De novo design of heat shock protein 90 inhibitors: direct inhibition of the C-terminus

L. K. Buckton^a, H. Wahyudi^a and S. R. McAlpine^a*

^aSchool of Chemistry, University of New South Wales, Kensington NSW 2052 Australia. *Corresponding author email: s.mcalpine@unsw.edu.au

Table of Contents

Supplementary Figure 1 (Figure S1)	2
Supplementary Figure 2 (Figure S2)	2
Chemistry: Synthesis and Spectral Data	_
General Remarks	
General Procedures for Synthesis of Linear Peptides	
General Procedures for Synthesis of Cyclic Peptides	4
General Procedures for Removal of Side Chain Protecting Groups	4
Experimental Procedures	
5.1 LIN	
5.1 CYC	6
6.1 LIN	7
6.1 CYC	8
7.1 LIN	9
7.1 CYC	
8.1 LIN	11
8.1 CYC	
5.2 LIN	
5.2 CYC	
6.2 LIN	
6.2 CYC	
7.2 LIN	
7.2 CYC	
8.2 LIN	
8.2 CYC	
TPR Peptide	23
MEEVD Pentide	24
Spectral Data	
5 1 I IN	26
5.1 CYC	30
6.1 L IN	34
6.1 CVC	38
0.1 010	
7.1 LIN	
0.4 / INI	
0. 1 LIN	
0.1 CYC	
5.2 LIN	
5.2 6 Y C	
6.2 LIN	
6.2 CYC	
7.2 LIN	
7.2 CYC	
8.2 LIN	78
8.2 CYC	81
TPR Peptide	
Biology Methodology	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AlphaScreen (PerkinElmer) Protein-Protein Binding Assay	
Luciterase Protein Renaturation Assay	
¹ H NMR Titration Experiments	

Supplementary Figure 1 (Figure S1)

Figure S1. Overview of synthetic approach. Reaction conditions for each step are as follows: **(a)** Fmoc-protected amino acid (3 eq.), HOAt or HOBt (3 eq.), DIC (6 eq.) in DMF (0.3 M) followed by washing with 20% piperidine in DMF. **(b)** TFA (4 mL/g of resin with anisole (2 eq./ side chain protecting group). **(c)** TFE:CH₂Cl₂ (1:1, 10 mL/g resin). **(d)** HATU (1 eq.), TBTU (0.8 eq.), DMTMM (0.8 eq.), DIPEA (8 eq.) in CH₂Cl₂ (0.001 M). **(e)** TFA (4 mL/g of peptide with anisole (2 eq./side chain protecting group).

Supplementary Figure 2 (Figure S2)

Figure S2. Impact of novobiocin, 5.1 CYC, 7.1 CYC and 8.1 CYC on binding of both α and β isoforms of Hsp90 with Cyp40. Graphs represent mean ± SEM, *n* = 3.

General Remarks

All chemicals were purchased from commercial suppliers (Chem-Impex International, Peptide International, GL-Biochem and Sigma Aldrich) and used without further purification. All moisture sensitive reactions were performed using anhydrous solvents under nitrogen gas. Removal of solvent was carried out under reduced pressure using a Buchi R-210 rotary evaporator.

Thin Layer Chromatography (TLC) was performed on aluminium silica gel sheets (Merck TLC silica gel 60 F254). Spots were visualised under ultraviolet light (λ = 254 nm) and developed by heating with ninhydrin solution.

LC/MS analyses were performed using a Waters Symmetry® C18 column (3.5 µm, 4.65 x 75 mm) on a Shimadzu Prominence High Performance LCMS 2010EV system connected to a Shimadzu LCMS 2010EV mass spectrometer. The mobile phase consisted of milli-Q water with 0.1% (v/v) formic acid (Mobile Phase A), and HPLC grade acetonitrile with 0.1% (v/v) formic acid (Mobile Phase B) at a flow rate of 0.5 mL/min, starting at 95% Mobile Phase A and 5% Mobile Phase B.

Semi-preparative HPLC for purification was performed using a GRACE VisionHT C18 column (5 μ m, 22 x 150 mm) on a Shimadzu Prominence High Performance LCMS 2010EV system. The mobile phase consisted of milli-Q water with 0.1% (v/v) formic acid (Mobile Phase A), and HPLC grade acetonitrile with 0.1% (v/v) formic acid (Mobile Phase A), and HPLC grade acetonitrile with 0.1% (v/v) formic acid (Mobile Phase B) at a flow rate of 5 mL/min, starting at 95% Mobile Phase A and 5% Mobile Phase B.

¹H and ¹³C NMR spectra were obtained on Bruker Avance III 600 MHz. All samples were dissolved in deuterium oxide (D_2O). Linear peptide spectra were obtained at 318 K (45 °C) while cyclic peptide spectra were obtained at 308 K (35 °C). Multiplicity of NMR signals were represented by the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of doublet.

High-resolution mass spectrometry (HRMS) analyses were recorded on a Thermo LTQ Orbitrap XL ESI/APCI with UPLC system at the Bioanalytical Mass Spectrometry Facility in Mark Wainwright Analytical Centre at the University of New South Wales.

General Procedures for Synthesis of Linear Peptides

Solid-Phase Peptide Synthesis

Stepwise SPPS was performed in a polypropylene solid-phase extraction cartridge fitted with a 20 µm polyethylene frit purchased from Applied Separations (Allentown, PA) using pre-loaded 2-CITrt resins with loading scales between 0.2-0.9 mmol/g. The resin was weighed, transferred to the cartridge and swelled in DMF for 30 minutes prior to the first coupling reaction.

Coupling Reaction

Couplings were performed in DMF at a concentration of 0.3 M. Fmoc-protected amino acid (3 eq.) and HOBt (3 eq.) were mixed with the resin. DIC (6 eq.) was then added to activate the reaction. Coupling was allowed to proceed for a minimum of 4 hours while shaking (Labquake tube shaker, Thermo Fisher Scientific) at room temperature. Reaction was monitored using thin layer chromatography (TLC) with a ninhydrin test. Upon completion, the reaction solution was drained and the resin was subjected to *Fmoc Removal*. (Note: For particularly hindered coupling reactions, HOBt was replaced with HOAt and the reaction was allowed to proceed overnight.)

Fmoc Removal

After the peptide coupling reaction was complete, the Fmoc protecting group was removed using the following washes: DMF ($3 \times 1 \text{ min}$), 20% piperidine in DMF ($1 \times 5 \text{ min}$), 20% piperidine in DMF ($1 \times 10 \text{ min}$), DMF ($2 \times 1 \text{ min}$), IPA ($1 \times 1 \text{ min}$), The resin was then ready for the next coupling reaction.

Cleavage

Once the desired peptide was generated, the final Fmoc protecting group was removed following *Fmoc Removal* procedure with the following additional washes: DMF (3 x 1 min), IPA (3 x 1 min) and MeOH (3 x 1 min). The resinbound peptide was then dried *in vacuo* overnight. The resin was then cleaved from the linear peptide using TFE and CH_2Cl_2 (1:1 v/v) at a concentration of 10 mL/g resin. The reaction was allowed to stir at room temperature for 48 hours. The suspension was then filtered through a Büchner funnel and the resin was washed with additional CH_2Cl_2 to fully extract the linear peptide. The filtrate was then evaporated and the dried solid was redissolved in CH_2Cl_2 and evaporated multiple times to remove residual entrapped TFE. The linear peptide was then dried *in vacuo* overnight.

General Procedure for Synthesis of Cyclic Peptides

Macrocyclisation of the linear peptide was achieved using a cocktail of 3 coupling reagents: HATU (1 eq.), TBTU (0.5 eq.) and DMTMM (0.5 eq.). The reaction was performed in dilute conditions using anhydrous solvents at concentration of 0.001 M. The linear peptide and coupling reagents were dissolved separately in CH_2Cl_2 , where 20% of the final volume was used to dissolve the linear peptide and the other 80% dissolved the coupling reagents. DIPEA (4 eq.) was added to each solution. The linear peptide solution was then added drop-wise to the coupling reagents solution *via* a syringe pump over approximately 2 hours. The reaction was stirred overnight and monitored using LC/MS. (Note: if the reaction failed to reach completion after stirring overnight, additional HATU (1 eq.) was added and the reaction was monitored using LC/MS.) Upon completion, the reaction mixture was evaporated and the dry solid was subjected to acid-base work-up with saturated sodium bicarbonate (NaHCO₃) and milli-Q water acidified to pH 3 using ammonium chloride (NH₄Cl) and hydrochloric acid (HCl) to remove excess DIPEA. The organic layer was then dried over Na₂SO₄, filtered and evaporated under reduced pressure before the compound was dried *in vacuo* overnight.

General Procedure for Removal of Side Chain Protecting Groups

Amino acid side chain protecting groups were removed using neat TFA and anisole. 2 equivalents of anisole was added per protecting group to be removed. Anisole was added to the linear or cyclic peptide, whilst stirring, followed by neat TFA at a concentration of 1 mL/250 mg compound. The reaction was left stirring at room temperature for 4 hours. The reaction was monitored using LC/MS and once complete the solvent was evaporated before redissolving in CH₂Cl₂ and evaporating multiple times to remove residual entrapped TFA. The peptide was then dried *in vacuo* overnight.

Synthesis of 5.1 LIN and 5.1 CYC

Experimental Procedures for 5.1 LIN

Resin-O-Lys(Boc)-Phe-NH₂

The resin-bound dipeptide Resin-O-Lys(Boc)-Phe-NH₂ was synthesised following the Coupling Reaction procedure using 1.0 g H-Lys(Boc)-2-CITrt resin (0.50 mmol, 1 eq.), 0.58 g Fmoc-Phe-OH (1.5 mmol, 3 eq.), 0.21 g HOAt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run overnight and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-NH₂.

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-NH₂

The resin-bound tripeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-NH2 was synthesised following the Coupling Reaction procedure using Resin-O-Lys(Boc)-Phe-NH₂ synthesised from previous coupling reaction, together with 0.69 g Fmoc-Tyr(t-Bu)-OH (1.5 mmol, 3 eq.), 0.21 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-NHFmoc. The Fmoc protecting group was removed following the Fmoc Removal procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-NH₂.

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂

The resin-bound tetrapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂ was synthesised following the Coupling Reaction procedure using Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-NH₂ synthesised from previous coupling reaction, together with 0.86 g Fmoc-Ser(Trt)-OH (1.5 mmol, 3 eq.), 0.21 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂.

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂

The resin-bound pentapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ was synthesised following the Coupling Reaction procedure using Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂ synthesised from previous coupling reaction, together with 0.92 g Fmoc-Asn(Trt)-OH (1.5 mmol, 3 eq.), 0.21 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NHFmoc. The Fmoc protecting group was removed following the *Emoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂.

The resin-bound pentapeptide was then divided into 2 equal portions of 1.3 g, where one part was reserved for the synthesis of the 6.1 compound series and the other was taken forward to complete the synthesis of the 5.1 compound series.

HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂

The linear pentapeptide HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ was generated following the Cleavage procedure. The linear peptide was cleaved from the resin using a mixed solution of 3.6 mL of TFE and 3.6 mL of CH₂Cl₂. The resin-containing solution was filtered and dried in vacuo to yield HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ as a white solid (286 mg, overall 87%).

HO-Lys-Phe-Tyr-Ser-Asn-NH₂

The free linear peptide HO-Lys-Phe-Tyr-Ser-Asn-NH₂ was generated by removing the side chain protecting groups on HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂. 30 mg HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ (0.02 mmol, 1 eq.) was deprotected using a mixture of 120 µL of TFA and anisole (8 eq.). The free linear peptide then underwent HPLC purification to generate pure final compound 5.1 LIN in a 29% yield as a white solid. LC/MS (ESI) m/z: $[M+2H]^{2+}$ calcd for $C_{31}H_{43}N_7O_9$, 329.66; found, 329.50. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{31}H_{43}N_7O_9$, 658.3100; found, 658.3196.

¹H NMR (600 MHz, D₂O) δ 7.53-7.33 (m, 5H, Phe), 7.21-7.15 (d, J = 8.58 Hz, 2H, δH Tyr), 6.96-6.91 (d, J = 8.58 Hz, 2H, εH Tyr), 4.59-4.55 (t, J = 5.76 Hz, 1H, αH Ser), 4.36-4.29 (m, 1H, αH Asn), 4.27-4.22 (t, J = 5.58 Hz, 1H, αH Lys), 3.92-3.82 (d, J = 5.76 Hz, 2H, βCH₂ Ser), 3.32-3.28 & 3.15-3.06 (m, 2H, βCH₂ Phe), 3.15-3.06 (m, 2H, εCH₂ Lys), 3.15-3.06 & 3.05-2.89 (m, 2H, βCH₂ Tyr), 3.05-2.89 (m, 2H, βCH₂ Asn), 1.97-1.88 (m, 2H, βCH₂ Lys), 1.86-1.77 (m, 2H, δCH₂ Lys), 1.52-1.45 (m, 2H, γCH₂ Lys).

Experimental Procedures for 5.1 CYC

Resin-O-Phe-Tyr(t-Bu)-NH₂

The resin-bound dipeptide Resin-O-Phe-NH₂ was synthesised following the *Coupling Reaction* procedure using 0.50 g H-Phe-2-CITrt resin (0.29 mmol, 1 eq.), 0.39 g Fmoc-Tyr(t-Bu)-OH (0.86 mmol, 3 eq.), 0.12 g HOBt (0.86 mmol, 3 eq.), 0.26 mL DIC (1.71 mmol, 6 eq.) and 2.9 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O- Phe-Tyr(t-Bu)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Phe-Tyr(t-Bu)-NH₂.

Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂

The resin-bound tripeptide Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Phe-Tyr(t-Bu)-NH₂ synthesised from previous coupling reaction, together with 0.49 g Fmoc-Ser(Trt)-OH (0.89 mmol, 3 eq.), 0.12 g HOAt (0.89 mmol, 3 eq.), 0.26 mL DIC (3.0 mmol, 6 eq.) and 2.9 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run overnight and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂.

Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂

The resin-bound tetrapeptide Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-NH₂ synthesised from previous coupling reaction, together with 0.53 g Fmoc-Asn(Trt)-OH (0.89 mmol, 3 eq.), 0.12 g HOAt (0.89 mmol, 3 eq.), 0.26 mL DIC (3.0 mmol, 6 eq.) and 2.9 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run overnight and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂.

Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂

The resin-bound pentapeptide Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ synthesised from previous coupling reaction, together with 0.40 g Fmoc-Lys(Boc)-OH (0.89 mmol, 3 eq.), 0.12 g HOAt (0.89 mmol, 3 eq.), 0.26 mL DIC (3.0 mmol, 6 eq.) and 2.9 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run overnight and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂.

HO-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂

The linear pentapeptide HO-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂ was generated following the *Cleavage* procedure. The linear peptide was cleaved from the resin using a mixed solution of 3.5 mL of TFE and 3.5 mL of CH₂Cl₂. The resin-containing solution was filtered and dried *in vacuo* to yield HO-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂ as a white solid (267 mg, overall 72%).

cyclo-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)

cyclo-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc) was synthesised using 0.16 g HO-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc)-NH₂ (0.12 mmol, 1 eq.), 0.046 g HATU (0.12 mmol, 1 eq.), 0.021 g TBTU (0.060 mmol, 0.5 eq.), 0.018 g DMTMM (0.060 mmol, 0.5 eq.), 0.09 mL DIPEA (0.96 mmol, 8 eq.) in anhydrous CH₂Cl₂ (122 mL, 0.001 M) following the *General Procedure for Synthesis of Cyclic Peptides*. The reaction was allowed to stir overnight and the reaction was monitored *via* LC/MS. Once complete, the reaction mixture was subjected to an acid-base work-up before drying over Na₂SO₄, filtering, evaporating under reduced pressure and drying *in vacuo* to yield crude *cyclo*-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc).

cyclo-Phe-Tyr-Ser-Asn-Lys

The free cyclic peptide *cyclo*-Phe-Tyr-Ser-Asn-Lys was generated by removing the side chain protecting groups on *cyclo*-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc). 100 mg *cyclo*-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Lys(Boc) (0.08 mmol, 1 eq.) was deprotected using a mixture of 400 μ L of TFA and anisole (8 eq.). The free cyclic peptide then underwent HPLC purification to generate pure final compound **5.1 CYC** in a 42% yield as a white solid. LC/MS (ESI) *m*/z: [M+H]⁺ calcd for C₃₁H₄₁N₇O₈, 640.30; found, 640.20.

HRMS (ESI-TOF) m/z: $[M+H]^{+}$ calcd for C₃₁H₄₁N₇O₈, 640.3000; found, 640.3090.

¹H NMR (600 MHz, D₂O) δ 7.57-7.03 (m, 5H, Phe), 7.57-7.03 (m, 2H, δH Tyr), 7.03-6.86 (m, 2H, ϵ H Tyr), 4.55-4.39 (m, 1H, αH Tyr), 4.39-4.16 (m, 1H, αH Ser), 4.09-3.96 (m, 2H, β CH₂ Ser), 3.96-3.79 (m, 1H, αH Lys), 3.42-3.33 & 3.33-3.19 (m, 2H, β CH₂ Phe), 3.19-3.07 (m, 2H, ϵ CH₂ Lys), 3.19-2.80 (m, 2H, β CH₂ Tyr), 3.19-2.80 (m, 2H, β CH₂ Asn), 2.22-1.71 (m, 2H, β CH₂ Lys), 1.89-1.77 (m, 2H, δ CH₂ Lys), 1.59-1.43 (m, 2H, γ CH₂ Lys).

Synthesis of 6.1 LIN and 6.1 CYC

Experimental Procedures for 6.1 LIN

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂

The resin-bound hexapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂ was synthesised following the *Coupling Reaction* procedure using 1.3 g Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ (0.25 mmol, 1 eq.) reserved from the synthesis of **5.1 LIN**, together with 0.24 g Fmoc-Gly-OH (0.75 mmol, 3 eq.), 0.10 g HOBt (0.75 mmol, 3 eq.), 0.23 mL DIC (1.5 mmol, 6 eq.) and 2.5 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂.

HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂

The linear pentapeptide HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ was generated following the *Cleavage* procedure. The linear peptide was cleaved from the resin using a mixed solution of 3.6 mL of TFE and 3.6 mL of CH₂Cl₂. The resin-containing solution was filtered and dried *in vacuo* to yield HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ as a white solid (286 mg, overall 87%).

HO-Lys-Phe-Tyr-Ser-Asn-Gly-NH₂

The free linear peptide HO-Lys-Phe-Tyr-Ser-Asn-Gly-NH₂ was generated by removing the side chain protecting groups on HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂. 70 mg HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-

Asn(Trt)-NH₂ (0.05 mmol, 1 eq.) was deprotected using a mixture of 280 μ L of TFA and anisole (8 eq.). The free linear peptide then underwent HPLC purification to generate pure final compound **6.1 LIN** in a 29% yield as a white solid.

LC/MS (ESI) m/z: $[M+2H]^{2+}$ calcd for $C_{33}H_{46}N_8O_{10}$, 358.17; found, 357.95.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{33}H_{46}N_8O_{10}$, 715.3300; found, 715.3412.

¹H NMR (600 MHz, D₂O) δ 7.56-7.38 (m, 5H, Phe), 7.25-7.17 (d, J = 8.40 Hz, 2H, δH Tyr), 7.01-6.93 (d, J = 8.40 Hz, 2H, εH Tyr), 4.97-4.92 (t, J = 7.20 Hz, 1H, αH Asn), 4.59-4.53 (t, J = 5.58 Hz, 1H, αH Ser), 4.31-4.25 (t, J = 6.66 Hz, 1H, αH Lys), 4.02-3.94 (m, 2H, αCH₂ Gly), 3.94-3.86 (m, 2H, βCH₂ Ser), 3.37-3.29 & 3.21-3.09 (m, 2H, βCH₂ Phe), 3.21-3.09 (m, 2H, εCH₂ Lys), 3.21-3.09 & 2.97-2.86 (m, 2H, βCH₂ Tyr), 2.97-2.86 (qd, J = 5.70, 15.75 Hz, 2H, βCH₂ Asn), 2.00-1.91 & 1.91-1.78 (m, 2H, βCH₂ Lys), 1.91-1.78 (m, 2H, δCH₂ Lys), 1.63-1.47 (m, 2H, γCH₂ Lys).

Experimental Procedures for 6.1 CYC

cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly

cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly was synthesised using 0.10 g HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂ (0.074 mmol, 1 eq.), 0.028 g HATU (0.074 mmol, 1 eq.), 0.012 g TBTU (0.037 mmol, 0.5 eq.), 0.011 g DMTMM (0.037 mmol, 0.5 eq.), 0.10 mL DIPEA (0.59 mmol, 8 eq.) in anhydrous CH_2Cl_2 (74 mL, 0.001 M) following the *General Procedure for Synthesis of Cyclic Peptides*. The reaction was allowed to stir overnight and the reaction was monitored *via* LC/MS. Once complete, the reaction mixture was subjected to an acid-base work-up before drying over Na₂SO₄, filtering, evaporating under reduced pressure and drying *in vacuo* to yield crude *cyclo*-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly.

cyclo-Lys-Phe-Tyr-Ser-Asn-Gly

The free cyclic peptide *cyclo*-Lys-Phe-Tyr-Ser-Asn-Gly was generated by removing the side chain protecting groups on *cyclo*-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly. 56 mg *cyclo*-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly (0.042 mmol, 1 eq.) was deprotected using a mixture of 224 μ L of TFA and anisole (8 eq.). The free cyclic peptide then underwent HPLC purification to generate pure final compound **6.1 CYC** in a 40% yield as a white solid.

LC/MS (ESI) m/z: $[M+H]^{+}$ calcd for C₃₃H₄₄N₈O₉, 697.32; found, 696.85.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₃H₄₄N₈O₉, 697.3200; found, 697.3301.

¹H NMR (600 MHz, D₂O) δ 7.49-7.16 (m, 5H, Phe), 7.16-6.91 (m, 2H, δH Tyr), 6.91-6.78 (m, 2H, εH Tyr), 4.85-4.79 (t, J = 5.58 Hz, 1H, αH Asn), 4.49-4.43 (m, 1H, αH Phe), 4.43-4.38 (t, J = 4.98 Hz, 1H, αH Tyr), 4.21-4.16 (t, J = 7.03 Hz, 1H, αH Ser), 4.14-4.05 (m, 1H, αH Lys), 3.85-3.72 (m, 2H, αCH₂ Gly), 3.85-3.72 (m, 2H, βCH₂ Ser), 3.30-3.22 & 3.13-3.03 (m, 2H, βCH₂ Phe), 2.97-2.70 (m, 2H, εCH₂ Lys), 2.97-2.70 (m, 2H, βCH₂ Tyr), 2.97-2.70 (m, 2H, βCH₂ Lys), 1.77-1.63 (m, 2H, δCH₂ Lys), 1.46-1.27 (m, 2H, γCH₂ Lys).

Synthesis of 7.1 LIN and 7.1 CYC

Experimental Procedures for 7.1 LIN

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂

Resin-bound pentapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ was synthesised as described for compound **5.1 LIN**.

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂

The resin-bound hexapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂ synthesised from the previous coupling reaction, together with 0.45 g Fmoc-Gly-OH (1.5 mmol, 3 eq.), 0.20 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂.

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NH₂

The resin-bound heptapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂ synthesised from the previous coupling reaction, together with 0.53 g Fmoc-Ile-OH (1.5 mmol, 3 eq.), 0.20 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The

coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Gly-Ile-NH₂.

The resin-bound pentapeptide was then divided into 2 equal portions of 1.4 g, where one part was reserved for the synthesis of the 8.1 compound series and the other was taken forward to complete the synthesis of the 7.1 compound series.

HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NH₂

The linear heptapeptide HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NH₂ was generated following the *Cleavage* procedure. The linear peptide was cleaved from the resin using a mixed solution of 3.1 mL of TFE and 3.1 mL of CH₂Cl₂. The resin-containing solution was filtered and dried *in vacuo* to yield HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NH₂ as a white solid (255 mg, overall 68%).

HO-Lys-Phe-Tyr-Ser-Asn-Gly-Ile-NH₂

The free linear peptide HO-Lys-Phe-Tyr-Ser-Asn-Gly-IIe-NH₂ was generated by removing the side chain protecting groups on HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-IIe-NH₂. 62 mg HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-IIe-NH₂ (0.04 mmol, 1 eq.) was deprotected using a mixture of 250 μ L of TFA and anisole (8 eq.). The free linear peptide then underwent HPLC purification to generate pure final compound **7.1 LIN** in a 48% yield as a white solid.

LC/MS (ESI) *m/z*: [M+2H]²⁺ calcd for C₃₉H₅₇N₉O₁₁, 414.71; found, 414.55.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{39}H_{57}N_9O_{11}$, 828.42; found, 828.4255.

¹H NMR (600 MHz, D₂O) δ 7.56-7.28 (m, 5H, Phe), 7.21-7.15 (d, J = 8.04 Hz, 2H, δH Tyr), 7.02-6.93 (m, 2H, εH Tyr), 4.91-4.86 (t, J = 6.49 Hz, 1H, αH Asn), 4.57-4.51 (t, J = 5.52 Hz, 1H, αH Ser), 4.31-4.24 (m, 1H, αH Lys), 4.22-4.15 (m, 2H, αCH₂ Gly), 4.06-4.00 (m, 1H, αH Ile), 3.96-3.85 (m, 2H, βCH₂ Ser), 3.39-3.33 & 3.18-3.05 (m, 2H, βCH₂ Phe), 3.18-3.05 (m, 2H, εCH₂ Lys), 3.18-2.97 (m, 2H, βCH₂ Tyr), 2.97-2.85 (m, 2H, βCH₂ Asn), 2.16-2.07 (m, 1H, βH Ile), 2.00-1.90 & 1.90-1.79 (m, 2H, βCH₂ Lys), 1.90-1.79 (m, 2H, δCH₂ Lys), 1.73-1.65 & 1.46-1.36 (m, 2H, δCH₃ Ile), 1.59-1.36 (m, 2H, γCH₂ Lys), 1.19-1.12 (d, J = 6.90 Hz, 3H, γCH₂ Ile), 1.11-1.00 (m, 3H, γCH₃ Ile).

Experimental Procedures for 7.1 CYC

cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile

cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-IIe was synthesised using 0.10 g HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂ (0.068 mmol, 1 eq.), 0.029 g HATU (0.068 mmol, 1 eq.), 0.014 g TBTU (0.034 mmol, 0.5 eq.), 0.012 g DMTMM (0.034 mmol, 0.5 eq.), 0.10 mL DIPEA (0.55 mmol, 8 eq.) in anhydrous CH₂Cl₂ (68 mL, 0.001 M) following the *General Procedure for Synthesis of Cyclic Peptides*. The reaction was allowed to stir overnight and the reaction was monitored *via* LC/MS. Once complete, the reaction mixture was subjected to an acid-base work-up before drying over Na₂SO₄, filtering, evaporating under reduced pressure and drying *in vacuo* to yield crude *cyclo*-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-IIe.

cyclo-Lys-Phe-Tyr-Ser-Asn-Gly-lle

The free cyclic peptide *cyclo*-Lys-Phe-Tyr-Ser-Asn-Gly-Ile was generated by removing the side chain protecting groups on *cyclo*-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile. 62 mg *cyclo*-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile (0.043 mmol, 1 eq.) was deprotected using a mixture of 250 μ L of TFA and anisole (8 eq.). The free cyclic peptide then underwent HPLC purification to generate pure final compound **7.1 CYC** in a 30% yield as a white solid.

LC/MS (ESI) m/z: $[M+H]^+$ calcd for $C_{39}H_{55}N_9O_{10}$, 810.41; found, 810.05.

HRMS (ESI-TOF) m/z: $[M+H]^{+}$ calcd for $C_{39}H_{55}N_9O_{10}$, 810.0500; found, 810.4141.

¹H NMR (600 MHz, D₂O) δ 7.52-7.13 (m, 5H, Phe), 7.13-6.90 (m, 2H, δH Tyr), 6.90-6.74 (m, 2H, εH Tyr), 4.88-4.82 (t, J = 6.66 Hz, 1H, αH Asn), 4.57-4.52 (dd, J = 5.52, 9.90 Hz, 1H, αH Phe), 4.49-4.44 & 4.41-4.35 (t, J = 4.80 Hz, 1H, αH Tyr), 4.32-4.21 (m, 2H, αCH₂ Gly), 4.32-4.21 (m, 2H, αH Lys), 4.21-4.05 (m, 1H, αH Ile), 4.05-3.65 (m, 2H, βCH₂ Ser), 3.33-3.22 & 3.12-2.67 (m, 2H, βCH₂ Phe), 3.12-2.67 (m, 2H, εCH₂ Lys), 3.12-2.67 (m, 2H, βCH₂ Tyr), 3.12-2.67 (m, 2H, βCH₂ Asn), 1.98-1.77 (m, 1H, βH Ile), 1.98-1.77 (m, 2H, βCH₂ Lys), 1.77-1.63 (m, 2H, δCH₂ Lys), 1.63-1.51 & 1.45-1.21 (m, 2H, γCH₂ Ile), 1.45-1.21 (m, 2H, γCH₂ Lys), 1.10-0.83 (m, 3H, δCH₃ Ile), 1.10-0.83 (m, 3H, γCH₃ Ile).

Synthesis of 8.1 LIN and 8.1 CYC

Experimental Procedures for 8.1 LIN

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂

The resin-bound octapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂ was synthesised following the *Coupling Reaction* procedure using 1.4 g Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-NH₂ (0.25 mmol, 1 eq.) reserved from the synthesis of 7.1 LIN, together with 0.49 g Fmoc-Arg(Pbf)-OH (0.75 mmol, 3 eq.), 0.10 g HOAt (0.75 mmol, 3 eq.), 0.23 mL DIC (1.5 mmol, 6 eq.) and 2.5 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run overnight and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂.

HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-NH₂

The linear octapeptide HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-IIe-Arg(Pbf)-NH₂ was generated following the *Cleavage* procedure. The linear peptide was cleaved from the resin using a mixed solution of 3.7 mL of TFE and 3.7 mL of CH₂Cl₂. The resin-containing solution was filtered and dried *in vacuo* to yield HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-IIe-Arg(Pbf)-NH₂ as a white solid (364 mg, overall 77%).

HO-Lys-Phe-Tyr-Ser-Asn-Gly-NH₂

The free linear peptide HO-Lys-Phe-Tyr-Ser-Asn-Gly-Ile-Arg-NH₂ was generated by removing the side chain protecting groups on HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂. 62 mg HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH2 (0.033 mmol, 1 eq.) was deprotected using a mixture of 250 µL of TFA and anisole (8 eq.). The free linear peptide then underwent HPLC purification to generate pure final compound 8.1 LIN in a 32% yield as a white solid.

LC/MS (ESI) m/z: $[M+2H]^{2+}$ calcd for C₄₅H₆₉N₁₃O₁₂, 492.76; found, 492.70.

HRMS (ESI-TOF) m/z: $[M+2H]^{2+}$ calcd for C₄₅H₆₉N₁₃O₁₂, 492.7600; found, 492.7666.

¹H NMR (600 MHz, D₂O) δ 7.55-7.35 (m, 5H, Phe), 7.22-7.14 (d, J = 8.53 Hz, 2H, δH Tyr), 6.99-6.93 (d, J = 8.41 Hz, 2H, εH Tyr), 4.90-4.86 (t, J = 6.58 Hz, 1H, αH Asn), 4.56-4.51 (t, J = 5.46 Hz, 1H, αH Ser), 4.42-4.38 (d, J = 7.74 Hz, 1H, αH IIe), 4.31-4.23 (t, J = 7.27 Hz, 1H, αH Lys), 4.21-4.09 (m, 1H, αH Arg), 4.21-4.09 (m, 2H, αCH₂ Gly), 3.95-3.85 (m, 2H, βCH₂ Ser), 3.37-3.29 (m, 2H, δCH₂ Arg), 3.37-3.29 & 3.20-2.85 (m, 2H, βCH₂ Phe), 3.20-2.85 (m, 2H, εCH₂ Lys), 3.20-2.85 (m, 2H, βCH₂ Tyr), 3.20-2.85 (m, 2H, βCH₂ Asn), 2.08-1.99 (m, 1H, βH IIe), 2.08-1.99 (m, 2H, βCH₂ Arg), 1.99-1.90& 1.88-1.73 (m, 2H, βCH₂ Lys), 1.88-1.73 (m, 2H, δCH₂ Lys), 1.88-1.73 (m, 2H, γCH₂ Arg), 1.71-1.63 & 1.42-1.33 (m, 2H, γCH₂ lle), 1.58-1.47 (m, 2H, γCH₂ Lys), 1.12-1.07 (d, J = 6.78 Hz, 3H, δCH_3 lle), 1.07-1.00 (t, J = 7.38 Hz, 3H, γCH_3 lle).

Experimental Procedures for 8.1 CYC

cvclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)

cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf) was synthesised using 0.15 g HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-NH₂ (0.080 mmol, 1 eq.), 0.033 g HATU (0.080 mmol, 1 eq.), 0.014 g TBTU (0.040 mmol, 0.5 eq.), 0.012 g DMTMM (0.040 mmol, 0.5 eq.), 0.11 mL DIPEA (0.64 mmol, 8 eq.) in anhydrous CH₂Cl₂ (80 mL, 0.001 M) following the General Procedure for Synthesis of Cyclic Peptides. The reaction was allowed to stir overnight and the reaction was monitored via LC/MS. Once complete, the reaction mixture was subjected to an acid-base work-up before drying over Na₂SO₄, filtering, evaporating under reduced pressure and drying in vacuo to yield crude cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf).

cvclo-Lys-Phe-Tyr-Ser-Asn-Gly-lle

The free cyclic peptide cyclo-Lys-Phe-Tyr-Ser-Asn-Gly-lle-Arg was generated by removing the side chain protecting groups on cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf). 45 mg cyclo-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile (0.024 mmol, 1 eq.) was deprotected using a mixture of 180 µL of TFA and anisole (10 eq.). The free cyclic peptide then underwent HPLC purification to generate pure final compound 8.1 **CYC** in a 67% yield as a white solid.

LC/MS (ESI) m/z: $[M+2H]^{2+}$ calcd for C₄₅H₆₇N₁₃O₁₁, 483.76; found, 483.65.

HRMS (ESI-TOF) m/z: $[M+2H]^{2+}$ calcd for $C_{45}H_{67}N_{13}O_{11}$, 483.7600; found, 483.7610. ¹H NMR (600 MHz, D₂O) δ 7.57-7.20 (m, 5H, Phe), 7.20-6.73 (m, 2H, δ H Tyr), 7.20-6.73 (m, 2H, ϵ H Tyr), 4.90-4.84 (m, 1H, α H Asn), 4.55-4.67 (s, br, 1H, α H Tyr), 4.39-4.35 (t, J = 5.16 Hz, 1H, α H Ser), 4.33-4.26 (t, J = 8.04 Hz, 1H, αH Lys), 4.21-4.09 (m, 2H, αCH₂ Gly), 4.05-4.00 (m, 1H, αH lle), 4.05-4.00 (m, 1H, αH Arg), 4.05-3.72 (m, 2H, βCH₂ Ser), 3.45-3.36 & 3.09-2.96 (m, 2H, βCH₂ Phe), 3.31-3.17 (m, 2H, δCH₂ Arg), 3.09-2.96 (m, 2H, εCH₂ Lys), 2.96-2.87 (m, 2H, βCH₂ Tyr), 2.87-2.68 (m, 2H, βCH₂ Asn), 2.15-1.88 (m, 1H, βH lle), 2.15-1.88 (m, 1H, βCH₂ Arg), 1.88-1.59 (m, 2H, βCH₂Lys), 1.79-1.59 (m, 2H, δCH₂Lys), 1.59-1.53 & 1.30-1.10 (m, 2H, γCH₂Ile), 1.47-1.30 (m, 2H, γCH₂ Lys), 1.00-0.82 (m, 3H, δCH₃ lle), 1.00-0.82 (m, 3H, γCH₃ lle).

Synthesis of 5.2 LIN and 5.2 CYC

Experimental Procedures for 5.2 LIN

Resin-O-Arg(Pbf)-Ala-NHFmoc

The dipeptide Resin-O-Arg(Pbf)-Ala-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.003 g (0.60 mmol, 1.0 equivalent) of Resin-O-Arg(Pbf)-NH₂, 0.560 g (1.80 mmol, 3.0 equivalents) of HO-Ala-NHFmoc, 245 mg of HOAt (1.80 mmol, 3.0 equivalents), 0.56 mL of DIC (3.60 mmol, 6.0 equivalents) and 3.0 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound dipeptide.

Resin-O-Arg(Pbf)-Ala-NH₂

The dipeptide Resin-O-Arg(Pbf)-Ala-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-NHFmoc

The tripeptide Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.003 g (0.60 mmol, 1.0 equivalent) of Resin-O-Arg(Pbf)-Ala-NH₂, 0.827 g (1.80 mmol, 3.0 equivalents) of HO-Tyr(tBu)-NHFmoc, 243 mg of HOBt (1.80 mmol, 3.0 equivalents), 0.56 mL of DIC (3.60 mmol, 6.0 equivalents) and 3.0 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound tripeptide.

Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-NH₂

The tripeptide Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NHFmoc

The tetrapeptide Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.003 g (0.60 mmol, 1.0 equivalent) of Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-NH₂, 0.560 g (1.80 mmol, 3.0 equivalents) of HO-Ala-NHFmoc, 243 mg of HOBt (1.80 mmol, 3.0 equivalents), 0.56 mL of DIC (3.60 mmol, 6.0 equivalents) and 3.0 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound tetrapeptide.

Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂

The tetrapeptide Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NHFmoc

The pentapeptide Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.003 g (0.60 mmol, 1.0 equivalent) of Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂, 0.843 g (1.80 mmol, 3.0 equivalents) of HO-Lys(Boc)-NHFmoc, 245 mg of HOAt (1.80 mmol, 3.0 equivalents), 0.56 mL of DIC (3.60 mmol, 6.0 equivalents) and 3.0 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound pentapeptide.

Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂

The pentapeptide Resin-O-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal. HO-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂

The double deprotected linear precursor (DDLP) HO-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ was synthesized using the resin-bound peptide prepared from previous step following "Linear peptide cleavage from resin" procedure utilizing 3.9 mL of TFE and 3.9 mL of CH₂Cl₂. The resulting slurry was filtered and dried *in vacuo* to yield HO-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ as a pale yellow solid (270 mg, overall 44%). LC/MS (ESI): m/z calculated C₄₉H₇₈N₉O₁₂S [M + H⁺] = 1016.55, found 1016.20

HO-Arg-Ala-Tyr-Ala-Lys-NH₂

The HO-Arg-Ala-Tyr-Ala-Lys-NH₂ was synthesized utilizing 25.0 mg (0.025 mmol, 1.0 equivalent) of the DDLP HO-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂, 5.00 mL (0.050 mmol, 2.0 equivalents) of Anisole, 0.125 mL of TFA and 0.125 mL of CH₂Cl₂. The resulting slurry was dried *in vacuo*. The residue was redissolved in MeOH, and the solution was centrifuged. The supernatant was injected into the HPLC to yield HO-Arg-Ala-Tyr-Ala-Lys-NH₂ (13.2 mg, overall 87%).

LC/MS (ESI): m/z calculated C₂₇H₄₆N₉O₇ [M + H⁺] = 608.35, found 608.10.

HRMS (ESI-TOF): M+H+, found 608.3508 C₂₇H₄₇N₉O₇ requires 608.3520

¹H NMR (600 MHz, CDCl₃ 298K): δ = 1.22-1.32 (m, 6H, CH₃β Ala); 1.22-1.35 (m, 2H, CH₂γ Lys); 1.51-1.62 (m, 2H, CH₂δ Lys); 1.56-1.65 (m, 2H, CH₂γ Arg); 1.65-1.73 & 1.81-1.89 (m, 2H, CH₂β Lys); 1.71-1.81 (m, 2H, CH₂β Arg); 2.83-2.98 & 3.03-3.08 (m, 2H, CH₂β Tyr); 2.85-2.93 (m, 2H, CH₂δ Arg); 3.09-3.18 (m, 2H, CH₂ε Lys); 3.61-3.66 & 3.84-3.91 (m, 1H, CHα Arg); 4.19-4.33 (m, 2H, CHα Ala); 4.20-4.28 (m, 1H, CHα Lys); 4.41-4.46 & 4.49-4.54 (m, 1H, CHα Tyr); 6.73-6.76 & 7.13-7.17 (d, J = 8.55 Hz, 2H, Ph Tyr); 7.04-7.08 & 7.19-7.23 (d, J = 8.55 Hz, 2H, Ph Tyr).

¹³C[´]NMR (150 MHz, CDCl₃, 298K): δ = 16.61, 21.06, 24.40, 26.25, 27.90, 30.31, 36.27, 36.66, 38.96, 40.49, 49.28, 52.78, 52.85, 54.35, 54.63, 55.04, 115.37, 121.43, 128.00, 130.52, 154.39, 156.71, 169.10, 172.19, 172.45, 174.08, 175.83

Experimental Procedures for 5.2 CYC

cyclo-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)

The macrocycle Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc) was synthesized following the "Syringe pump macrocyclization" procedure utilizing 107 mg (0.105 mmol, 1.0 equivalent) of DDLP HO-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂, 0.11 mL (0.632 mmol, 6.0 equivalents) of DIPEA, 17 mg (0.053 mmol, 0.5 equivalents) of TBTU, 40 mg (0.105 mmol, 1.0 equivalents) HATU, and 15 mg (0.053 mmol, 0.5 equivalents) of DMTMM in 105 mL CH₂Cl₂. The crude reaction was dried in vacuo to yield 126 mg of macrocycle. The macrocycle was taken onto the next reaction without further purification.

cyclo-Arg-Ala-Tyr-Ala-Lys

Macrocycle Arg-Ala-Tyr-Ala-Lys was synthesized utilizing 126 mg (0.127 mmol, 1.0 equivalent) of the Macrocycle Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc), 27.0 mL (0.254 mmol, 2.0 equivalents) of Anisole, 0.65 mL of TFA and 0.65 mL of CH₂Cl₂. The resulting slurry was dried *in vacuo*. The residue was redissolved in MeOH, and the solution was

centrifuged. The supernatant was injected into the HPLC to yield Macrocycle Arg-Ala-Tyr-Ala-Lys (21.7 mg, overall 17%). LCMS: m/z calcd for $C_{27}H_{44}N_9O_6$ (M + H⁺) = 590.34, found 590.05.

HRMS (ESI-TOF): M+H+, found 590.3408 $C_{27}H_{45}N_9O_6$ requires 590.3414

¹H NMR (600 MHz, CDCl₃, 318K): $\overline{\delta}$ = 1.42-1.53 (d, J= 6.60 Hz, 3H, CH₃β Ala); 1.45-1.51 & 1.59-1.64 (d, J= 7.23 Hz, 3H, CH₃β Ala); 1.52-1.63 (m, 2H, CH₂γ Lys); 1.73-1.87 (m, 2H, CH₂γ Arg); 1.79-1.90 (m, 2H, CH₂δ Lys); 1.97-2.06 (m, 2H, CH₂β Lys); 2.05-2.11 (m, 2H, CH₂β Arg); 3.11-3.19 (m, 2H, CH₂δ Arg); 3.19-3.25 & 3.28-3.32 (m, 2H, CH₂β Tyr); 3.30-3.43 & 3.33-3.39 (m, 2H, CH₂ε Lys); 4.24-4.29 (m, 1H, CHα Ala); 4.40-4.44 (m, 1H, CHα Ala); 4.38-4.43 (m, 1H, CHα Lys); 4.38-4.44 (m, 1H, CHα Arg); 4.58-4.64 (m, 1H, CHα Tyr); 7.01-7.06 & 7.24-7.27 (d, J = 8.77 Hz, 2H, Ph Tyr); 7.32-7.36 & 7.91-7.94 (d, J = 8.77 Hz, 2H, Ph Tyr).

¹³C NMR (150 MHz, CDCl₃, 318K): δ = 15.64, 16.63, 22.36, 24.82, 26.27, 27.56, 29.51, 35.43, 39.29, 40.65, 42.64, 50.82, 51.21, 54.17, 54.82, 55.53, 114.37, 115.68, 127.58, 130.78, 154.39, 156.71, 169.10, 172.19, 172.45, 174.08, 175.83

Synthesis of 6.2 LIN and 6.2 CYC

Experimental Procedures for 6.2 LIN

Resin-O-Ile-Arg(Pbf)-NH₂

The resin-bound dipeptide Resin-O-Ile-Arg(Pbf)-NH₂ was synthesised following the *Coupling Reaction* procedure using 1.00 g H-Ile-2-CITrt resin (0.9 mmol, 1 eq.), 1.75 g Fmoc-Phe-OH (2.7 mmol, 3 eq.), 0.38 g HOBt (2.7 mmol, 3 eq.), 0.83 mL DIC (5.4 mmol, 6 eq.) and 9.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Ile-Arg(Pbf)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Ile-Arg(Pbf)-NH₂.

Resin-O-Ile-Arg(Pbf)-Ala-NH₂

The resin-bound tripeptide Resin-O-Ile-Arg(Pbf)-Ala-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Ile-Arg(Pbf)-NH₂ synthesised from previous coupling reaction, together with 0.84 g Fmoc-Ala-OH (2.7 mmol, 3 eq.), 0.37 g HOAt (2.7 mmol, 3 eq.), 0.83 mL DIC (5.4 mmol, 6 eq.) and 9.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run overnight and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Ile-Arg(Pbf)-Ala-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Ile-Arg(Pbf)-Ala-NH₂.

Resin-O-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-NH₂

The resin-bound tetrapeptide Resin-O-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Ile-Arg(Pbf)-Ala-NH₂ synthesised from previous coupling reaction, together with 1.24 g Fmoc-Tyr(t-Bu)-OH (2.7 mmol, 3 eq.), 0.38 g HOBt (2.7 mmol, 3 eq.), 0.83 mL DIC (5.4 mmol, 6 eq.) and 9.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-NHF.

Resin-O-lle-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-NH₂

The resin-bound pentapeptide Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-NH₂ synthesised from previous coupling reaction, together with 0.84 g Fmoc-Ala-OH (2.7 mmol, 3 eq.), 0.37 g HOBt (2.7 mmol, 3 eq.), 0.83 mL DIC (5.4 mmol, 6 eq.) and 9.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-NH₂.

Resin-O-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂

The resin-bound pentapeptide Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-NH₂ synthesised from previous coupling reaction, together with 1.27 g Fmoc-Lys(Boc)-OH (2.7 mmol, 3 eq.), 0.37 g HOBt (2.7 mmol, 3 eq.), 0.83 mL DIC (5.4 mmol, 6 eq.) and 9.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂.

HO-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂

The linear hexapeptide HO-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ was generated following the *Cleavage* procedure. The linear peptide was cleaved from the resin using a mixed solution of 6.4 mL of TFE and 6.4 mL of CH₂Cl₂. The resin-containing solution was filtered and dried *in vacuo* to yield HO-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ as a white solid (450 mg, overall 45%).

HO-lle-Arg-Ala-Tyr-Ala-Lys-NH₂

The free linear peptide HO-IIe-Arg-Ala-Tyr-Ala-Lys-NH₂ was generated by removing the side chain protecting groups on HO-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂. 71 mg HO-IIe-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ (0.063 mmol, 1 eq.) was deprotected using a mixture of 284 μ L of TFA and anisole (6 eq.). The free linear peptide then underwent HPLC purification to generate pure final compound **6.2 LIN** in a 69% yield as a white solid. LC/MS (ESI) *m/z*: [M+2H]²⁺ calcd for C₃₃H₅₆N₁₀O₈, 361.22; found, 361.10.

HRMS (ESI-TOF) m/z: $[M+2H]^{2+}$ calcd for $C_{33}H_{56}N_{10}O_8$, 361.2200; found, 361.2216.

¹H NMR (600 MHz, D₂O) δ 7.47-7.25 (m, 2H, δH Tyr), 7.02-6.96 (d, J = 8.40 Hz, 2H, εH Tyr), 4.56-4.46 (m, 1H, αH Arg), 4.56-4.46 (m, 1H, αH Ala), 4.29-4.25 (d, J = 6.19 Hz, 1H, βH IIe), 4.16-4.11 (m, 1H, αH Lys), 3.41-3.34 (t, J = 5.52 Hz, 2H, δCH₂ Arg), 3.23-3.06 (m, 2H, εCH₂ Lys), 3.23-3.06 (m, 2H, βCH₂ Tyr), 2.07-1.95 (m, 1H, βH IIe), 2.07-1.95 (m, 1H, βCH₂ Lys), 2.07-1.95 & 1.97-1.75 (m, 1H, βCH₂ Arg), 1.95-1.75 (m, 2H, γCH₂ Arg), 1.95-1.75 (m, 2H, δCH₂ Lys), 1.63-1.45 (m, 2H, γCH₂ Lys), 1.63-1.45 (m, 3H, βCH₃ Ala), 1.63-1.45 & 1.35-1.25 (m, 2H, γCH₂ IIe), 1.06-1.00 (m, 3H, δCH3 IIe), 1.06-1.00 (m, 3H, γCH3 IIe).

Experimental Procedures for 6.2 CYC

cyclo-lle-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)

cyclo-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc) was synthesised using 0.12 g HO-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ (0.11 mmol, 1 eq.), 0.042 g HATU (0.11 mmol, 1 eq.), 0.020 g TBTU (0.050 mmol, 0.5 eq.), 0.012 g DMTMM (0.050 mmol, 0.5 eq.), 0.15 mL DIPEA (0.88 mmol, 8 eq.) in anhydrous CH₂Cl₂ (106 mL, 0.001 M) following the *General Procedure for Synthesis of Cyclic Peptides*. The reaction was allowed to stir overnight and the reaction was monitored *via* LC/MS. Once complete, the reaction mixture was subjected to an acid-base work-up before drying over Na₂SO₄, filtering, evaporating under reduced pressure and drying *in vacuo* to yield crude *cyclo*-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc).

cyclo-lle-Arg-Ala-Tyr-Ala-Lys

The free cyclic peptide *cyclo*-lle-Arg-Ala-Tyr-Ala-Lys was generated by removing the side chain protecting groups on *cyclo*-lle-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc). 45 mg *cyclo*-lle-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc) (0.040 mmol, 1 eq.) was deprotected using a mixture of 180 μ L of TFA and anisole (6 eq.). The free cyclic peptide then underwent HPLC purification to generate pure final compound **6.2 CYC** in a 26% yield as a white solid. LC/MS (ESI) *m/z*: [M-H]⁻ calcd for C₃₃H₅₄N₁₀O₇, 701.42; found, 700.90.

HRMS (ESI-TOF) m/z: $[M+2H]^{2+}$ calcd for $C_{33}H_{54}N_{10}O_7$, 352.2100; found 352.2162.

¹H NMR (600 MHz, D₂O) δ 7.35-7.12 (m, 2H, δH Tyr), 6.95-6.83 (dd, J = 7.68, 24.31 Hz, 2H, εH Tyr), 4.62-4.49 (m, 1H, αH Tyr), 4.49-4.16 (m, 1H, αH Arg), 4.49-4.16 (m, 1H, αH Ala), 4.49-4.16 (m, 1H, αH Ala), 4.16-4.13 (d, J = 6.18 Hz, 1H, βH IIe), 4.13-4.06 (m, 1H, αH Lys), 3.34-3.22 (m, 2H, δCH₂ Arg), 3.22-2.83 (m, 2H, εCH₂ Lys), 3.22-2.83 (m, 2H, βCH₂ Tyr), 1.97-1.95 (m, 1H, βH IIe), 1.97-1.78 (m, 1H, βCH₂ Lys), 1.78-1.58 (m, 1H, βCH₂ Arg), 1.78-1.58 (m, 2H, γCH₂ Arg), 1.78-1.58 (m, 2H, βCH₃ Ala), 1.47-1.27 (m, 3H, βCH₃ Ala), 1.01-0.84 (m, 3H, δCH3 IIe), 1.01-0.84 (m, 3H, γCH3 IIe).

Synthesis of 7.2 LIN and 7.2 CYC

Experimental Procedures for 7.2 LIN

Resin-O-Gly-Ile-NHFmoc

The dipeptide Resin-O-Gly-IIe-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.012 g (0.90 mmol, 1.0 equivalent) of Resin-O-Gly-NH₂, 0.954 g (2.70 mmol, 3.0 equivalents) of HO-IIe-NHFmoc, 365 mg of HOBt (2.70 mmol, 3.0 equivalents), 0.85 mL of DIC (5.40 mmol, 6.0 equivalents) and 4.5 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound dipeptide.

Resin-O-Gly-Ile-NH₂

The dipeptide Resin-O-Gly-Ile-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Gly-Ile-Arg(Pbf)-NHFmoc

The tripeptide Resin-O-Gly-IIe-Arg(Pbf)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.012 g (0.90 mmol, 1.0 equivalent) of Resin-O-Gly-IIe-NH₂, 1.150 g (2.70 mmol, 3.0 equivalents) of HO-Arg(Pbf)-NHFmoc, 367 mg of HOAt (2.70 mmol, 3.0 equivalents), 0.85 mL of DIC (5.40 mmol, 6.0 equivalents) and 4.5 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resinbound tripeptide.

Resin-O-Gly-Ile-Arg(Pbf)-NH₂

The tripeptide Resin-O-Gly-Ile-Arg(Pbf)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-NHFmoc

The tetrapeptide Resin-O-Gly-IIe-Arg(Pbf)-Ala-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.012 g (0.90 mmol, 1.0 equivalent) of Resin-O-Gly-IIe-Arg(Pbf)-NH₂, 0.841 g (2.70 mmol, 3.0 equivalents) of HO-Ala-NHFmoc, 367 mg of HOAt (2.70 mmol, 3.0 equivalents), 0.85 mL of DIC (5.40 mmol, 6.0 equivalents) and 4.5 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resinbound tetrapeptide.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-NH₂

The tetrapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NHFmoc

The pentapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.012 g (0.90 mmol, 1.0 equivalent) of Resin-O-Gly-Ile-Arg(Pbf)-Ala-NH₂, 1.240 g (2.70 mmol, 3.0 equivalents) of HO-Tyr(tBu)-NHFmoc, 365 mg of HOBt (2.70 mmol, 3.0 equivalents), 0.85 mL of DIC (5.40 mmol, 6.0 equivalents) and 4.5 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound pentapeptide.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NH₂

The pentapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NHFmoc

The hexapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.012 g (0.90 mmol, 1.0 equivalent) of Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NH₂, 0.841 g (2.70 mmol, 3.0 equivalents) of HO-Ala-NHFmoc, 365 mg of HOBt (2.70 mmol, 3.0 equivalents), 0.85 mL of DIC (5.40 mmol, 6.0 equivalents) and 4.5 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound hexapeptide.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂

The hexapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NHFmoc

The heptapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 1.012 g (0.90 mmol, 1.0 equivalent) of Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂, 1.265 g (2.70 mmol, 3.0 equivalents) of HO-Lys(Boc)-NHFmoc, 367 mg of HOAt (2.70 mmol, 3.0 equivalents), 0.85 mL of DIC (5.40 mmol, 6.0 equivalents) and 4.5 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound heptapeptide.

Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂

The heptapeptide Resin-O-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

HO-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂

The double deprotected linear precursor (DDLP) HO-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ was synthesized using the resin-bound peptide prepared from previous step following "Linear peptide cleavage from resin" procedure utilizing 5.0 mL of TFE and 5.0 mL of CH₂Cl₂. The resulting slurry was filtered and dried *in vacuo* to yield HO-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ as a pale yellow solid (172 mg, overall 16%). LC/MS (ESI): m/z calculated C₅₇H₉₂N₁₁O₁₄S [M + H⁺] = 1186.65, found 1186.15

HO-Gly-lle-Arg-Ala-Tyr-Ala-Lys-NH₂

The HO-Gly-Ile-Arg-Ala-Tyr-Ala-Lys-NH₂ was synthesized utilizing 12.0 mg (0.010 mmol, 1.0 equivalent) of the DDLP HO-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂, 2.00 mL (0.020 mmol, 2.0 equivalents) of Anisole, 0.050 mL of TFA and 0.050 mL of CH₂Cl₂. The resulting slurry was dried *in vacuo*. The residue was redissolved in MeOH, and the solution was centrifuged. The supernatant was injected into the HPLC to yield HO-Gly-Ile-Arg-Ala-Tyr-Ala-Lys-NH₂ (4.1 mg, overall 52%).

LC/MS (ESI): m/z calculated $C_{35}H_{60}N_{11}O_9 [M + H^{+}] = 778.46$, found 778.05.

HRMS (ESI-TOF): M+H+, found 778.4564 C₃₅H₆₁N₁₁O₉ requires 778.4575

¹H NMR (600 MHz, CDCl₃, 298K): δ = 0.76-0.81 (t, *J* = 7.37 Hz, 3H, CH₃ δ Ile); 0.84-0.87 (d, *J* = 6.72 Hz, 3H, CH₃ γ Ile); 1.10-1.16 & 1.40-1.46 (m, 2H, CH₂ γ Ile); 1.23-1.25 (d, *J* = 7.11 Hz, 3H, CH₃ β Ala); 1.25-1.29 (d, *J* = 7.24 Hz, 3H, CH₃ β Ala); 1.26-1.34 (m, 2H, CH₂ γ Lys); 1.47-1.60 (m, 2H, CH₂ δ Lys); 1.57-1.65 (m, 2H, CH₂ γ Arg); 1.65-1.77 (m, 2H, CH₂ β Lys); 1.74-1.80 (m, 2H, CH₂ β Arg); 1.77-1.83 (m, 2H, CH β Ile); 2.84-2.90 & 2.92-2.96 (m, 2H, CH₂ β Tyr); 2.86-2.92 (m, 2H, CH₂ δ Arg); 3.10-3.16 (m, 2H, CH₂ ϵ Lys); 3.81-3.85 & 3.90-3.94 & 3.92-3.96 & 3.97-4.00 (m, 2H, CH₂ Gly); 3.86-3.91 (m, 2H, CHα Arg); 4.12-4.17 (m, 1H, CHα Ile); 4.19-4.25 (m, 1H, CHα Ala); 4.19-4.25 (m, 1H, CHα Lys); 4.27-4.33 (m, 1H, CHα Ala); 4.41-4.46 (m, 1H, CHα Tyr); 6.72-6.76 & 7.13-7.16 (d, J = 8.42 Hz, 2H, Ph Tyr); 7.04-7.09 & 7.19-7.22 (d, J = 8.42 Hz, 2H, Ph Tyr).

¹³C NMR (150 MHz, CDCl₃, 298K): δ = 9.96, 14.58, 16.63, 17.69, 21.06, 24.35, 24.41, 26.25, 28.05, 30.31, 36.11, 36.28, 38.96, 40.37, 40.52, 41.03, 44.53, 49.19, 49.29, 52.66, 53.23, 55.04, 58.08, 115.36, 117.30, 128.01, 130.55, 154.37, 156.69, 162.87, 169.05, 172.44, 173.02, 173.21, 173.69, 173.99, 174.08.

Experimental Procedures for 7.2 CYC

cyclo-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)

The macrocycle Gly-IIe-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc) was synthesized following the "Syringe pump macrocyclization" procedure utilizing 67 mg (0.056 mmol, 1.0 equivalent) of DDLP HO-Gly-IIe-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂, 0.058 mL (0.336 mmol, 6.0 equivalents) of DIPEA, 9.00 mg (0.028 mmol, 0.5 equivalents) of TBTU, 21.3 mg (0.056 mmol, 1.0 equivalents) HATU, and 7.75 mg (0.028 mmol, 0.5 equivalents) of DMTMM in 56 mL CH₂Cl₂. The crude reaction was dried in vacuo to yield 25.4 mg of macrocycle. The macrocycle was taken onto the next reaction without further purification.

cyclo-Gly-lle-Arg-Ala-Tyr-Ala-Lys

Macrocycle Gly-lle-Arg-Ala-Tyr-Ala-Lys was synthesized utilizing 25.4 mg (0.022 mmol, 1.0 equivalent) of the Macrocycle Gly-lle-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc), 4.70 mL (0.044 mmol, 2.0 equivalents) of Anisole, 0.11 mL of TFA and 0.11 mL of CH₂Cl₂. The resulting slurry was dried *in vacuo*. The residue was redissolved in MeOH, and the solution was centrifuged. The supernatant was injected into the HPLC to yield Macrocycle Gly-lle-Arg-Ala-Tyr-Ala-Lys (3.2 mg, overall 19%). LCMS: m/z calcd for $C_{35}H_{58}N_{11}O_8$ (M + H⁺) = 760.45, found 760.30. HRMS (ESI-TOF): M+H+, found 760.4462 $C_{35}H_{59}N_{11}O_8$ requires 760.4470

¹H NMR (600 MHz, CDCl₃, 308K): δ = 0.90-0.96 (m, 3H, CH₃δ Ile); 0.94-1.01 (m, 3H, CH₃γ Ile); 1.24-1.29 & 1.52-1.56 (m, 2H, CH₂γ Ile); 1.32-1.48 (m, 6H, CH₃β Ala); 1.41-1.51 (m, 2H, CH₂γ Lys); 1.57-1.72 (m, 2H, CH₂δ Lys); 1.69-1.79 (m, 2H, CH₂γ Arg); 1.79-1.84 & 1.85-1.98 (m, 2H, CH₂β Lys); 1.71-1.76 & 1.85-1.90 (m, 2H, CH₂β Arg); 1.90-1.97 (m, 2H, CHβ Ile); 3.01-3.08 (m, 2H, CH₂β Tyr); 3.22-3.30 (m, 2H, CH₂δ Arg); 3.46-3.50 & 3.52-3.58 (m, 2H, CH₂ε Lys); 3.99-4.09 & 4.12-4.23 (m, 2H, CH₂ Gly); 3.93-3.95 & 4.00-4.03 (m, 2H, CHα Arg); 4.12-4.18 & 4.25-4.28 (m, 1H, CHα Ala); 4.20-4.28 (m, 1H, CHα Ile); 4.31-4.39 (m, 1H, CHα Ala); 4.31-4.34 & 4.35-4.44 (m, 1H, CHα Lys); 4.43-4.45 & 4.50-4.60 (m, 1H, CHα Tyr); 6.83-6.93 (m, 2H, Ph Tyr); 7.10-7.20 (m, 2H, Ph Tyr).

¹³C NMR (150 MHz, CDCl₃, 308K): δ = 10.11, 14.68, 16.24, 16.67, 21.94, 24.71, 24.51, 25.02, 26.27, 28.03, 30.72, 36.14, 39.10, 40.50, 41.00, 42.40, 43.80, 46.10, 49.50, 50.80, 52.10, 53.20, 54.10, 55.00, 55.30, 55.40, 58.40, 115.43, 130.66, 154.37, 156.69, 162.87, 169.05, 172.44, 173.02, 173.21, 173.69, 173.99, 174.08.

Synthesis of 8.2 LIN and 8.2 CYC

Experimental Procedures for 8.2 LIN

Resin-O-Asn(Trt)-Gly-NHFmoc

The dipeptide Resin-O-Asn(Trt)-Gly-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-NH₂, 0.589 g (1.98 mmol, 3.0 equivalents) of HO-Gly-NHFmoc, 268 mg of HOBt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound dipeptide.

Resin-O-Asn(Trt)-Gly-NH₂

The dipeptide Resin-O-Asn(Trt)-Gly-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Asn(Trt)-Gly-Ile-NHFmoc

The tripeptide Resin-O-Asn(Trt)-Gly-Ile-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-Gly-NH₂, 0.70 g (1.98 mmol, 3.0 equivalents) of HO-Ile-NHFmoc, 268 mg of HOBt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound tripeptide.

Resin-O-Asn(Trt)-Gly-Ile-NH₂

The tripeptide Resin-O-Asn(Trt)-Gly-Ile-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-NHFmoc

The tetrapeptide Resin-O-Asn(Trt)-Gly-IIe-Arg(Pbf)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-Gly-IIe-NH₂, 0.845 g (1.98 mmol, 3.0 equivalents) of HO-Arg(Pbf)-NHFmoc, 269 mg of HOAt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound tetrapeptide.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂

The tetrapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-NHFmoc

The pentapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-NH₂, 0.616 g (1.98 mmol, 3.0 equivalents) of HO-Ala-NHFmoc, 269 mg of HOAt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound pentapeptide.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-NH₂

The pentapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NHFmoc

The hexapeptide Resin-O-Asn(Trt)-Gly-IIe-Arg(Pbf)-Ala-Tyr(tBu)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-Gly-IIe-Arg(Pbf)-Ala-NH₂, 0.910 g (1.98 mmol, 3.0 equivalents) of HO-Tyr(tBu)-NHFmoc, 268 mg of HOBt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound hexapeptide.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NH₂

The hexapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NHFmoc

The heptapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-NH₂, 0.616 g (1.98 mmol, 3.0 equivalents) of HO-Ala-NHFmoc, 268 mg of HOBt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound heptapeptide.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂

The heptapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NHFmoc

The octapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NHFmoc was synthesized following the "Solid phase peptide synthesis" procedure utilizing 0.984 g (0.66 mmol, 1.0 equivalent) of Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-NH₂, 0.928 g (1.98 mmol, 3.0 equivalents) of HO-Lys(Boc)-NHFmoc, 269 mg of

HOAt (1.98 mmol, 3.0 equivalents), 0.62 mL of DIC (3.96 mmol, 6.0 equivalents) and 3.3 mL of DMF (0.2 M). The reaction was run for 2 hr and a negative ninhydrin test was performed to verify the reaction completion. The reaction mixture was drained to give the Fmoc-protected resin-bound octapeptide.

Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂

The octapeptide Resin-O-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ was synthesized following the "Fmoc removal" procedure. A positive ninhydrin test was performed to verify the completion of Fmoc removal. HO-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂

The double deprotected linear precursor (DDLP) HO-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ was synthesized using the resin-bound peptide prepared from previous step following "Linear peptide cleavage from resin" procedure utilizing 6.5 mL of TFE and 6.5 mL of CH₂Cl₂. The resulting slurry was filtered and dried *in vacuo* to yield HO-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂ as a pale yellow solid (691 mg, overall 68%). LC/MS (ESI): m/z calculated C₈₀H₁₁₂N₁₃O₁₆S [M + H⁺] = 1542.81, found 1542.25

HO-Asn-Gly-lle-Arg-Ala-Tyr-Ala-Lys-NH₂

The HO-Asn-Gly-Ile-Arg-Ala-Tyr-Ala-Lys-NH₂ was synthesized utilizing 43.7 mg (0.028 mmol, 1.0 equivalent) of the DDLP HO-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂, 6.00 mL (0.056 mmol, 2.0 equivalents) of Anisole, 0.140 mL of TFA and 0.140 mL of CH₂Cl₂. The resulting slurry was dried *in vacuo*. The residue was redissolved in MeOH, and the solution was centrifuged. The supernatant was injected into the HPLC to yield HO-Asn-Gly-Ile-Arg-Ala-Tyr-Ala-Lys-NH₂ (15.9 mg, overall 63%).

LC/MS (ESI): m/z calculated $C_{39}H_{66}N_{13}O_{11}$ [M + H⁺] = 892.50, found 893.30.

HRMS (ESI-TOF): M+H+, found 892.4990 C₃₉H₆₇N₁₃O₁₁ requires 892.5004

¹H NMR (600 MHz, CDCl₃, 298K): δ = 0.75-0.80 (t, *J* = 7.41 Hz, 3H, CH₃ δ lle); 0.82-0.85 (d, *J* = 6.83 Hz, 3H, CH₃ γ lle); 1.07-1.15 & 1.37-1.44 (m, 2H, CH₂ γ lle); 1.22-1.27 (dd, *J* = 10.88, 7.29 Hz, 3H, CH₃ β Ala); 1.22-1.34 (m, 2H, CH₂ γ Lys); 1.47-1.60 (m, 2H, CH₂ δ Lys); 1.55-1.63 (m, 2H, CH₂ γ Arg); 1.62-1.79 (m, 2H, CH₂ β Lys); 1.71-1.81 (m, 2H, CH₂ β Arg); 1.73-1.83 (m, 2H, CH β lle); 2.71-2.81 (m, 2H, CH₂ β Asn); 2.82-2.98 (m, 2H, CH₂ β Tyr); 2.85-2.92 (m, 2H, CH₂ δ Arg); 3.08-3.16 (m, 2H, CH₂ ϵ Lys); 3.84-3.94 (m, 2H, CH₂ Gly); 3.84-3.92 (m, 2H, CH α Arg); 4.08-4.12 (d, J = 8.65 Hz, 1H, CHα lle); 4.17-4.24 (m, 1H, CHα Ala); 4.19-4.27 (m, 1H, CHα Lys); 4.26-4.33 (m, 1H, CHα Ala); 4.39-4.47 & 4.48-4.52 (m, 1H, CHα Tyr); 4.65-4.73 (m, 1H, CHα Asn); 6.72-6.76 & 7.12-7.15 (d, J = 8.29 Hz, 2H, Ph Tyr).

¹³C NMR (150 MHz, CDCl₃, 298K): δ = 9.99, 14.65, 16.63, 21.09, 24.34, 24.50, 26.26, 28.05, 30.32, 36.03, 36.25, 38.99, 40.53, 42.18, 49.24, 49.28, 52.67, 53.19, 54.65, 55.03, 58.29, 113.40, 115.33, 117.26, 119.23, 121.41, 128.01, 130.49, 154.38, 156.69, 162.78, 169.04, 170.73, 172.46, 173.30, 173.77, 173.80, 173.95, 174.03, 174.06, 174.65.

Experimental Procedures for 8.2 CYC

cyclo-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)

The macrocycle Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc) was synthesized following the "**Syringe pump macrocyclization**" procedure utilizing 321 mg (0.208 mmol, 1.0 equivalent) of DDLP HO-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc)-NH₂, 0.220 mL (1.25 mmol, 6.0 equivalents) of DIPEA, 33.5 mg (0.104 mmol, 0.5 equivalents) of TBTU, 79.2 mg (0.208 mmol, 1.0 equivalents) HATU, and 29.0 mg (0.104 mmol, 0.5 equivalents) of DMTMM in 208 mL CH₂Cl₂. The crude reaction was dried in vacuo to yield 361 mg of macrocycle. The macrocycle was taken onto the next reaction without further purification.

cyclo-Asn-Gly-lle-Arg-Ala-Tyr-Ala-Lys

Macrocycle Asn-Gly-IIe-Arg-Ala-Tyr-Ala-Lys was synthesized utilizing 107 mg (0.070 mmol, 1.0 equivalent) of the Macrocycle Asn(Trt)-Gly-IIe-Arg(Pbf)-Ala-Tyr(tBu)-Ala-Lys(Boc), 15.0 mL (0.140 mmol, 2.0 equivalents) of Anisole, 0.35 mL of TFA and 0.35 mL of CH₂Cl₂. The resulting slurry was dried *in vacuo*. The residue was redissolved in MeOH, and the solution was centrifuged. The supernatant was injected into the HPLC to yield Macrocycle Asn-Gly-IIe-Arg-Ala-Tyr-Ala-Lys (11.4 mg, overall 19%). LCMS: m/z calcd for $C_{39}H_{64}N_{13}O_{10}$ (M + H⁺) = 874.49, found 874.15. HRMS (ESI-TOF): M+H+, found 874.4880 $C_{39}H_{65}N_{13}O_{10}$ requires 874.4899

¹H NMR (600 MHz, CDCl₃, 308K): δ = 0.89-0.95 (m, 3H, CH₃δ Ile); 0.92-0.98 (m, 3H, CH₃γ Ile); 1.27-1.30 & 1.44-1.46 (d, *J* = 7.27 Hz, 3H, CH₃β Ala); 1.36-1.42 (m, 3H, CH₃β Ala); 1.21-1.26 & 1.53-1.61 (m, 2H, CH₂γ Ile); 1.38-1.55 (m, 2H, CH₂γ Lys); 1.62-1.72 (m, 2H, CH₂δ Lys); 1.65-1.77 (m, 2H, CH₂γ Arg); 1.77-1.81 & 1.90-1.94 (m, 2H, CH₂β Lys); 1.78-1.88 (m, 2H, CH₂β Arg); 1.87-1.94 (m, 2H, CHβ Ile); 2.80-2.91 (m, 2H, CH₂β Asn); 2.98-3.09 (m, 2H, CH₂β Tyr); 3.17-3.30 (m, 2H, CH₂δ Arg); 3.20-3.28 (m, 2H, CH₂ε Lys); 3.62-3.66 & 3.72-3.81 (m, 1H, CHα Arg); 3.81-3.84 & 3.85-3.89 & 3.99-4.03 & 4.12-4.15 & 4.17-4.19 (m, 2H, CH₂ Gly); 4.10-4.16 & 4.23-4.30 & 4.32-4.40 (m, 1H, CHα Ala); 4.15-4.19 & 4.21-4.29 (m, 1H, CHα Ile); 4.22-4.27 & 4.34-4.41 (m, 1H, CHα Lys); 4.49-4.53 & 4.54-4.59 & 4.59-4.64 (m, 1H, CHα Tyr); 4.71-4.75 & 4.77-4.83 & 4.86-4.92 (m, 1H, CHα Asn); 6.84-6.96 (m, 2H, Ph Tyr); 7.12-7.23 (m, 2H, Ph Tyr).

¹³C ŇMR (150 MHz, CDCl₃, 308K): δ = 10.13, 14.66, 15.47, 15.61, 16.37, 17.70, 22.15, 24.37, 24.87, 24.99, 26.12, 29.04, 29.90, 35.70, 36.03, 39.22, 40.54, 42.55, 42.75, 42.42, 42.80, 49.42, 50.08, 50.22, 50.55, 51.26, 51.91,

52.71, 53.04, 53.28, 54.36, 54.40, 54.97, 55.16, 58.35, 59.10, 113.40, 115.40, 117.26, 119.23, 121.41, 128.01, 130.31, 154.38, 156.69, 162.78, 169.04, 170.73, 172.46, 173.30, 173.77, 173.80, 173.95, 174.03, 174.06, 174.65.

Synthesis of TPR Peptide

Experimental Procedures for TPR Peptide

Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂

Resin-bound dodecapeptide Resin-O-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ was synthesised using a Biotage Initiator + Alstra Automated Microwave Peptide Synthesiser. 0.50 g H-Lys(Boc)-2-CITrt resin was weighed and added to a 10 mL-capacity dedicated reactor vial. All amino acids were pre-dissolved in DMF to produce 3 mL solutions with concentrations of 0.25 M. Coupling reagents HOBt and HOAt were dissolved separately in a mix of DIC and DMF (1:1 v/v) also with concentrations of 0.25 M. The system was set up according to the manufacturer's protocol.

The resin underwent sequential coupling reactions with each amino acid as described in the *Coupling Reaction* procedure, with the following modifications:

- Reaction time was shortened to 35 minutes
- Reaction temperature was increased to 70°C

Fmoc removal washes were performed as described in the *Fmoc Removal* procedure. Once the final amino acid coupling reaction was complete, the system automatically performed the pre-cleavage washes as described in the *Cleavage* procedure. Once the synthesis was complete, the resin-bound peptide was removed from the system and dried *in vacu*o overnight.

HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂

The linear dodecapeptide HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ was generated following the *Cleavage* procedure. The linear peptide was cleaved from the resin using a mixed solution of 3.3 mL of TFE and 3.3 mL of CH₂Cl₂. The resin-containing solution was filtered and dried *in vacuo* to yield HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-NH₂ (156 mg, overall 25%).

HO-Lys-Phe-Tyr-Ser-Asn-Gly-Ile-Arg-Ala-Tyr-Ala-Lys-NH₂

The free linear peptide HO-Lys-Phe-Tyr-Ser-Asn-Gly-Ile-Arg-Ala-Tyr-Ala-Lys-NH₂ was generated by removing the side chain protecting groups on HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-

Lys(Boc)-NH₂. 156 mg HO-Lys(Boc)-Phe-Tyr(t-Bu)-Ser(Trt)-Asn(Trt)-Gly-Ile-Arg(Pbf)-Ala-Tyr(t-Bu)-Ala-Lys(Boc)-

 NH_2 (0.063 mmol, 1 eq.) was deprotected using a mixture of 624 μL of TFA and anisole (14 eq.).

The free linear peptide was then purified by washing with MeOH. MeOH was added to the crude, dry linear peptide and the suspension was vortexed before undergoing centrifugation. The supernatant was removed and this process was repeated until the supernatant was observed to be clear and colourless for 3 successive washes. This generated pure final compound **12 LIN** in a 16% yield as a white solid.

LC/MS (ESI) m/z: [M+3H]³⁺ calcd for C₆₆H₁₀₀N₁₈O₁₇, 473.25; found, 473.15.

HRMS (ESI-TOF) m/z: $[M+2H]^{2+}$ calcd for C₆₆H₁₀₀N₁₈O₁₇, 709.3800; found, 709.3831.

¹H NMR (600 MHz, D₂O) δ 7.56-7.21 (m, 5H, Phe), 7.21-7.01 (dd, *J* = 8.43, 16.29 Hz, 4H, δ H Tyr), 7.01-6.92 (dd, *J* = 8.35, 21.19 Hz, 4H, ϵ H Tyr), 4.91-4.87 (t, *J* = 6.12 Hz, 1H, α H Asn), 4.57-4.52 (m, 1H, α H Ser), 4.57-4.52 (m, 1H, α H Ala), 4.51-4.46 (m, 1H, α H Arg), 4.51-4.46 (m, 1H, α H Ala), 4.42-4.32 (m, 1H, α H Ile), 4.42-4.32 (t, 1H, α H Lys), 4.23-4.04 (m, 1H, α H Lys), 4.23-4.04 (m, 2H, α CH₂ Gly), 3.96-3.87 (m, 2H, β CH₂ Ser), 3.38-3.24 (m, 2H, δ CH₂ Arg), 3.38-3.24 & 3.24-2.84 (m, 2H, β CH₂ Phe), 3.24-2.84 (m, 4H, ϵ CH₂ Lys), 3.24-2.84 (m, 4H, β CH₂ Tyr), 3.24-2.84 (m, 2H, β CH₂ Asn), 2.08-1.93 (m, 1H, β H Ile), 2.08-1.93 & 1.93-1.80 (m, 2H, β CH₂ Arg), 2.08-1.93 (m, 2H, δ CH₂ Lys), 1.80-1.68 (m, 2H, γ CH₂ Arg), 1.67-1.59 & 1.39-1.29 (m, 2H, γ CH₂ Ile), 1.59-1.43 (m, 4H, γ CH₂ Lys), 1.59-1.43 (m, 6H, CH₃ Ala), 1.11-1.05 (d, *J* = 6.72 Hz, 3H, δ CH₃ Ile), 1.05-0.98 (t, *J* = 7.38 Hz, 3H, γ CH₃ Ile).

Synthesis of MEEVD Peptide

Experimental Procedures for MEEVD Peptide

Resin-O-Asp(Ot-Bu)-Val-NH₂

The resin-bound dipeptide Resin-O-Asp(O-tBu)-Val-NH₂ was synthesised following the *Coupling Reaction* procedure using 1.0 g H-Asp(Ot-Bu)-2-CITrt resin (0.50 mmol, 1 eq.), 0.51 g Fmoc-Val-OH (1.5 mmol, 3 eq.), 0.20 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run over 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O- Asp(O-tBu)-Val-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Asp(Ot-Bu)-Val-NH₂.

Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-NH₂

The resin-bound tripeptide Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Asp(Ot-Bu)-Val-NH₂ synthesised from previous coupling reaction, together with 0.64 g Fmoc-Glu(Ot-Bu)-OH (1.5 mmol, 3 eq.), 0.20 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative

ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-NH₂.

Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-NH₂

The resin-bound tetrapeptide Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-NH₂ synthesised from previous coupling reaction, together with 0.64 g Fmoc-Glu(Ot-Bu)-OH (1.5 mmol, 3 eq.), 0.20 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-NH₂.

Resin-O-Asp(O-tBu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-Met-NH₂

The resin-bound pentapeptide Resin-O-Asp(O-tBu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-Met-NH₂ was synthesised following the *Coupling Reaction* procedure using Resin-O-Asp(Ot-Bu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-NH₂ synthesised from previous coupling reaction, together with 0.56 g Fmoc-Met-OH (1.5 mmol, 3 eq.), 0.20 g HOBt (1.5 mmol, 3 eq.), 0.46 mL DIC (3.0 mmol, 6 eq.) and 5.0 mL DMF to generate a concentration of 0.30 M. The coupling reaction was run for 4 hours and a negative ninhydrin test was used to confirm the reaction was complete. The reaction mixture was then drained to produce Resin-O-Asp(O-tBu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-Met-NHFmoc. The Fmoc protecting group was removed following the *Fmoc Removal* procedure and a positive ninhydrin test was used to confirm complete removal, producing Resin-O-Asp(O-tBu)-Val-Glu(Ot-Bu)-Glu(Ot-Bu)-Met-NH₂.

HO-Asp-Val-Glu-Glu-Met-NH₂

The linear pentapeptide HO-Asp-Val-Glu-Glu-Met-NH₂ was generated by simultaneously cleaving the resin and deprotecting the side chain protecting groups using a mixture of TFA/CH₂Cl₂/Anisole (75/24/1) at a concentration of 10 mL/g of resin. The resin-containing solution was filtered and dried *in vacuo* to yield HO-Asp-Val-Glu-Glu-Met-NH₂ as a white solid (560 mg, overall 81%). The free linear peptide was then precipitated in methanol and pelleted by centrifugation then dried *in vacuo* to generate pure final compound **MEEVD Peptide** in a 60% yield as a white solid.

¹H NMR (600 MHz, D₂O) δ 4.49-4.44 (dd, J = 7.6, 5.1 Hz, 1H, αH Asp), 4.38-4.29 (m, 2H, αH Glu), 4.13-4.05 (dd, J = 7.7, 6.0 Hz, 1H, αH Val), 3.68-3.60 (m, 1H, αH Met), 2.81-2.66 (m, 2H, βCH₂ Asp), 2.60-2.49 (m, 2H, γCH₂ Met), 2.44-2.27 (m, 4H, γCH₂ Glu), 2.16-2.08 & 2.08-1.97 (m, 3H, δCH₃ Met), 2.08-1.97 (m, 5H, βCH₂ Glu & αH Val), 1.96-1.86 (m, 2H, βCH₂ Met), 0.90-0.84 (dd, J = 7.7, 6.8 Hz, 6H, γCH₃ Val).

5.1 LIN: ¹H-¹H COSY NMR and HRMS

5.1 CYC: ¹H NMR and ¹³C NMR

30

5.1 CYC: ¹H-¹H COSY NMR and HRMS

ОН

Н

0 ||

ОН

6.1 LIN: ¹H-¹³C HSQC NMR and ¹H-¹³C HMBC NMR

6.1 LIN: ¹H-¹H COSY NMR and HRMS

6.1 CYC: ¹H-¹³C HSQC NMR and ¹H-¹³C HMBC NMR

6.1 CYC: ¹H-¹H COSY NMR and HRMS

Supporting Information

7.1 LIN: ¹H-¹³C HSQC NMR and ¹H-¹³C HMBC NMR

7.1 LIN: ¹H-¹H COSY NMR and HRMS

7.1 CYC: ¹H NMR and ¹³C NMR

7.1 CYC: ¹H-¹³C HSQC NMR and ¹H-¹³C HMBC NMR

7.1 CYC: ¹H-¹H COSY NMR and HRMS

==== Shimadzu LCMSsolution Analysis Report ====

8.1 LIN: ¹H-¹H COSY NMR and HRMS

8.1 CYC: ¹H NMR and ¹³C NMR

8.1 CYC: ¹H-¹H COSY NMR and HRMS

5.2 LIN: ¹H NMR and ¹³C NMR

5.2 LIN: HRMS

==== Shimadzu LCMSsolution Analysis Report ====

60

n/z

5.2 CYC: ¹H NMR and ¹H-¹³C HSQC NMR

5.2 CYC: ¹H-¹³C HMBC NMR and HRMS

Cyc 5.2 free 2 318K HMBC

==== Shimadzu LCMSsolution Analysis Report ====

6.2 LIN: ¹H NMR and ¹³C NMR

6.2 LIN: ¹H-¹³C HSQC NMR and ¹H-¹³C HMBC NMR

6.2 CYC: ¹H-¹³C HSQC NMR and ¹H-¹³C HMBC NMR

6.2 CYC: ¹H-¹H COSY NMR and HRMS

7.2 LIN: ¹H NMR and ¹³C NMR

7.2 LIN: HRMS

==== Shimadzu LCMSsolution Analysis Report ====

7.2 CYC: ¹H NMR and ¹H-¹³C HSQC NMR

Cyc 7.2 free 1H13C.hsqc.aded D20 F:\\ iconnmr 6

7.2 CYC: ¹H-¹³C HMBC NMR and HRMS

Supervisor McAlpine Cyc 7.2 free 1H13C.hmbc D2O F:\\ iconnmr 6

8.2 LIN: ¹H NMR and ¹³C NMR

8.2 LIN: HRMS

8.2 CYC: ¹H NMR and ¹H-¹³C HSQC NMR

Cyc 8.2 free 308K HSQC

8.2 CYC: ¹H-¹³C HMBC NMR and HRMS

Cyc 8.2 free 308K HMBC

TPR Peptide: ¹H NMR and ¹³C NMR

TPR Peptide: ¹H-¹H COSY NMR and HRMS

Supporting Information

Protein Binding Assay

The binding assays were performed using either a HSP90 α (C-terminal) Inhibitor Screening Kit (cat. 50317) or HSP90 β (C-terminal) Inhibitor Screening Kit (cat. 50314) purchased from BPS Bioscience. The assay was performed according to the manufacturors protocol and utilised AlphaScreen technology (PerkinElmer). The test compounds were dissolved in 100% DMSO and diluted with water to the desired concentration so that the final dilution was dissolved in 5% DMSO with water. 2 µL of the dilution was added to a 10 µL reaction so that the final concentration of DMSO was 1% in all reactions. The reactions were conducted at room temperature for 30 min in a 10 µL mixture containing assay buffer, 6 ng (24 nM) of a C-terminal fragment of either HSP90 α (Uniprot P07900, a.a. 535-732) or HSP90 β (Uniprot P08238, a.a. 527-724), 40 ng (100 nM) cyp40, and the test compound. After the 30 min incubation, 10 µl of detection buffer containing 20 µg/ml glutathione acceptor beads (Perkin Elmer) were added to the reaction mix and incubated for 30 min in the dark. 10 µL of 40 µg/ml streptavidin donor beads (Perkin Elmer) were then added and the final 30 µl mixture was incubated for one hour the dark. The AlphaScreen signal was measured using EnSpire multimode plate reader (Perkin Elmer).

Luciferase Protein Renaturation Assay

Protocol was adapted from the following paper:

L. Galam, M. K. Hadden, Z. Ma, Q. Z. Ye, B. G. Yun, B. S. Blagg and R. L. Matts, *Bioorganic & medicinal chemistry*, 2007, **15**, 1939.

Luciferase (L9506, Sigma-Aldrich) was dissolved in stability buffer (25 mM Tricine HCI (pH 7.8), 8 mM MgSO₄, 0.1 mM EDTA and 10 mg/mL acetylated BSA) before adding 1% Triton X-100 and 10% glycerol. Luciferase solution was then aliquoted and stored at -80°C. 1 μ L of protein was thawed on ice and denatured at 40°C for 1.5 minutes. Denatured luciferase was immediately stored on ice before being diluted with 64 μ L cold mix (100 mM TrisHCI pH 7.7, 10 mM Mg(OAc)₂, 375 mM KCI, 15 mM ATP, and 25 mM creatine phosphate), 6.4 μ L creatine phosphokinase (CPK) in 50% glycerol and 8.4 μ L milli-Q water to produce a final volume of 80 μ L. The denatured luciferase solution was then diluted 1:10 with the same ratio of cold mix, CPK and milli-Q water. 10 μ L of diluted luciferase solution was added to rabbit reticulocyte lysate (RRL, Promega) that had been diluted with RNase-free water (1:4 v/v) and pre-incubated at room temperature with DMSO (1%), test compound or control compound for 5 hours. Denatured luciferase was incubated for 3 hours with the lysate before 30 μ L of the reaction mixture was removed and combined with 40 μ L of Bright-Glo Luciferase Assay System (Promega) and read on an illuminometer (Berthold Orion Microplate Luminometer).

¹H NMR Titration Experiments

¹H NMR spectra were obtained on Bruker Avance III 600 MHz. All samples were dissolved in a buffer consisting of 25 mM dibasic sodium phosphate and 25 mM sodium chloride in deuterium oxide (D_2O) with a pH of 7.2. Spectra were obtained at 298K (25°C).

Full Spectra of ¹H NMR Titration Experiment

MEEVD + 5.1 CYC

MEEVD + Novobiocin

90

Enlarged Spectra of ¹H NMR Titration Experiment

MEEVD + 5.1 CYC

Chemical Shift (ppm)

Supporting Information

MEEVD + TPR

TPR + 5.1 CYC

