Supporting Information

Bis(zinc porphyrin) as a Bidentate CD-Sensitive Host Molecule: Direct Determination of Absolute Configuration of Mono-alcohols

Satoshi Hayashi, Miku Yotsukura, Masahiro Noji and Toshikatsu Takanami*
Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
takanami@my-pharm.ac.jp

Table of Contents:

\qquad
2. Synthesis of Bis(zinc porphyrin) BP1S2
3. Comparison of ${ }^{1} \mathrm{H}$ NMR and UV-vis Spectra of Bis(zinc porphyrin) BP1 with Those of the Monomeric Counterparts 5 and 6 S10
4. ${ }^{1} \mathrm{H}$ NMR Binding Experiments for Complexation of
Bis(Zinc Porphyrin) BP1 with Ethanol S12
5. Spectroscopic Titrations for Evaluation of Association Constants S13-S14
6. Job's Continuous Plot Analysis to Determine Complex Stoichiometry. S15
7. Computational Analysis S16
8. CD Spectra and Proposed Working Model for Assigning the Absolute Configuration of Chiral Alcohols. S17-S24
9. NMR Spectra of New Compounds S25-S48

1. General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR spectra were recorded at rt on a JEOL JNM-LA500 spectrometer using perdeuterated solvents as internal standards. Chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are given in ppm relative to residual protiated solvent and relative to the solvent respectively: $\mathrm{CHCl}_{3}(\delta=7.26)$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and relative to the central resonance of $\mathrm{CDCl}_{3}(\delta=77.0)$ for ${ }^{13} \mathrm{C}-\mathrm{NMR}$. ${ }^{19} \mathrm{~F}$-NMR spectra were recorded at rt on a on a JEOL JNM-ECA500 spectrometer using benzotrifluoride as an external standard. The chemical shift values are expressed as δ values (ppm) and the couple constants values (J) are in Hertz (Hz). The following abbreviations were used for signal multiplicities: s , singlet; d , doublet; t , triplet; q , quartet; m, multiplet; and br, broad. UV-Visible spectra were recorded on a JASCO V-660 dualbeam grating spectrophotometer with a 1 cm cell. IR spectra were recorded on a JASCO FT/IR-4100 spectrophotometer. The mass spectroscopic data were obtained on JEOL JNM-DX302 spectrometer. The CD spectra were recorded on a JASCO J-820 spectrophotometer with a 1 cm cell at $25{ }^{\circ} \mathrm{C}$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (scan speed: $50 \mathrm{~nm} / \mathrm{min}$, scan number: $5-15$, bandwidth: 2 nm). Reactions involving moisture sensitive reagents were carried out under an argon atmosphere using standard vacuum line techniques and glassware that was flame-dried and cooled under argon before use. Dry THF was purchased for the reactions and used without further desiccation. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n hexane were distilled over CaH_{2}, and used immediately. 10-Bromo-5,15-di(p-tolyl)porphyrin $\mathbf{2}$ was prepared as described in the literature. ${ }^{1}$ Other chemicals were purchased from commercial sources and used as received unless stated otherwise.

[^0]
2. Synthesis of Bis(zinc porphyrin) BP1

Preparation of [5,15-di(p-tolyl)-10-pentafluorophenylporphyrinato]zinc(II) 3. ${ }^{2}$ An oven-dried

100 mL two-necked flask equipped with a magnetic stirring bar and rubber septum was charged with a free base bromoporphyrin 2 (105 $\mathrm{mg}, 0.185 \mathrm{mmol}$), bis(pentafluorophenyl)zinc ($370 \mathrm{mg}, 0.9 \mathrm{mmol}, 5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.1 \mathrm{mg}, 9.3 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, and $t-\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(5.4$ $\mathrm{mg}, 18.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$. The reaction vessel was evacuated and flushed with argon (three times), and then dry THF (25 mL) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h , having been monitored by TLC (hexane/toluene 1:1). Upon completion of the reaction, the mixture was allowed to reach room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) and washed with water and brine. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/toluene, 1:1). The first red purple band eluted was collected, and taken to dryness. Recrystallization from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the pure product; red-purple solid; $128.0 \mathrm{mg}, 95 \%$ yield; $R_{f}=0.61$ (hexane/toluene, $1: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.76(1 \mathrm{H}, \mathrm{s}), 9.10(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 9.03(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.91(4 \mathrm{H}$, d, $J=4.6 \mathrm{~Hz}), 8.05(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.57(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.74(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 150.6,150.3,149.2,148.9,146.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=245.2 \mathrm{~Hz}\right), 141.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=255.5 \mathrm{~Hz}\right)$, $139.3,137.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=252.4 \mathrm{~Hz}\right), 137.3,134.5,133.4,132.5,131.8,129.5,127.4,121.2,117.6$, 106.9, 101.2, 21.5; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 466 \mathrm{MHz}\right) \delta-138.7\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=24.5,8.5 \mathrm{~Hz}\right),-155.7(1 \mathrm{~F}, \mathrm{t}$, $\left.J_{\mathrm{FF}}=21.0 \mathrm{~Hz}\right),-164.2\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=23.6,8.5 \mathrm{~Hz}\right)$; IR (KBr) 3113, 3086, 3024, 2920, 2873, 2804, 1724, 1489, 1319, 1180, 1065, 995, $791 \mathrm{~cm}^{-1}$; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 418.0$ (5.6), 547.0 (4.2) nm ; HRMS (EI) $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{40} \mathrm{H}_{23} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{Zn}$: 718.1134, found 718.1138.

Preparation of [10-bromo-5,15-di(p-tolyl)-20-pentafluorophenylporphyrinato]zinc(II) 18. To a
 solution of a porphyrin $3(340 \mathrm{mg}, 0.47 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ was added NBS (N-bromosuccinamide) ($93 \mathrm{mg}, 0.52 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and quenched with acetone (10 mL). The solvent was evaporated to dryness. Column chromatography on silica gel (hexane/toluene 1:1) followed by recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the pure compound; purple solid; 362 mg , 97% yield; $R_{f}=0.44$ (hexane/toluene, 1:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 9.70(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 8.98(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.97(2 \mathrm{H}, \mathrm{d}$,

[^1]$J=4.9 \mathrm{~Hz}), 8.78(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.04(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.56(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.83(2 \mathrm{H}, \mathrm{s})$, $2.71(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 150.4,150.8,149.9,149.6,146.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=252.4\right.$ $\mathrm{Hz}), 141.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=249.3 \mathrm{~Hz}\right), 139.1,137.6,137.5\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=259.7 \mathrm{~Hz}\right), 134.4,134.0,133.4$, 133.3, 129.9, 127.4, 122.5, 117.1, 106.3, 101.8, 21.5; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 466 \mathrm{MHz}\right) \delta-138.8$ (2F, dd, $\left.J_{\mathrm{FF}}=23.5,7.5 \mathrm{~Hz}\right),-154.7\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=21.4 \mathrm{~Hz}\right),-163.9\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=23.5,8.6 \mathrm{~Hz}\right) ; \mathrm{IR}(\mathrm{KBr}) 3019$, 2920, 2862, 1489, 1331, 1207, 1176, 1111, 1068, 991, $944 \mathrm{~cm}^{-1}$; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }(\log \varepsilon) 425.0$ (5.7), 558.0 (4.3) nm; HRMS (EI) $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{40} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{BrN}_{4} \mathrm{Zn}$: 796.0239, found 796.0238.

Preparation of [5,15-di(p-tolyl)-10-pentafluorophenyl-20-(trimethylsilyl)methylporphyrinato]

zinc(II) 4. Prepared according to a literature precedent with slight modification. ${ }^{3}$ An oven-dried 100 mL two-necked flask equipped with a magnetic stirring bar and rubber septum was charged with me-so-bromoporphyrin 18 ($200 \mathrm{mg}, 0.25 \mathrm{mmol}$) and PEPPSI ([1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl) palladium(II) dichloride, $10 \mathrm{mg}, 7.8 \mu \mathrm{~mol}, 4 \mathrm{~mol} \%$). The reaction vessel was evacuated and flushed with argon (three times), and then dry THF (35 mL) was added. To the solution was added a 1.0 M THF solution of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{MgCl}\left(0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}, 3\right.$ equiv) at rt . The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h , having been monitored by TLC (hexane/THF, 2:1). Upon completion of the reaction, the mixture was allowed to reach room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (500 mL) and washed with water and brine. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was charged on the top of a silica gel column packed with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$ (10:1:0.5), and the column was eluted with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1 to $2: 1$). The fractions containing product were collected and concentrated under a reduced pressure. The resulting crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give the pure product; purple solid; 210 mg , 99% yield; $R_{f}=$ 0.54 (hexane/THF, 2:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.35(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.94(2 \mathrm{H}, \mathrm{d}, J=4.6$ $\mathrm{Hz}), 8.88(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.71(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.06(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.55(4 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}), 4.55(2 \mathrm{H}, \mathrm{s}), 2.71(6 \mathrm{H}, \mathrm{s}),-0.01(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 150.4,150.3,150.0$, $149.6,146.8\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=240.0 \mathrm{~Hz}\right), 141.8\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=251.4 \mathrm{~Hz}\right), 139.9,137.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=253.5\right.$ Hz), 137.5, 134.6, 133.9, 131.8, 129.9, 129.3, 127.6, 124.4, 121.7, 117.8, 99.5, 27.4, 21.8, -0.5; ${ }^{19} \mathrm{~F}-$ NMR ($\left.\mathrm{CDCl}_{3}, 466 \mathrm{MHz}\right) \delta-138.8\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=24.2,8.5 \mathrm{~Hz}\right),-155.5\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=21.3 \mathrm{~Hz}\right),-164.3$ $\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=24.2,8.5 \mathrm{~Hz}\right)$; IR (KBr) 3020, 2954, 2866, 1338, 1250, 1211, 1149, 1072, 760, cm^{-1};

[^2]UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 426.0$ (4.9), 558.0 (3.5) nm; HRMS (EI) $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{SiZn}: 804.1686$, found 804.1682.

Preparation of [5,15-di(p-tolyl)-10-hydroxymethyl-20-pentafluorophenylporphyrinato]zinc(II)
 5. ${ }^{3}$ To a solution of silylmethylporphyrin $4(105 \mathrm{mg}, 0.13 \mathrm{mmol})$ in a mixed solution of $\mathrm{H}_{2} \mathrm{O} /$ THF $(1: 10,110 \mathrm{~mL})$ was added DDQ (45 mg , $0.2 \mathrm{mmol}, 1.5$ equiv.) at rt . After being stirred at rt for 0.5 h , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$. Then, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed with water and brine. The organic layer was dried over MgSO_{4} and concentrated in vacuo. Column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave the pure product; red-purple solid; 97 mg , 99% yield; $R_{f}=0.15\left(2: 1\right.$ hexane/THF); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.65(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 9.01$ $(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.93(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.73(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.04(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.53$ $(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 2.69(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}+\mathrm{THF}-8 \mathrm{~d}, 125 \mathrm{MHz}\right) \delta 150.7,150.4,150.3,149.0,146.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=245.2 \mathrm{~Hz}\right), 141.6(1 \mathrm{C}$, d, $\left.J_{\mathrm{CF}}=263.8 \mathrm{~Hz}\right), 139.9,137.3\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=249.3 \mathrm{~Hz}\right), 137.1,134.4,133.1,132.9,129.3,128.8$, 127.1, 121.3, 117.8, 117.3, 100.9, 64.7, 21.4; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{THF}-8 \mathrm{~d}, 466 \mathrm{MHz}\right) \delta-138.7$ (2F, $\left.\mathrm{dd}, J_{\mathrm{FF}}=24.6,8.6 \mathrm{~Hz}\right),-154.9\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=21.4 \mathrm{~Hz}\right),-164.1\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=24.6,8.6 \mathrm{~Hz}\right)$; IR (KBr) 3521, 3105, 3024, 2924, 2858, 1493, 1335, 1342, 1207, 1148, 1072, 995, cm^{-1}; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ ($\log \varepsilon$) 422.0 (5.7), 553.0 (4.5) nm; HRMS (EI) $\left[\mathrm{M}^{+}\right] \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{41} \mathrm{H}_{25} \mathrm{~F}_{5} \mathrm{~N}_{8} \mathrm{OZn}$: 748.1240, found 748.1237.

Preparation of 10 -bromo-5,15-di(p-tolyl)-10-pentafluorophenylporphyrin 19. A mixture of
 $\mathrm{MeOH}(65 \mathrm{~mL})$ and conc. $\mathrm{HCl}(7.5 \mathrm{~mL})$ was added dropwise to a partially dissolved solution of a zincated meso-bromoporphyrin 18 (200 $\mathrm{mg}, 0.25 \mathrm{mmol}$) in THF (ca. $50 \mu \mathrm{~L}$) at rt. The mixture was stirred at rt for 10 min , diluted with $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(2: 1,50 \mathrm{~mL})$, and then neutralized with saturated sodium bicarbonate. The solution was washed with brine, and the organic layer was dried over MgSO_{4} and concentrated in vacuo. The resulting solid was purified by recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the pure free base 19 as a purple solid; 175 mg , 95% yield; $R_{f}=0.44$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.66(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz})$, $8.90(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.89(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.69(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.05(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $7.56(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.71(6 \mathrm{H}, \mathrm{s}),-2.75(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 146.5(2 \mathrm{C}, \mathrm{d}$,
$\left.J_{\mathrm{CF}}=249.3 \mathrm{~Hz}\right), 142.3\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=248.3 \mathrm{~Hz}\right), 138.7,138.6,138.1,137.7\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=254.5 \mathrm{~Hz}\right)$, 134.8, 132.9 (8C, br), 129.3, 127.9, 121.9, 116.8, 105.3, 101.1, $21.8 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 466 \mathrm{MHz}\right) \delta$ $-138.4\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=24.6,6.1 \mathrm{~Hz}\right),-154.2\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=21.0 \mathrm{~Hz}\right),-163.7\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=24.7,7.4 \mathrm{~Hz}\right)$; IR (KBr) 3321, 3024, 2916, 1493, 1346, 1218, 1180, 1133, 1030, 980, $925 \mathrm{~cm}^{-1}$; UV-Vis $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max }(\log \varepsilon) 419$ (5.6), 516.0 (4.2), 551.0 (3.9), 595.0 (3.7), 650.0 (3.6) nm; HRMS (FAB) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{40} \mathrm{H}_{22} \mathrm{~F}_{5} \mathrm{BrN}_{4}$: 735.1183, found 735.1185.

Preparation of [5,15-di(p-tolyl)-10-(2-ethoxycarbonylethyl)-20-pentafluorophenylrinato]

zinc(II) 6. ${ }^{4}$ An oven-dried 200 ml sealable Schlenk flask equipped with a magnetic stirring bar was charged with Zn dust $(2.1 \mathrm{~g}, 32$ $\mathrm{mmol})$ and $\mathrm{CuCl}(318 \mathrm{mg}, 3.2 \mathrm{mmol})$. The reaction vessel was evacuated and flushed with argon (three times), and dry THF (8 mL) was added. The $\mathrm{Zn}(\mathrm{Cu})$ couple suspension was refluxed for 1.5 h using an oil-bath. During this activation period, another oven-dried 10 mL sealable flask was evacuated and flushed with argon (three times) and then charged dry THF (6 mL) and ethyl bromoacetate ($700 \mu \mathrm{~L}, 6.7$ $\mathrm{mmol})$. The reaction vessel containing $\mathrm{Zn}(\mathrm{Cu})$ couple was removed from the oil-bath. To initiate the reaction, ca. $1 / 10$ of the THF solution of ethyl bromoacetate was added via a syringe to the stirred $\mathrm{Zn}(\mathrm{Cu})$ couple suspension while the suspension was still hot. The rest of the solution was added in such a rate as to maintain a gentle reflux (ca. 5 min). The reaction mixture was stirred and refluxed until its color to black (ca. 2 h). To the resulting ca. 0.5 M THF solution of the zinc enolate was added dropwise a mixture of bromoporphyrin 19 ($210 \mathrm{mg}, 0.28 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(7 \mathrm{mg} 10 \mathrm{~mol} \%)$, and $\mathrm{PCy}_{3}(17 \mathrm{mg}, 20 \mathrm{~mol} \%)$ in THF $(80 \mathrm{~mL})$ over a period of 5 min . The reaction mixture was heated under argon at $65^{\circ} \mathrm{C}$ for 10 h , and then allowed to reach rt . The reaction mixture was filtered through a filter paper, diluted with $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(2: 1,20 \mathrm{~mL})$, and washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give the pure compound; purple solid; $212 \mathrm{mg}, 94 \%$ yield; $R_{f}=0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.45(2 \mathrm{H}, \mathrm{d}, J=$ $4.6 \mathrm{~Hz}), 9.01(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.98(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.80(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.05(4 \mathrm{H}, \mathrm{d}, J=$ $7.9 \mathrm{~Hz}), 7.56(4 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 5.83(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 2.72(6 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{t}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.3,150.4,150.2,150.1,149.2,146.6\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=244.1\right.$ $\mathrm{Hz}), 141.4\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=257.6 \mathrm{~Hz}\right), 139.1,137.2\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=253.5 \mathrm{~Hz}\right), 137.1,134.1,133.4,132.8$,

[^3]129.3, 129.2, 127.1, 121.5, 117.1, 112.3, 101.0, 61.0, 40.6, 21.3, 13.9; ${ }^{19}$ F-NMR ($\left.\mathrm{CDCl}_{3}, 466 \mathrm{MHz}\right)$ $\delta-138.7\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=22.8,7.5 \mathrm{~Hz}\right),-155.0\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=21.0 \mathrm{~Hz}\right),-164.1\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=24.7,7.5\right.$ Hz) $\mathrm{IR}(\mathrm{KBr}) 3113,3024,2981,2927,2866,1732,1497,1446,1338,1300,1257,1211,1149$, 1076, 1037, 995, cm^{-1}; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 424.0$ (5.7), 555.0 (4.3) nm; HRMS (EI) $\left[\mathrm{M}^{+}\right]$ calcd for $\mathrm{C}_{44} \mathrm{H}_{29} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}$: 804.1502, found 804.1507.

Preparation of [5,15-di(p-tolyl)-10-carboxymethyl-20-pentafluorophenylporphyrinato]zinc(II)

7. To a solution of [5,15-di(p-tolyl)-10-(2-ethoxycarbonylethyl)-20pentafluorophenylporphyrinato] zinc(II) 6 ($205 \mathrm{mg}, 0.25 \mathrm{mmol}$) in EtOH/THF ($2: 1 \mathrm{vol} / \mathrm{vol}, 30 \mathrm{~mL}$) was added $10 \% \mathrm{NaOHaq}(10 \mathrm{~mL})$. The suspension was stirred at $40{ }^{\circ} \mathrm{C}$ for 1.5 h , and then allowed to reach rt . The solution was diluted with $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(2: 1,30 \mathrm{~mL})$, and washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting soild was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give the pure compound; purple solid; $193 \mathrm{mg}, 99 \%$ yield; $R_{f}=0.15$ (hexane/THF, $1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}+\mathrm{THF}-8 \mathrm{~d}, 500 \mathrm{MHz}\right) \delta 9.54(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 8.96(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.90(2 \mathrm{H}, \mathrm{d}, J=4.9$ $\mathrm{Hz}), 8.69(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.03(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.50(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.05(2 \mathrm{H}, \mathrm{s}), 2.68$ $(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{THF}-8 \mathrm{~d}, 125 \mathrm{MHz}\right) \delta 174.3,150.2,150.1,149.9,149.0,146.3$ (2C, d, J J_{CF} $=246.2 \mathrm{~Hz}), 141.2\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=252.4 \mathrm{~Hz}\right), 139.7,137.0\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=253.5 \mathrm{~Hz}\right), 136.7,134.1$, $132.9,132.5,128.89,128.85,126.8,120.9,117.6,112.3,99.9,40.6,21.2 ;{ }^{19}$ F-NMR ($\mathrm{CDCl}_{3}+\mathrm{THF}-$ $8 \mathrm{~d}, 466 \mathrm{MHz}) \delta-137.3\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=25.8,7.9 \mathrm{~Hz}\right),-150.1\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=19.8 \mathrm{~Hz}\right),-163.0\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}\right.$ $=23.9,8.0 \mathrm{~Hz}$) $\operatorname{IR}(\mathrm{KBr}) 3625,3386,3113,3020,2981,2923,2873,1705,1647,1612,1492,1442$, 1338, 1307, 1211, 1180, 1072, 995, cm^{-1}; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }(\log \varepsilon) 424.0$ (4.9), 555.0 (3.5) nm; HRMS (EI) $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{42} \mathrm{H}_{25} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}$: 776.1189, found 776.1194 .

Preparation of bis(zinc porphyrin) BP1. To a solution of carboxymethyl-substituted porphyrin 7
 ($75 \mathrm{mg}, 0.096 \mathrm{mmol}$) and EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, $54 \mathrm{mg}, 0.3$ mmol) in THF (30 mL) was added hydroxymethylsubstituted porphyrin $5(60 \mathrm{mg}, 0.08 \mathrm{mmol})$ at rt . The solution was stirred for 5 min , and then DMAP (N, N -dimethyl-4-aminopyridine, $10 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added. After stirring for 48 h at rt , the solution was diluted with $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(2: 1,60 \mathrm{~mL})$, and washed with brine. The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Column chromatography on silica gel (hexane/THF, 10:1 to $5: 1$) followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give the pure compound; purple solid; $84 \mathrm{mg}, 70 \%$ yield (based on 5); $R_{f}=0.4$ (hexane/THF, $3: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.38(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 9.27(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 8.94(2 \mathrm{H}, \mathrm{d}, J=4.6$ $\mathrm{Hz}), 8.91(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.81(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.77(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.54(2 \mathrm{H}, \mathrm{d}, J=4.6$ $\mathrm{Hz}), 8.54(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 7.73(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.66(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{s}), 7.36$ $(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.25(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.05(2 \mathrm{H}, \mathrm{s}), 2.65(6 \mathrm{H}, \mathrm{s}), 2.60(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.3,150.7,150.5,150.4,150.3,150.17,150.16,149.3,149.0,146.6$ (2C, d, $\left.J_{\mathrm{CF}}=248.3 \mathrm{~Hz}\right), 141.7\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=257.6 \mathrm{~Hz}\right), 139.1,139.0,137.4\left(2 \mathrm{C}, \mathrm{d}, J_{\mathrm{CF}}=254.5 \mathrm{~Hz}\right), 137.3$, $137.1,134.2,134.1,133.6,133.5,132.9,132.6,129.7,129.5,129.2,129.0,127.2,127.1,121.7$, $121.5,117.4,117.3,112.0,111.3,102.2,101.3,66.4,41.0,21.4,21.3 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 466 \mathrm{MHz}\right)$ $\delta-138.6\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=25.8,8.0 \mathrm{~Hz}\right),-138.7\left(2 \mathrm{~F}, \mathrm{dd}, J_{\mathrm{FF}}=25.9,8.0 \mathrm{~Hz}\right),-154.9\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=20.8\right.$ $\mathrm{Hz}),-155.0\left(1 \mathrm{~F}, \mathrm{t}, J_{\mathrm{FF}}=21.3 \mathrm{~Hz}\right),-164.0\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=24.1,8.0 \mathrm{~Hz}\right),-164.1\left(2 \mathrm{~F}, \mathrm{td}, J_{\mathrm{FF}}=24.0,8.0\right.$ Hz); IR (KBr) 3117, 3020, 2924, 2862, 2731, 1728, 1647, 1493, 1338, 1207, 1146, 1072, 991, 941 cm^{-1}; UV-Vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 422.0$ (5.7), 426.0 (5.7), 554.0 (4.5) nm; HRMS (EI) [M $\left.{ }^{+}\right]$calcd for $\mathrm{C}_{83} \mathrm{H}_{48} \mathrm{~F}_{10} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn}_{2}$: 1506.2323, found 1506.2324.

3. Comparison of ${ }^{1} \mathrm{H}$ NMR and UV-vis Spectra of Bis(zinc porphyrin) BP1 with Those of the Monomeric Counterparts 5 and 6

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right.$, rt) of (a) carboethoxymethyl-substituted zinc porphyrin 6, (b) bis(zinc porphyrin) BP1, and (c) hydroxymethyl-substituted zinc porphyrin $\mathbf{5}$ in the region corresponding to the resonance of the β pyrrolic protons of the porphyrin rings.

Fig. S2 UV-vis specta of bis(zinc porphyrin) BP1 (red-line) and carboethoxymethyl-substituted zinc porphyrin 6 (green-line) in $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25{ }^{\circ} \mathrm{C}$.

Fig. S3 UV-vis specta of bis(zinc porphyrin) BP1 (red-line) and hydroxymethyl-substituted zinc porphyrin 5 (blue-line) in $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25{ }^{\circ} \mathrm{C}$.

4. ${ }^{1} \mathrm{H}$ NMR Binding Experiments for Complexation of Bis(Zinc Porphyrin) BP1 With Ethanol

Fig. S4 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{rt}\right)$ spectra of ethanol (a) without zinc porphyrins and in the presence of (b) carboethoxymethyl-substituted zinc porphyrin 6 (ethanol/6 =1:1) and (c) bis(zinc porphyrin) BP1 (ethanol/BP1 = 1:1) in the region corresponding to the resonance of the methylene protons.

5. Spectroscopic Titrations for Evaluation of Association Constants

The association constants $K_{\text {assoc }}$ for host-guest complexes were determined through titration of the host molecules BP1 and its monomeric counter part $\mathbf{6}$ with ethanol as the guest molecule. The UVvis spectra of the titration of ethanol shown below (Figure S6 and S7) demonstrates the change in the Soret band absorption upon binding of ethanol to the host molecule. $K_{\text {assoc }}$ values were evaluated from the following equation by applying a nonlinear curve-fitting method to the changes in absorbance ($\Delta \mathrm{Abs}$) upon titration of host molecule BP1 or $\mathbf{6}$ with guest molecule:

$$
\Delta \mathrm{Abs}=\frac{\mathrm{L}\left[K_{\text {assoc }} \cdot \mathrm{X}+K_{\text {assoc }} \cdot \mathrm{A}+1\right]-\sqrt{\mathrm{L}^{2}\left(K_{\text {assoc }} \cdot \mathrm{X}+K_{\text {assoc }} \cdot \mathrm{A}+1\right)^{2}-4 K_{\text {assoc }}^{2} \cdot \mathrm{~A} \cdot \mathrm{X} \cdot \mathrm{~L}^{2}}}{2 K_{\text {assoc }} \cdot \mathrm{A}}
$$

where X and A represent $[\text { Guest }]_{\text {total }}$ and $[H o s t]_{\text {total }}$, respectively; L denotes $\Delta \mathrm{Abs}$ at 100% complexation; L and $K_{\text {assoc }}$ are parameters. ${ }^{5}$ IGOR Pro (ver 6.22) software was used for curve-fitting analysis.

Fig. S5 (a) Spectral change upon titration of BP1 with ethanol in $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25{ }^{\circ} \mathrm{C}$.
(b) Changes in $\Delta \mathrm{Abs}$ at 430 nm for evaluating $K_{\text {assoc }} .[\mathbf{B P 1}]=1.0 \mu \mathrm{M}$; [ethanol] $/[\mathbf{B P 1}]=0-2200$.

[^4]

Fig. S6 (a) Spectral change upon titration of 6 with ethanol in $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$.
(b) Changes in $\Delta \mathrm{Abs}$ at 422 nm for evaluating $K_{\text {assoc. }}[\mathbf{6}]=1.0 \mu \mathrm{M} ;[$ ethanol $] /[\mathbf{B P 1}]=0-53000$.

6. Job's Continuous Plot Analysis to Determine Complex Stoichiometry

Fig. S7 Job's diagram. Solutions of the bidentate host BP1 and ethanol (guest) in $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane were prepared with a fixed total concentration of host and guest $(2 \mu \mathrm{M})$. The UV-vis spectra were recorded at $0^{\circ} \mathrm{C}$ and $\Delta \mathrm{Abs}$ was monitored at 414 nm . Peaking at 0.5 mol fraction corresponds to a 1:1 BP1:ethanol complex.

7. Computational Analysis

Density functional theory (DFT) calculations were run with Spartan'10 (Wavefunction, Inc., Irvine, CA). Geometry optimization was performed by the semiempirical method (AM1) followed by DFT calculation at the B3LYP/6-31G* level of theory.

Fig. S8 DFT calculation for bis(zinc porphyrin) BP1: (a) dihedral angle of the two porphyrin planes and (b) zinc-zinc distance.

8. CD Spectra and Proposed Working Model for Assigning the Absolute Configuration of Chiral Alcohols

Fig. S9 ECCD spectra of $\mathbf{8}\left(1.7 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.7 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the conformational energies, A values: $\mathrm{Ph}, 2.8 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{Me}, 1.74 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{6}$

[^5]

Fig. S10 ECCD spectra of $9\left(1.6 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.6 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. Neither the conformational energy, A value, nor the Taft's steric substituent constant, E_{s}, were not available for allylic substituent. Therefore, the A values of the substituents on the β carbons, vinyl group and hydrogen, were compared as shown in the figure depicted below. The reported A value for vinyl group (1.49 or $1.68 \mathrm{kcal} \mathrm{mol}^{-1}$) is larger than that for hydrogen $(0.00 \mathrm{kcal}$ mol^{-1}), ${ }^{6}$ and thus the allylic and the Me substituents can be assigned to L and M groups, respectively.

Fig. S11 ECCD spectra of $10\left(1.7 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.7 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the conformational energies, A values: $\mathrm{C} \equiv \mathrm{CH}, 0.41-0.52 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{Me}, 1.74 \mathrm{kcal} \mathrm{mol}^{-1} .6$

Fig. S12 ECCD spectra of $11\left(1.7 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.7 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the Taft's steric substituent constants, $E_{s}: \mathrm{Ph},-2.55^{7} ; \mathrm{CH}_{2} \mathrm{Cl},-0.24 .^{8}$
${ }^{7}$ T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Harper \& Row, New York, 1987, p. 153, Table 2.5.
${ }^{8}$ D. Datta and D. Majumdar, J. Phys. Org. Chem., 1991, 4, 611.

Fig. S13 ECCD spectra of $\mathbf{1 2}\left(1.5 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.5 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M , L groups are based on their conformational energies, A values: Et, $1.79 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{Me}, 1.74 \mathrm{kcal} \mathrm{mol}^{-1} .6$

Fig. S14 ECCD spectra of $\mathbf{1 3}\left(1.5 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.5 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the Taft's steric substituent constants, $E_{s}: \mathrm{Me}, 0.00 ; \mathrm{CH}_{3} \mathrm{OCH}_{2},-0.19$. ${ }^{7}$

Fig. S15 ECCD spectra of $\mathbf{1 4}\left(1.6 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.6 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the Taft's steric substituent constants, $E_{S}: \mathrm{CF}_{3},-1.16 ; \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3},-0.40 .{ }^{8}$

Fig. S16 ECCD spectra of $15\left(1.5 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.5 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. As shown in the figure depicted below, the substrate $\mathbf{1 5}$ consists of $i-\mathrm{Bu}$ (red line) and $n-\operatorname{Pr}$ (blue line) moieties. The reported Taft's steric substituent constants $\left(E_{s}\right)$ for $i-\mathrm{Bu}$ and $n-\operatorname{Pr}$ are -0.93 and -0.36 , respectively. ${ }^{7}$ Therefore, the red colored $i-\mathrm{Bu}$ and the blue colored $n-\mathrm{Pr}$ moieties can be assigned to L and M groups, respectively.

Fig. S17 ECCD spectra of $16\left(1.5 \times 10^{-3} \mathrm{M}\right)$ in the presence of BP1 $\left(1.5 \times 10^{-6} \mathrm{M}\right)$ in 1% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $25^{\circ} \mathrm{C}$. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignment of L, M, and S groups in the substrate $\mathbf{1 6}$ and the prediction of CD signs of the host-guest complexes of BP1 with $(R)-\mathbf{1 6}$ and $(S)-\mathbf{1 6}$ can be achieved as follows.

As shown in the figure depicted on the right, the substrate $\mathbf{1 6}$ consists of $i-\operatorname{Pr}$ moiety (red line) and two C 4 units (purple and blue lines). As for these C 4 units, the blue colored C4 unit consists of two $s p^{3}$ and two $s p^{2}$ carbons, while the purple colored C4 unit
 contains three $s p^{3}$ and one $s p^{2}$ carbon. In general, $s p^{2}$ carbon-containing compounds tend to have smaller A values than those of the corresponding $s p^{3}$ carbon-containing compounds (e.g. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}$-, $A=1.49$ or $\left.1.68 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{CH}_{3} \mathrm{CH}_{2}-, A=1.79 \mathrm{kcal} \mathrm{mol}^{-1}\right) .{ }^{6}$ Hence, the purple colored C 4 unit should be larger than the blue colored C 4 unit in the substrate. The purple colored C 4 unit can be regarded as n - Bu substituent. Then, we compared the Taft's steric substituent constants (E_{s}) for n - Bu with that for $i-\operatorname{Pr}$, as their A values were not available in the literature. The reported E_{s} for $n-\mathrm{Bu}$ and $i-\operatorname{Pr}$ are -0.39 and -0.47 , respectively. ${ }^{8}$ Therefore, the red colored $i-\mathrm{Pr}$ should be larger than the purple colored C 4 unit in the substrate. As a consequence, the red colored i-Pr moiety and the purple and blue colored C 4 units can be assigned to L, M, and S groups, respectively, and the working models for the substrate $\mathbf{1 6}$ can be obtained as shown in the dashed box. In analogy with other monoalcoholic substrates examined, the host BP1 approaches the hydroxyl group from the side of the S group of the substrate $\mathbf{1 6}$ to capture the hydroxyl lone pairs. When $(R) \mathbf{- 1 6}$ is used as the substrate, porphyrin ring P1 would rise above porphyrin ring P2 because of the steric repulsion between P1 and the cyclohexenyl moiety on the left side rather than the largest i-Pr substituent as shown in the dashed box upper half. As a result, P1 adopts a counter clockwise helicity relative to $\mathbf{P 2}$, which would produce a negative ECCD spectrum.

9. NMR Spectra of New Compounds

Fig. S18 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S19 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S20 ${ }^{19}$ F NMR spectrum of compound $\mathbf{3}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S21 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S22 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 8}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S23 ${ }^{19}$ F NMR spectrum of compound $\mathbf{1 8}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S24 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

Fig. S25 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\amalg

925*0- \qquad
92.TZ
$91 b^{\circ} \mathrm{LZ}$

Fig. S26 ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{4}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S27 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S28 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S29 ${ }^{19}$ F NMR spectrum of compound $5\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S30 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$90 L^{\prime} Z-\longrightarrow$

Fig. S31 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 9}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

$\begin{aligned} & \text { тor'101 } \\ & \text { 692's01 } \end{aligned}$
120'ELI
T5802\%
6\%2.621
$686{ }^{\circ} \mathrm{CE}$ T
092.0.
0tL'9CT
$160^{\circ} \mathrm{BE}$ I
019.80. 1
929.8 CT
TVL'昰I
c8\%'Tb
25\% EDT
661 's. ${ }^{\text {¢ }}$
T6t'Ebt

Fig. S32 ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $19\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S33 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $6\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S34 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S35 ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{6}\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S36 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $7\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S37 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $7\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6.T'TZ \qquad

Fig. S38 ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $7\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S39 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{B P} 1\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S40 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{B P 1}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S41 ${ }^{19}$ F NMR spectrum of compound BP1 $\left(466 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: ${ }^{1}$ Takanami, T.; Hayashi, M.; Chijimatsu, H.; Inoue, W.; Inoue, N.; Suda, K. Org. Lett. 2005, 7, 3937.

[^1]: ${ }^{2}$ Sugita, N.; Hayashi, S.; Ishii, S.; Takanami, T. Catalysis, 2013, 3, 839.

[^2]: ${ }^{3}$ Sugita, N.; Hayashi, S.; Hino, F.; Takanami, T. J. Org. Chem. 2012, 77, 10488.

[^3]: ${ }^{4}$ Takanami, T.; Yotsukura, M.; Inoue, W.; Inoue, N.; Hino, F.; Suda, K. Heterocycles, 2008, 76, 439.

[^4]: ${ }^{5}$ Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10690.

[^5]: ${ }^{6}$ E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley: New York, 1994, pp. 696-697, Table 11.7.

