMS:** m/z calcd for C₁₇H₁₃O₄ [(M+H)⁺]: 281.0814; Found: 281.0820.

Compound 14e: According to the general procedure E for cyclization reaction, compound 13e

(34 mg, 0.12 mmol) and FeCl₃ (39 mg, 0.24 mmol), in toluene (5 ml) were used to furnish the product **14e** (26 mg, 74%) as a yellow solid. Rf = 0.30 (EtOAc-hexane 50:50); **IR** (neat): v_{max} /cm⁻¹ 3380, 3149, 1694, 1672, 1550, 1477, 1365, 1294, 1270, 1138; ¹H NMR (400 MHz, CDCl₃) δ 3.56

(s, 3H), 5.76 (br. s., 1H), 6.99 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 6.8 Hz, 1H), 7.38 - 7.50 (m, 6H), 7.77 (br. s., 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 116.4, 120.0, 122.1, 127.1, 127.3, 129.2, 132.2, 133.9, 134.1, 155.8, 162.9, 171.4, 178.0, 196.1; **HRMS:** m/z calcd for C₁₇H₁₃NNaO₃ [(M+Na)⁺]: 302.0793; Found: 302.0790.

Compound 14f: According to the general procedure E for cyclization reaction, compound 13f (42 mg, 0.13 mmol) and FeCl₃ (42 mg, 0.26 mmol), in toluene (5 ml) were used to furnish the product 14f (39 mg, 93%) as a yellow solid. *Rf* = 0.29 (EtOAc-hexane 10:90); IR (neat): v_{max} /cm⁻¹ 2977, 2931, 1734, 1716, 1602, 1562, 1417, 1339, 1216, 1129, 1029; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (t, J = 7.02 Hz, 3H), 4.20 (q, J = 6.9 Hz, 2H), 7.15 (d, J = 7.7 Hz, 1H), 7.39 (dd, J = 7.9, 2.0 Hz, 1H), 7.52 (s, 5H), 7.56 (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 61.0, 124.0, 124.4, 128.0, 128.5, 130.7, 131.1, 132.1, 132.9, 137.4, 141.2, 162.6, 164.7, 190.7; HRMS: m/z calcd for C₁₈H₁₄ClO₃ [(M+H)⁺]: 313.0631; Found: 313.0637.

Compound 14g: According to the general procedure E for cyclization reaction, compound 13g^{3d,e} (36 mg, 0.13 mmol) and FeCl₃ (42 mg, 0.26 mmol), in toluene (5 ml) were used to furnish the product 14g (27 mg, 76%) as a yellow semisolid. Rf = 0.40 (EtOAc-hexane 50:50); IR (neat): v_{max}/cm^{-1} 2926, 1707 1633, 1585, 1500, 1456, 1414, 1397, 1315, 1196, 1102; ¹H NMR (400 MHz, CDCl₃) δ 2.77 (s, 3H), 3.00 (s, 3H), 7.29 - 7.36 (m, 2H), 7.39 - 7.43 (m, 1H), 7.47 -7.53 (m, 3H), 7.58 (d, J = 6.7 Hz, 1H), 7.62 (dd, J = 4.0, 2.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 34.5, 37.8, 122.4, 123.5, 127.7, 129.0, 129.8, 129.9, 130.6, 130.7, 131.6, 133.4, 143.5, 157.1, 164.7, 193.3; HRMS: m/z calcd for C₁₈H₁₅NNaO₂ [(M+Na)⁺]: 300.1000; Found: 300.1004.] **Compound 14h**: According to the general procedure E for cyclization reaction, compound 13h

(36 mg, 0.13 mmol) and FeCl₃ (42 mg, 0.26 mmol), in toluene (5 ml)were used to furnish the product 14h (31 mg, 74%) as a brown semisolid. Rf = 0.40 (EtOAc-hexane 50:50); **IR** (neat): v_{max}/cm^{-1} 2923, 2850, 1704, 1633, 1609, 1479, 1272, 1115, 1050; ¹H NMR (400 MHz, CDCl₃) δ 2.67 (s, 3H), 2.91 (s, 3H), 3.65 (s, 3H), 7.01 (d, J = 8.5 Hz, 1H), 7.21 - 7.24

(m, 1H), 7.29 - 7.33 (m, 1H), 7.37 - 7.42 (m, 3H), 7.52 - 7.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 8 29.7, 34.4, 37.7, 55.6, 116.4, 119.5, 127.6, 127.9, 128.1, 129.8, 130.1, 132.1, 132.8, 133.4, 154.6, 159.1, 164.7, 193.2; **HRMS:** m/z calcd for $C_{19}H_{17}NO_3$ [(M-H)⁺]: 307.1208; Found: 307.1208.

Compound 14i: According to the general procedure E for cyclization reaction, compound 13i

(30 mg, 0.96 mmol) and FeCl₃ (31 mg, 0.19 mmol), in toluene (5 ml) were used to furnish the product 14i (24 mg, 80%) as a red solid. Rf =CO₂Et 0.30 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm⁻¹ 1730, 1705, 1614, 1479, 1244, 1129; ¹H NMR (500 MHz, CDCl₃) δ 1.16 (t, J = 7.2 Hz, 3H), 3.83 (s, 3H), 4.20 (q, J = 6.9 Hz, 2H), 6.73 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 7.50 (s, 5H), 7.57 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 55.8, 60.9, 112.3, 112.5, 123.1, 125.4, 125.9, 128.1, 128.4, 130.3, 131.4, 145.8, 162.5, 163.1, 164.4, 190.7; HRMS: m/z calcd for C₁₉H₁₆O₄Na [(M+Na)⁺]: 331.0946; Found: 331.0943.

Compound 14j: According to the general procedure E for cyclization reaction, compound 13j

(32 mg, 0.10 mmol) and FeCl₃ (33 mg, 0.20 mmol), in toluene (5 ml) were used to furnish the product 14j (27 mg, 85%) as a red solid. Rf = 0.30(EtOAc-hexane 20:80); IR (neat): v_{max}/cm⁻¹ 1730, 1705, 1608, 1479, 1336,

1274, 1274, 1223, 1129, 1049; ¹**H NMR** (500 MHz, CDCl₃) δ 1.06 (t, J =7.2 Hz, 3H), 3.59 (s, 3H), 4.11 (q, J = 7.2 Hz, 2H), 6.98 (d, J = 8.6 Hz, 1H), 7.24 (dd, J = 7.2, 0.9Hz, 1H), 7.32 - 7.40 (m, 2H), 7.40 - 7.45 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 29.7, 55.5, 60.6, 116.3, 119.1, 124.5, 127.3, 127.4, 127.6, 129.3, 132.4, 133.5, 134.1, 155.4, 163.0, 167.1, 192.1; **HRMS:** m/z calcd for $C_{19}H_{16}O_4Na[(M+Na)^+]$: 331.0946; Found: 331.0943.

Compound 14k: According to the general procedure E for cyclization reaction, compound 13k^{3e}

(50 mg, 0.14 mmol) and FeCl₃ (46 mg, 0.28 mmol), in toluene (5 ml) were used to furnish the product **14k** (42 mg, 84%) as a yellow solid. Rf = 0.30 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm^{-1} 2926, 1734, 1715, 1588, 1487, 1456, 1369, 1337, 1226, 1010; ¹H NMR (400 MHz, CDCl₃) δ 1.21 (t, J = 7.1 Hz, 3H), 4.22 (q, J = 7.3 Hz, 2H), 7.11 - 7.18 (m, 1H), 7.36 - 7.50 (m, 4H), 7.58 - 7.63 (m, 1H), 7.63 - 7.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃)

δ 14.0, 61.1, 123.2, 123.6, 124.4, 124.9, 129.7, 130.3, 131.3, 131.7, 133.6, 142.7, 162.8, 163.9, 191.8; **HRMS:** m/z calcd for C₁₈H₁₃BrNaO₃ [(M+Na)⁺]: 378.9940; Found: 378.9940.

Compound 14I: According to the general procedure **E** for cyclization reaction, compound **13I** (36 mg, 0.1 mmol) and FeCl₃ (33 mg, 0.2 mmol), in toluene (5 ml) were used to furnish the product **14I** (30 mg, 84%) as a brown solid. Rf = 0.34(EtOAc-hexane 20:80); **IR** (neat): $v_{max}/cm^{-1} 2977$, 1735, 1698, 1588, 1368, 1338, 1229, 1113, 1018, 753; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (t, J = 7.1Hz, 3 H), 4.09 - 4.18 (m, 2H), 6.90 (dd, J = 5.8, 2.4 Hz, 1H), 7.27 - 7.36 (m, 2H), 7.37 - 7.47 (m, 3H), 7.61 (dd, J = 5.6, 2.6 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 60.7, 121.0, 123.5, 124.7, 127.2, 128.6, 129.9, 130.6, 131.4, 132.9, 133.8, 133.9, 142.8, 161.8, 166.3, 191.8; **HRMS:** m/z calcd for C₁₈H₁₄O₃Br [(M+H)⁺]: 357.0126; Found: 357.0121.

Compound 14m: According to the general procedure E for cyclization reaction, compound

13m^{3e} (40 mg, 0.13 mmol) and FeCl₃ (42 mg, 0.26 mmol), in toluene (5 ml) were used to furnish the product **14m** (33 mg, 83%) as a yellow semisolid. *Rf* = 0.20 (EtOAc-hexane 10:90); **IR** (neat): v_{max}/cm^{-1} 2932, 1731, 1712, 1604, 1509, 1420, 1368, 1335, 1223, 1256, 1178, 1026; ¹H NMR (400 MHz, CDCl₃) δ 1.22 - 1.26 (m, 3H), 3.90 (s, 3H), 4.24 (q, *J* = 7.1 Hz, 2H), 6.97 - 7.10 (m, 2H), 7.28 (d, *J* = 2.1 Hz, 1H), 7.37 - 7.45 (m, 2H), 7.51 -

7.58 (m, 2H), 7.58 - 7.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 55.5, 61.0, 114.0, 123.4, 123.5, 123.8, 125.4, 130.4, 131.0, 131.0, 133.4, 143.2, 161.8, 163.6, 164.7, 192.3; **HRMS:** m/z calcd for C₁₉H₁₇O₄ [(M+H)⁺]: 309.1127; Found: 309.1121.

Compound 14n: According to the general procedure E for cyclization reaction, compound 13n

(35mg, 0.1 mmol) and FeCl₃ (33 mg, 0.2 mmol), in toluene (5 ml) were used to furnish the product 14n (30 mg, 87%) as a yellow solid. Rf =0.33 (EtOAc-hexane 20:80); IR (neat): v_{max}/cm^{-1} 2933, 1732, 1714, 1604, 1509, 1419, 1341, 1257, 1220, 1178, 1127, 1026; ¹H NMR (500 MHz, CDCl₃) δ 1.23 (t, J = 7.2 Hz, 3H), 3.90 (s, 3H), 4.24 (q, J = 7.2 Hz, 2H), 7.03 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 7.7 Hz, 1H), 7.39 (dd, J =8.0, 2.0 Hz, 1H), 7.48 - 7.60 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 55.5, 61.0, 114.0,

HRMS: m/z calcd for $C_{19}H_{15}ClO_4Na [(M+Na)^+]$: 365.0557; Found: 365.0555.

Compound 140: According to the general procedure E for cyclization reaction, compound 130

123.2, 123.3, 123.8, 124.4, 130.3, 132.4, 132.6, 137.3, 141.1, 161.9, 163.1, 164.4, 179.3, 190.8;

= 0.30 (EtOAc-hexane 10:90); **IR** (neat): v_{max}/cm^{-1} 2923, 1731, 1687, 1588, 1486, 1419, 1396, 1236, 1126, 1026; ¹H NMR (400 MHz, CDCl₃) δ 1.20 (t, J = 7.2 Hz, 3H), 4.20 (d, J = 7.2 Hz, 2H), 7.08 (d, J = 7.7 Hz, 1H), 7.36 - 7.40 (m, 4 H), 7.55 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 61.2, 124.1, 124.2, 124.4, 125.2, 129.7, 129.9, 131.8, 133.0, 137.7, 140.7, 162.4, 163.7, 190.4; **HRMS:** m/z calcd for C₁₈H₁₃BrClO₃ [(M+H)⁺]: 390.9737; Found: 390.9730.

Compound 14p: According to the general procedure E for cyclization reaction, compound 13p

(30 mg, 0.08 mmol) and FeCl₃ (26 mg, 0.16 mmol), in toluene (5 ml) were used to furnish the product 14p (25 mg, 84%) as a yellow solid. Rf = 0.25(EtOAc-hexane 20:80); IR (neat): v_{max}/cm⁻¹ 2923, 1731, 1715, 1608, 1480, 1335, 1276, 1223, 1335, 1130, 1049 ; ¹**H NMR** (400 MHz, CDCl₃) δ 1.12 (t, J = 7.10 Hz, 3H), 3.62 (s, 3H), 4.13 (q, J = 7.2 Hz, 2H), 6.99 (d, J = 7.8 Hz)Hz, 1H), 7.24 (m, 1H), 7.29 - 7.34 (m, 2H), 7.38 (dd, *J* = 8.5, 7.1 Hz, 1H),

7.51 - 7.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 55.5, 60.8, 116.4, 119.0, 120.5, 123.5, 124.5, 127.2, 129.3, 130.5, 132.2, 132.9, 133.7, 155.3, 165.9, 191.8; HRMS: m/z calcd for $C_{19}H_{15}BrNaO_4$ [(M+Na)⁺]: 409.0051; Found: 409.0056.

Compound 14q: According to the general procedure E for cyclization reaction, compound 13q

used to furnish the product 14q (51 mg, 85%) as a white solid. Rf = 0.3(EtOAc-hexane 5:95); IR (neat): v_{max}/cm⁻¹ 3084, 2987, 1733, 1686, 1571, 1461, 1371, 1338, 1230, 1113; ¹**H NMR** (400 MHz, CDCl₃) δ 1.23 (t, J = 7.2 Hz, 3H), 4.24 (q, J = 7.1 Hz, 2H), 7.14 (dt, J = 6.1, 1.1 Hz, 1H), 7.38 (dd, J = 8.2, 2.1 Hz, 1H), 7.42 - 7.47 (m, 2H), 7.60 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 5.7 Hz, 1H),7.65 (d, J = 2.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.0, 61.2, 123.1, 123.8, 124.8, 127.5, 130.0, 130.1, 130.6, 131.2, 131.5, 133.0, 133.8, 134.6, 142.5, 162.3, 162.4, 191.5; HRMS: m/z

(60 mg, 0.17 mmol) and FeCl₃ (56 mg, 0.34 mmol), in toluene (5 ml) were

Compound 14r: According to the general procedure E for cyclization reaction, compound 13r

calcd for $C_{19}H_{16}O_4Na$ [(M+Na)⁺]: 347.0242; Found: 347.0241.

(100 mg, 0.27 mmol) and FeCl₃ (88 mg, 0.54 mmol), in toluene (5 ml) were used to furnish the product 14r (93 mg, 93%) as a yellow solid. Rf = 0.40 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm^{-1} 3066, 2979, 1734, 1692, 1556, 1418, 1367, 1340, 1262, 1130, 801, 778; ¹H NMR (500 MHz, CDCl₃) δ 0.76 (t, J = 7.2 Hz, 3H), 3.94 (dd, J = 7.4, 3.4 Hz, 2H),

6.80 (d, J = 8.0 Hz, 1H), 7.30 (dd, J = 8.0, 1.7 Hz, 1H), 7.44 - 7.47 (m, 1H), 7.48 - 7.51 (m, 1H), 7.58 (m, 1H), 7.587.52 - 7.56 (m, 1H), 7.56 - 7.64 (m, 2H), 7.72 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.99 $(d, J = 8.0 \text{ Hz}, 1\text{H}); {}^{13}C \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 13.4, 60.6, 76.8, 77.3, 123.9, 124.7, 124.9, 124.7, 124.9)$ 125.1, 125.1, 125.7, 126.5, 126.8, 128.6, 129.5, 130.1, 130.2, 131.7, 133.1, 133.4, 137.6, 141.9, 161.9, 165.8, 190.6; **HRMS:** m/z calcd for $C_{22}H_{16}ClO_3$ [(M+H)⁺]: 363.0788; Found: 363.0786.

Compound 14s: According to the general procedure E for cyclization reaction, compound 13s

(53 mg, 0.18 mmol) and FeCl₃ (59 mg, 0.36 mmol), in toluene (5 ml) were used to furnish the product 14s (44 mg, 83%) as a yellow solid. Rf = 0.24(EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm^{-1} 2924, 2853, 1728, 1710, 1458, 1375, 1230, 1110, 1020, 909, 816; ¹H NMR (500 MHz, CDCl₃) δ 1.33 (t, J

= 7.1 Hz, 3H), 4.35 (q, J = 7.1 Hz, 2H), 7.27 (s, 1H), 7.40 - 7.44 (m, 1H), 7.48 (td, J = 7.4, 1.4 Hz, 1H), 7.62 (dd, J = 6.9, 0.9 Hz, 1H), 7.65 (d, J = 7.1 Hz, 1H), 7.71 (dd, J= 5.0, 1.1 Hz, 1H), 7.78 (dd, J = 3.7, 1.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 61.4, 76.7, 77.3, 123.4, 123.6, 128.0, 130.7, 130.8, 131.3, 132.2, 132.3, 133.3, 142.4, 154 .7, 163.8, 191.7; **HRMS:** m/z calcd for C₁₆H₁₃O₃S[(M+H)⁺]: 285.0585; Found: 285.0582.

Compound 7: According to the general procedure E for cyclization reaction, compound 16 (25

mg, 0.06 mmol) and FeCl₃ (19 mg, 0.12 mmol), in toluene (5 ml) were used to furnish the product 7 (21 mg, 84%) as a
at dark red solid. *Rf* = 0.3 (EtOAc-hexane 20:80); **IR** (neat): v_{max}/cm⁻¹ 2925, 1731, 1772, 1611, 1442, 1342, 1285, 1221, 1113; ¹H NMR (400 MHz, CDCl₃) 1.15 (t, *J* = 7.0 Hz, 3H),

2.12 (dd, J = 7.9, 7.0 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 4.01 (t, J = 6.3 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 6.81 (dd, J = 8.1, 2.3 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 7.16 - 7.24 (m, 4H), 7.26 - 7.35 (m, 2H), 7.46 - 7.57 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 30.6, 32.0, 60.6, 67.6, 111.1, 117.4, 122.6, 124.9, 126.1, 128.0, 128.3, 128.5, 130.4, 131.9, 133.0, 134.5, 141.1, 162.3, 162.9, 167.2, 191.9; **HRMS (EI):** m/z calcd for C₂₇H₂₄O₄ [M]⁺: 412.1675; Found: 412.1675.

Reference:

 (1) (a) M. -C. Hung, J. -L. Liao, S. -A. Chen and S. -H. Chen, A. -C. Su, J. Am. Chem. Soc., 2005, 127, 14576; (b) A. Harikishore, M. L. Leow, M. Niang, S. Rajan, K. K. Pasunooti, P. R. Preiser, X. Liu and H. S. Yoon, ACS Med. Chem. Lett. 2013, 4, 1097.

(2) (a) R. J. Holmberg, A. -J. Hutchings, F. Habib, I. Korobkov, J. C. Scaiano and M. Murugesu *Inorg. Chem.*, 2013, 52, 14411; (b) V. F. Curotto, G. A. Echeverría, O. E. Piro, R. P. Diez and A. C. G. Baró, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* 2015, 137, 692; (c) Y. David, S. Steven, A. A. Cruz, B. Nneka, R. James, S. Thomas and W. Jeffery, *PCT Int. Appl.*, 2010, 2010083307; (d) P. Giuseppe, B. Agostino and G. Franco, *Farmaco, Edizione Scientifica* 1969, 24, 997.

(3) (a) J. Jacq, Sel. Org. React Database (SORD) 2009, 20140701; (b) J. Jacq, C. Einhorn and J. Einhorn, Org. Lett. 2008, 17, 3757; (c) D. Li, G. Qiann and Z. Y. Wang, Polymer 2013, 54, 5543; (d) D. H. Dethe and G. Murhade Org. Lett. 2013, 15, 429; (e) D. H. Dethe and G. M. Murhade Chem. Commun. 2013, 49, 8051.

