Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Bis(zinc porphyrin) as a Bidentate CD-Sensitive Host Molecule: Direct Determination of Absolute Configuration of Mono-alcohols

Satoshi Hayashi, Miku Yotsukura, Masahiro Noji and Toshikatsu Takanami* Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan takanami@my-pharm.ac.jp

Table of Contents:

1. General Information	S2
2. Synthesis of Bis(zinc porphyrin) BP1	S3
3. Comparison of ¹ H NMR and UV-vis Spectra of	
Bis(zinc porphyrin) BP1 with Those of the Monomeric Counterparts 5 and 6	S10
4. ¹ H NMR Binding Experiments for Complexation of	
Bis(Zinc Porphyrin) BP1 with Ethanol	S12
5. Spectroscopic Titrations for Evaluation of Association Constants	S13–S14
6. Job's Continuous Plot Analysis to Determine Complex Stoichiometry	S15
7. Computational Analysis	S16
8. CD Spectra and Proposed Working Model for Assigning	
the Absolute Configuration of Chiral Alcohols	S17–S24
9. NMR Spectra of New Compounds	S25–S48

1. General Information

¹H and ¹³C-NMR spectra were recorded at rt on a JEOL JNM-LA500 spectrometer using perdeuterated solvents as internal standards. Chemical shifts of ¹H and ¹³C spectra are given in ppm relative to residual protiated solvent and relative to the solvent respectively: CHCl₃ (δ = 7.26) for ¹H-NMR and relative to the central resonance of CDCl₃ (δ = 77.0) for ¹³C-NMR. ¹⁹F-NMR spectra were recorded at rt on a on a JEOL JNM-ECA500 spectrometer using benzotrifluoride as an external standard. The chemical shift values are expressed as δ values (ppm) and the couple constants values (J) are in Hertz (Hz). The following abbreviations were used for signal multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broad. UV–Visible spectra were recorded on a JASCO V-660 dualbeam grating spectrophotometer with a 1 cm cell. IR spectra were recorded on a JASCO FT/IR-4100 spectrophotometer. The mass spectroscopic data were obtained on JEOL JNM-DX302 spectrometer. The CD spectra were recorded on a JASCO J-820 spectrophotometer with a 1 cm cell at 25 °C in 1% CH₂Cl₂/hexane (scan speed: 50 nm/min, scan number: 5–15, bandwidth: 2 nm).

Reactions involving moisture sensitive reagents were carried out under an argon atmosphere using standard vacuum line techniques and glassware that was flame-dried and cooled under argon before use. Dry THF was purchased for the reactions and used without further desiccation. CH_2Cl_2 and *n*-hexane were distilled over CaH₂, and used immediately. 10-Bromo-5,15-di(p-tolyl)porphyrin **2** was prepared as described in the literature.¹ Other chemicals were purchased from commercial sources and used as received unless stated otherwise.

¹ Takanami, T.; Hayashi, M.; Chijimatsu, H.; Inoue, W.; Inoue, N.; Suda, K. Org. Lett. 2005, 7, 3937.

2. Synthesis of Bis(zinc porphyrin) BP1

Preparation of [5,15-di(p-tolyl)-10-pentafluorophenylporphyrinato]zinc(II) 3.² An oven-dried

100 mL two-necked flask equipped with a magnetic stirring bar and rubber septum was charged with a free base bromoporphyrin **2** (105 mg, 0.185 mmol), bis(pentafluorophenyl)zinc (370 mg, 0.9 mmol, 5 equiv), Pd(OAc)₂ (2.1 mg, 9.3 µmol, 5 mol%), and *t*-Bu₃P·HBF₄ (5.4 mg, 18.5 µmol, 10 mol%). The reaction vessel was evacuated and flushed with argon (three times), and then dry THF (25 mL) was add-ed. The mixture was stirred at 60 °C for 1 h, having been monitored by TLC (hexane/toluene 1:1). Upon completion of the reaction, the mix-

ture was allowed to reach room temperature. The reaction mixture was diluted with CH₂Cl₂ (50 mL) and washed with water and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/toluene, 1:1). The first red purple band eluted was collected, and taken to dryness. Recrystallization from hexane/CH₂Cl₂ gave the pure product; red-purple solid; 128.0 mg, 95% yield; $R_f = 0.61$ (hexane/toluene, 1:1); ¹H-NMR (CDCl₃, 500 MHz) δ 9.76 (1H, s), 9.10 (2H, d, *J* = 4.6 Hz), 9.03 (2H, d, *J* = 4.6 Hz), 8.91 (4H, d, *J* = 4.6 Hz), 8.05 (4H, d, *J* = 7.6 Hz), 7.57 (4H, d, *J* = 7.6 Hz), 2.74 (6H, s); ¹³C-NMR (CDCl₃, 125 MHz) δ 150.6, 150.3, 149.2, 148.9, 146.6 (2C, d, *J*_{CF} = 245.2 Hz), 141.7 (1C, d, *J*_{CF} = 255.5 Hz), 139.3, 137.4 (2C, d, *J*_{CF} = 252.4 Hz), 137.3, 134.5, 133.4, 132.5, 131.8, 129.5, 127.4, 121.2, 117.6, 106.9, 101.2, 21.5; ¹⁹F-NMR (CDCl₃, 466 MHz) δ -138.7 (2F, dd, *J*_{FF} = 24.5, 8.5 Hz), -155.7 (1F, t, *J*_{FF} = 21.0 Hz), -164.2 (2F, td, *J*_{FF} = 23.6, 8.5 Hz); IR (KBr) 3113, 3086, 3024, 2920, 2873, 2804, 1724, 1489, 1319, 1180, 1065, 995, 791 cm⁻¹; UV-Vis (CHCl₃) λ_{max} (log ε) 418.0 (5.6), 547.0 (4.2) nm; HRMS (EI) [M⁺] calcd for C₄₀H₂₃F₅N₄Zn: 718.1134, found 718.1138.

Preparation of [10-bromo-5,15-di(p-tolyl)-20-pentafluorophenylporphyrinato]zinc(II) 18. To a

solution of a porphyrin **3** (340 mg, 0.47 mmol) in CHCl₃ (100 mL) was added NBS (*N*-bromosuccinamide) (93 mg, 0.52 mmol) at 0 °C. The reaction mixture was stirred for 2 h and quenched with acetone (10 mL). The solvent was evaporated to dryness. Column chromatography on silica gel (hexane/toluene 1:1) followed by recrystallization from hexane/CH₂Cl₂ gave the pure compound; purple solid; 362 mg, 97% yield; $R_f = 0.44$ (hexane/toluene, 1:1); ¹H-NMR (CDCl₃, 500 MHz) δ 9.70 (2H, d, J = 4.9 Hz), 8.98 (2H, d, J = 4.6 Hz), 8.97 (2H, d,

² Sugita, N.; Hayashi, S.; Ishii, S.; Takanami, T. Catalysis, 2013, 3, 839.

J = 4.9 Hz), 8.78 (2H, d, *J* = 4.6 Hz), 8.04 (4H, d, *J* = 7.6 Hz), 7.56 (4H, d, *J* = 7.6 Hz), 5.83 (2H, s), 2.71 (6H, s); ¹³C-NMR (CDCl₃, 125 MHz) δ 150.4, 150.8, 149.9, 149.6, 146.5 (2C, d, *J*_{CF} = 252.4 Hz), 141.8 (1C, d, *J*_{CF} = 249.3 Hz), 139.1, 137.6, 137.5 (2C, d, *J*_{CF} = 259.7 Hz), 134.4, 134.0, 133.4, 133.3, 129.9, 127.4, 122.5, 117.1, 106.3, 101.8, 21.5; ¹⁹F-NMR (CDCl₃, 466 MHz) δ –138.8 (2F, dd, *J*_{FF} = 23.5, 7.5 Hz), –154.7 (1F, t, *J*_{FF} = 21.4 Hz), –163.9 (2F, td, *J*_{FF} =23.5, 8.6 Hz); IR (KBr) 3019, 2920, 2862, 1489, 1331, 1207, 1176, 1111, 1068, 991, 944 cm⁻¹; UV-Vis (CHCl₃) λ_{max} (log ε) 425.0 (5.7), 558.0 (4.3) nm; HRMS (EI) [M⁺] calcd for C₄₀H₂₂F₅BrN₄Zn: 796.0239, found 796.0238.

Preparation of [5,15-di(p-tolyl)-10-pentafluorophenyl-20-(trimethylsilyl)methylporphyrinato]

zinc(II) 4. Prepared according to a literature precedent with slight modification.³ An oven-dried 100 mL two-necked flask equipped with a magnetic stirring bar and rubber septum was charged with *meso*-bromoporphyrin **18** (200 mg, 0.25 mmol) and PEPPSI ([1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl) palladium(II) dichloride, 10 mg, 7.8 μ mol, 4 mol %). The reaction vessel was evacuated and flushed with argon (three times), and then dry THF (35 mL) was added. To the solution was added a 1.0 M THF

solution of Me₃SiCH₂MgCl (0.75 mL, 0.75 mmol, 3 equiv) at rt. The mixture was stirred at 60 °C for 1 h, having been monitored by TLC (hexane/THF, 2:1). Upon completion of the reaction, the mixture was allowed to reach room temperature. The reaction mixture was diluted with CH₂Cl₂ (500 mL) and washed with water and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was charged on the top of a silica gel column packed with hexane/CH₂Cl₂/Et₃N (10:1:0.5), and the column was eluted with hexane/CH₂Cl₂ (5:1 to 2:1). The fractions containing product were collected and concentrated under a reduced pressure. The resulting crude product was recrystallized from CH₂Cl₂/hexane to give the pure product; purple solid; 210 mg, 99% yield; R_f = 0.54 (hexane/THF, 2:1); ¹H-NMR (CDCl₃, 500 MHz) δ 9.35 (2H, d, *J* = 4.6 Hz), 8.94 (2H, d, *J* = 4.6 Hz), 8.88 (2H, d, *J* = 4.6 Hz), 8.71 (2H, d, *J* = 4.6 Hz), 8.06 (4H, d, *J* = 7.6 Hz), 7.55 (4H, d, *J* = 7.6 Hz), 4.55 (2H, s), 2.71 (6H, s), -0.01 (9H, s); ¹³C-NMR (CDCl₃, 125 MHz) δ 150.4, 150.3, 150.0, 149.6, 146.8 (2C, d, J_{CF} = 240.0 Hz), 141.8 (1C, d, J_{CF} = 251.4 Hz), 139.9, 137.7 (2C, d, J_{CF} = 253.5 Hz), 137.5, 134.6, 133.9, 131.8, 129.9, 129.3, 127.6, 124.4, 121.7, 117.8, 99.5, 27.4, 21.8, -0.5; ¹⁹F-NMR (CDCl₃, 466 MHz) δ -138.8 (2F, dd, J_{FF} = 24.2, 8.5 Hz), -155.5 (1F, t, J_{FF} = 21.3 Hz), -164.3 (2F, td, J_{FF} = 24.2, 8.5 Hz), 1250, 1211, 1149, 1072, 760, cm⁻¹;

³ Sugita, N.; Hayashi, S.; Hino, F.; Takanami, T. J. Org. Chem. 2012, 77, 10488.

UV-Vis (CHCl₃) λ_{max} (log ε) 426.0 (4.9), 558.0 (3.5) nm; HRMS (EI) [M⁺] calcd for C₄₄H₃₃F₅N₄SiZn: 804.1686, found 804.1682.

Preparation of [5,15-di(p-tolyl)-10-hydroxymethyl-20-pentafluorophenylporphyrinato]zinc(II)

5.³ To a solution of silylmethylporphyrin **4** (105 mg, 0.13 mmol) in a mixed solution of H_2O/THF (1:10, 110 mL) was added DDQ (45 mg, 0.2 mmol, 1.5 equiv.) at rt. After being stirred at rt for 0.5 h, the reaction was quenched with Et_3N (2 mL). Then, the mixture was diluted with CH_2Cl_2 (200 mL) and washed with water and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. Column chromatography on silica gel (CH₂Cl₂) followed by recrystallization from CH₂Cl₂/hexane gave the pure product; red-purple solid; 97 mg,

99% yield; R_f = 0.15 (2:1 hexane/THF); ¹H-NMR (CDCl₃, 500 MHz) δ 9.65 (2H, d, *J* = 4.6 Hz), 9.01 (2H, d, *J* = 4.6 Hz), 8.93 (2H, d, *J* = 4.6 Hz), 8.73 (2H, d, *J* = 4.6 Hz), 8.04 (4H, d, *J* = 7.6 Hz), 7.53 (4H, d, *J* = 7.6 Hz), 6.97 (2H, d, *J* = 6.1 Hz), 3.16 (1H, t, *J* = 6.0 Hz), 2.69 (6H, s); ¹³C-NMR (CDCl₃+THF-8d, 125 MHz) δ 150.7, 150.4, 150.3, 149.0, 146.6 (2C, d, *J*_{CF} = 245.2 Hz), 141.6 (1C, d, *J*_{CF} = 263.8 Hz), 139.9, 137.3 (2C, d, *J*_{CF} = 249.3 Hz), 137.1, 134.4, 133.1, 132.9, 129.3, 128.8, 127.1, 121.3, 117.8, 117.3, 100.9, 64.7, 21.4; ¹⁹F-NMR (CDCl₃+THF-8d, 466 MHz) δ -138.7 (2F, dd, *J*_{FF} = 24.6, 8.6 Hz), -154.9 (1F, t, *J*_{FF} = 21.4 Hz), -164.1 (2F, td, *J*_{FF} = 24.6, 8.6 Hz); IR (KBr) 3521, 3105, 3024, 2924, 2858, 1493, 1335, 1342, 1207, 1148, 1072, 995, cm⁻¹; UV-Vis (CHCl₃) λ_{max} (log ε) 422.0 (5.7), 553.0 (4.5) nm; HRMS (EI) [M⁺] m/z calcd for C₄₁H₂₅F₅N₈OZn: 748.1240, found 748.1237.

Preparation of 10-bromo-5,15-di(p-tolyl)-10-pentafluorophenylporphyrin 19. A mixture of

MeOH (65 mL) and conc. HCl (7.5 mL) was added dropwise to a partially dissolved solution of a zincated *meso*-bromoporphyrin **18** (200 mg, 0.25 mmol) in THF (ca. 50 μ L) at rt. The mixture was stirred at rt for 10 min, diluted with THF/Et₂O (2:1, 50 mL), and then neutralized with saturated sodium bicarbonate. The solution was washed with brine, and the organic layer was dried over MgSO₄ and concentrated in vacuo. The resulting solid was purified by recrystallization from hexane/CH₂Cl₂ to give the pure free base **19** as a purple solid; 175 mg,

95% yield; $R_f = 0.44$ (hexane/CH₂Cl₂, 1:1); ¹H-NMR (CDCl₃, 500 MHz) δ 9.66 (2H, d, J = 4.6 Hz), 8.90 (2H, d, J = 4.6 Hz), 8.89 (2H, d, J = 4.6 Hz), 8.69 (2H, d, J = 4.6 Hz), 8.05 (4H, d, J = 7.6 Hz), 7.56 (4H, d, J = 7.6 Hz), 2.71 (6H, s) , -2.75 (2H, s); ¹³C-NMR (CDCl₃, 125 MHz) δ 146.5 (2C, d, $J_{\rm CF} = 249.3$ Hz), 142.3 (1C, d, $J_{\rm CF} = 248.3$ Hz), 138.7, 138.6, 138.1, 137.7 (2C, d, $J_{\rm CF} = 254.5$ Hz), 134.8, 132.9 (8C, br), 129.3, 127.9, 121.9, 116.8, 105.3, 101.1, 21.8; ¹⁹F-NMR (CDCl₃, 466 MHz) δ -138.4 (2F, dd, $J_{\rm FF} = 24.6$, 6.1 Hz), -154.2 (1F, t, $J_{\rm FF} = 21.0$ Hz), -163.7 (2F, td, $J_{\rm FF} = 24.7$, 7.4 Hz); IR (KBr) 3321, 3024, 2916, 1493, 1346, 1218, 1180, 1133, 1030, 980, 925 cm⁻¹; UV-Vis (CHCl₃) $\lambda_{\rm max}$ (log ε) 419 (5.6), 516.0 (4.2), 551.0 (3.9), 595.0 (3.7), 650.0 (3.6) nm; HRMS (FAB) [M+H]⁺ calcd for C₄₀H₂₂F₅BrN₄: 735.1183, found 735.1185.

Preparation of [5,15-di(*p*-tolyl)-10-(2-ethoxycarbonylethyl)-20-pentafluorophenylrinato]

zinc(II) 6.⁴ An oven-dried 200 ml sealable Schlenk flask equipped with a magnetic stirring bar was charged with Zn dust (2.1 g, 32 mmol) and CuCl (318 mg, 3.2 mmol). The reaction vessel was evacuated and flushed with argon (three times), and dry THF (8 mL) was added. The Zn(Cu) couple suspension was refluxed for 1.5 h using an oil-bath. During this activation period, another oven-dried 10 mL sealable flask was evacuated and flushed with argon (three times) and then charged dry THF (6 mL) and ethyl bromoacetate (700 μ L, 6.7

mmol). The reaction vessel containing Zn(Cu) couple was removed from the oil-bath. To initiate the reaction, ca. 1/10 of the THF solution of ethyl bromoacetate was added via a syringe to the stirred Zn(Cu) couple suspension while the suspension was still hot. The rest of the solution was added in such a rate as to maintain a gentle reflux (ca. 5 min). The reaction mixture was stirred and refluxed until its color to black (ca. 2 h). To the resulting ca. 0.5 M THF solution of the zinc enolate was added dropwise a mixture of bromoporphyrin **19** (210 mg, 0.28 mmol), Pd(OAc)₂ (7 mg 10 mol%), and PCy₃ (17 mg, 20 mol%) in THF (80 mL) over a period of 5 min. The reaction mixture was heated under argon at 65 °C for 10 h, and then allowed to reach rt. The reaction mixture was filtered through a filter paper, diluted with THF/Et₂O (2:1, 20 mL), and washed with aqueous NH₄Cl and brine. The organic layer was dried over anhydrous MgSO₄, and concentrated in vacuo. Column chromatography on silica gel (CH₂Cl₂) followed by recrystallization from CH₂Cl₂/hexane to give the pure compound; purple solid; 212 mg, 94% yield; $R_f = 0.48$ (CH₂Cl₂); ¹H-NMR (CDCl₃, 500 MHz) δ 9.45 (2H, d, J =4.6 Hz), 9.01 (2H, d, J = 4.6 Hz), 8.98 (2H, d, J = 4.6 Hz), 8.80 (2H, d, J = 4.6 Hz), 8.05 (4H, d, J = 7.9 Hz), 7.56 (4H, d, J = 7.9 Hz), 5.83 (2H, s), 4.12 (2H, q, J = 7.0 Hz), 2.72 (6H, s), 1.14 (3H, t, J = 7.0 Hz); ¹³C-NMR (CDCl₃, 125 MHz) δ 172.3, 150.4, 150.2, 150.1, 149.2, 146.6 (2C, d, J_{CF} = 244.1 Hz), 141.4 (1C, d, *J*_{CF} = 257.6 Hz), 139.1, 137.2 (2C, d, *J*_{CF} = 253.5 Hz), 137.1, 134.1, 133.4, 132.8,

⁴ Takanami, T.; Yotsukura, M.; Inoue, W.; Inoue, N.; Hino, F.; Suda, K. Heterocycles, 2008, 76, 439.

129.3, 129.2, 127.1, 121.5, 117.1, 112.3, 101.0, 61.0, 40.6, 21.3, 13.9; ¹⁹F-NMR (CDCl₃, 466 MHz) δ –138.7 (2F, dd, $J_{FF} = 22.8$, 7.5 Hz), –155.0 (1F, t, $J_{FF} = 21.0$ Hz), –164.1 (2F, td, $J_{FF} = 24.7$, 7.5 Hz); IR (KBr) 3113, 3024, 2981, 2927, 2866, 1732, 1497, 1446, 1338, 1300, 1257, 1211, 1149, 1076, 1037, 995, cm⁻¹; UV-Vis (CHCl₃) λ_{max} (log ε) 424.0 (5.7), 555.0 (4.3) nm; HRMS (EI) [M⁺] calcd for C₄₄H₂₉F₅N₄O₂Zn: 804.1502, found 804.1507.

Preparation of [5,15-di(p-tolyl)-10-carboxymethyl-20-pentafluorophenylporphyrinato]zinc(II)

7. To a solution of [5,15-di(p-tolyl)-10-(2-ethoxycarbonylethyl)-20-pentafluorophenylporphyrinato] zinc(II) 6 (205 mg, 0.25 mmol) in EtOH/THF (2:1 vol/vol, 30 mL) was added 10% NaOHaq (10 mL). The suspension was stirred at 40 °C for 1.5 h, and then allowed to reach rt. The solution was diluted with THF/Et₂O (2:1, 30 mL), and washed with aqueous NH₄Cl and brine. The organic layer was dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting soild was purified by recrystallization from CH₂Cl₂/hexane to give

the pure compound; purple solid; 193 mg, 99% yield; $R_f = 0.15$ (hexane/THF, 1:1); ¹H-NMR (CDCl₃+THF-8d, 500 MHz) δ 9.54 (2H, d, J = 4.9 Hz), 8.96 (2H, d, J = 4.6 Hz), 8.90 (2H, d, J = 4.9 Hz), 8.69 (2H, d, J = 4.6 Hz), 8.03 (4H, d, J = 7.6 Hz), 7.50 (4H, d, J = 7.6 Hz), 6.05 (2H, s), 2.68 (6H, s); ¹³C-NMR (CDCl₃+THF-8d, 125 MHz) δ 174.3, 150.2, 150.1, 149.9, 149.0, 146.3 (2C, d, $J_{CF} = 246.2$ Hz), 141.2 (1C, d, $J_{CF} = 252.4$ Hz), 139.7, 137.0 (2C, d, $J_{CF} = 253.5$ Hz), 136.7, 134.1, 132.9, 132.5, 128.89, 128.85, 126.8, 120.9, 117.6, 112.3, 99.9, 40.6, 21.2; ¹⁹F-NMR (CDCl₃+THF-8d, 466 MHz) δ -137.3 (2F, dd, $J_{FF} = 25.8, 7.9$ Hz), -150.1 (1F, t, $J_{FF} = 19.8$ Hz), -163.0 (2F, td, $J_{FF} = 23.9, 8.0$ Hz); IR (KBr) 3625, 3386, 3113, 3020, 2981, 2923, 2873, 1705, 1647, 1612, 1492, 1442, 1338, 1307, 1211, 1180, 1072, 995, cm⁻¹; UV-Vis (CHCl₃) λ_{max} (log ε) 424.0 (4.9), 555.0 (3.5) nm; HRMS (EI) [M⁺] calcd for C₄₂H₂₅F₅N₄O₂Zn: 776.1189, found 776.1194.

Preparation of bis(zinc porphyrin) BP1. To a solution of carboxymethyl-substituted porphyrin 7

(75 mg, 0.096 mmol) and EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, 54 mg, 0.3 mmol) in THF (30 mL) was added hydroxymethylsubstituted porphyrin **5** (60 mg, 0.08 mmol) at rt. The solution was stirred for 5 min, and then DMAP (N,Ndimethyl-4-aminopyridine, 10 mg, 0.08 mmol) was added. After stirring for 48 h at rt, the solution was diluted with THF/Et₂O (2:1, 60 mL), and washed with brine.

The organic layer was dried over anhydrous MgSO₄, and concentrated in vacuo. Column chromatography on silica gel (hexane/THF, 10:1 to 5:1) followed by recrystallization from CH₂Cl₂/hexane to give the pure compound; purple solid; 84 mg, 70% yield (based on 5); $R_f = 0.4$ (hexane/THF, 3:1); ¹H-NMR (CDCl₃, 500 MHz) δ 9.38 (2H, d, J = 4.9 Hz), 9.27 (2H, d, J = 4.9 Hz), 8.94 (2H, d, J = 4.6Hz), 8.91 (2H, d, J = 4.6 Hz), 8.81 (2H, d, J = 4.6 Hz), 8.77 (2H, d, J = 4.6 Hz), 8.54 (2H, d, J = 4.6 Hz), 8.54 (2H, d, J = 4.6 Hz), 7.73 (4H, d, J = 7.6 Hz), 7.66 (4H, d, J = 7.6 Hz), 7.51 (2H, s), 7.36 (4H, d, J = 7.6 Hz), 7.25 (4H, d, J = 7.6 Hz), 6.05 (2H, s), 2.65 (6H, s), 2.60 (6H, s); ¹³C-NMR (CDCl₃, 125 MHz) & 171.3, 150.7, 150.5, 150.4, 150.3, 150.17, 150.16, 149.3, 149.0, 146.6 (2C, d, *J*_{CF} = 248.3 Hz), 141.7 (1C, d, *J*_{CF} = 257.6 Hz), 139.1, 139.0, 137.4 (2C, d, *J*_{CF} = 254.5 Hz), 137.3, 137.1, 134.2, 134.1, 133.6, 133.5, 132.9, 132.6, 129.7, 129.5, 129.2, 129.0, 127.2, 127.1, 121.7, 121.5, 117.4, 117.3, 112.0, 111.3, 102.2, 101.3, 66.4, 41.0, 21.4, 21.3; ¹⁹F-NMR (CDCl₃, 466 MHz) δ -138.6 (2F, dd, J_{FF} = 25.8, 8.0 Hz), -138.7 (2F, dd, J_{FF} = 25.9, 8.0 Hz), -154.9 (1F, t, J_{FF} = 20.8 Hz), -155.0 (1F, t, $J_{FF} = 21.3$ Hz), -164.0 (2F, td, $J_{FF} = 24.1$, 8.0 Hz), -164.1 (2F, td, $J_{FF} = 24.0$, 8.0 Hz); IR (KBr) 3117, 3020, 2924, 2862, 2731, 1728, 1647, 1493, 1338, 1207, 1146, 1072, 991, 941 cm⁻¹; UV-Vis (CHCl₃) λ_{max} (log ε) 422.0 (5.7), 426.0 (5.7), 554.0 (4.5) nm; HRMS (EI) [M⁺] calcd for C₈₃H₄₈F₁₀N₈O₂Zn₂: 1506.2323, found 1506.2324.

3. Comparison of ¹H NMR and UV-vis Spectra of Bis(zinc porphyrin) BP1 with Those of the Monomeric Counterparts 5 and 6

Fig. S1 ¹H NMR spectra (CDCl₃, rt) of (a) carboethoxymethyl-substituted zinc porphyrin **6**, (b) bis(zinc porphyrin) **BP1**, and (c) hydroxymethyl-substituted zinc porphyrin **5** in the region corresponding to the resonance of the β pyrrolic protons of the porphyrin rings.

Fig. S2 UV-vis specta of bis(zinc porphyrin) **BP1** (red-line) and carboethoxymethyl-substituted zinc porphyrin **6** (green-line) in 1% CH₂Cl₂/hexane at 25 °C.

Fig. S3 UV-vis specta of bis(zinc porphyrin) **BP1** (red-line) and hydroxymethyl-substituted zinc porphyrin **5** (blue-line) in 1% CH₂Cl₂/hexane at 25 °C.

4. ¹H NMR Binding Experiments for Complexation of Bis(Zinc Porphyrin) BP1 With Ethanol

Fig. S4 ¹H NMR (CDCl₃, rt) spectra of ethanol (a) without zinc porphyrins and in the presence of (b) carboethoxymethyl-substituted zinc porphyrin **6** (ethanol/**6** = 1:1) and (c) bis(zinc porphyrin) **BP1** (ethanol/**BP1** = 1:1) in the region corresponding to the resonance of the methylene protons.

5. Spectroscopic Titrations for Evaluation of Association Constants

The association constants K_{assoc} for host-guest complexes were determined through titration of the host molecules **BP1** and its monomeric counter part **6** with ethanol as the guest molecule. The UV-vis spectra of the titration of ethanol shown below (Figure S6 and S7) demonstrates the change in the Soret band absorption upon binding of ethanol to the host molecule. K_{assoc} values were evaluated from the following equation by applying a nonlinear curve-fitting method to the changes in absorbance (ΔAbs) upon titration of host molecule **BP1** or **6** with guest molecule:

$$\Delta Abs = \frac{L \left[K_{assoc} \cdot X + K_{assoc} \cdot A + 1 \right] - \sqrt{L^2 \left(K_{assoc} \cdot X + K_{assoc} \cdot A + 1 \right)^2 - 4K_{assoc}^2 \cdot A \cdot X \cdot L^2}}{2K_{assoc} \cdot A}$$

where X and A represent [Guest]_{total} and [Host]_{total}, respectively; L denotes Δ Abs at 100% complexation; L and K_{assoc} are parameters.⁵ IGOR Pro (ver 6.22) software was used for curve-fitting analysis.

Fig. S5 (a) Spectral change upon titration of **BP1** with ethanol in 1% CH₂Cl₂/hexane at 25 °C. (b) Changes in Δ Abs at 430 nm for evaluating K_{assoc} . [**BP1**] = 1.0 μ M; [ethanol]/[**BP1**] = 0–2200.

⁵ Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10690.

Fig. S6 (a) Spectral change upon titration of **6** with ethanol in 1% CH₂Cl₂/hexane at 25 °C. (b) Changes in Δ Abs at 422 nm for evaluating K_{assoc} . [**6**] = 1.0 μ M; [ethanol]/[**BP1**] = 0–53000.

6. Job's Continuous Plot Analysis to Determine Complex Stoichiometry

Fig. S7 Job's diagram. Solutions of the bidentate host **BP1** and ethanol (guest) in 1% CH₂Cl₂/hexane were prepared with a fixed total concentration of host and guest (2 μ M). The UV-vis spectra were recorded at 0 °C and Δ Abs was monitored at 414 nm. Peaking at 0.5 mol fraction corresponds to a 1:1 **BP1**:ethanol complex.

7. Computational Analysis

Density functional theory (DFT) calculations were run with Spartan'10 (Wavefunction, Inc., Irvine, CA). Geometry optimization was performed by the semiempirical method (AM1) followed by DFT calculation at the B3LYP/6-31G* level of theory.

Fig. S8 DFT calculation for bis(zinc porphyrin) **BP1:** (a) dihedral angle of the two porphyrin planes and (b) zinc-zinc distance.

8. CD Spectra and Proposed Working Model for Assigning the Absolute Configuration of Chiral Alcohols

Fig. S9 ECCD spectra of **8** $(1.7 \times 10^{-3} \text{ M})$ in the presence of **BP1** $(1.7 \times 10^{-6} \text{ M})$ in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the conformational energies, *A* values: Ph, 2.8 kcal mol⁻¹; Me, 1.74 kcal mol⁻¹.⁶

⁶ E. L. Eliel, S. H. Wilen and L. N. Mander, *Stereochemistry of Organic Compounds*, Wiley: New York, **1994**, pp. 696-697, Table 11.7.

Fig. S10 ECCD spectra of 9 (1.6×10^{-3} M) in the presence of BP1 (1.6×10^{-6} M) in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. Neither the conformational energy, *A* value, nor the Taft's steric substituent constant, *E_s*, were not available for allylic substituent. Therefore, the *A* values of the substituents on the β carbons, vinyl group and hydrogen, were compared as shown in the figure depicted below. The reported *A* value for vinyl group (1.49 or 1.68 kcal mol⁻¹) is larger than that for hydrogen (0.00 kcal mol⁻¹),⁶ and thus the allylic and the Me substituents can be assigned to L and M groups, respectively.

Fig. S11 ECCD spectra of **10** $(1.7 \times 10^{-3} \text{ M})$ in the presence of **BP1** $(1.7 \times 10^{-6} \text{ M})$ in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the conformational energies, *A* values: C=CH, 0.41-0.52 kcal mol⁻¹; Me, 1.74 kcal mol⁻¹.⁶

Fig. S12 ECCD spectra of **11** (1.7×10^{-3} M) in the presence of **BP1** (1.7×10^{-6} M) in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the Taft's steric substituent constants, E_s : Ph, -2.55⁷; CH₂Cl, -0.24.⁸

⁷ T. H. Lowry and K. S. Richardson, *Mechanism and Theory in Organic Chemistry, 3rd ed.*, Harper & Row, New York, 1987, p. 153, Table 2.5.

⁸ D. Datta and D. Majumdar, J. Phys. Org. Chem., 1991, 4, 611.

Fig. S13 ECCD spectra of **12** $(1.5 \times 10^{-3} \text{ M})$ in the presence of **BP1** $(1.5 \times 10^{-6} \text{ M})$ in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on their conformational energies, *A* values: Et, 1.79 kcal mol⁻¹; Me, 1.74 kcal mol⁻¹.⁶

Fig. S14 ECCD spectra of **13** $(1.5 \times 10^{-3} \text{ M})$ in the presence of **BP1** $(1.5 \times 10^{-6} \text{ M})$ in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the Taft's steric substituent constants, E_s : Me, 0.00; CH₃OCH₂, -0.19.⁷

Fig. S15 ECCD spectra of **14** (1.6×10^{-3} M) in the presence of **BP1** (1.6×10^{-6} M) in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignments of M, L groups are based on the Taft's steric substituent constants, *E_s*: CF₃, -1.16; CH₂(CH₂)₃CH₃, -0.40.⁸

Fig. S16 ECCD spectra of **15** $(1.5 \times 10^{-3} \text{ M})$ in the presence of **BP1** $(1.5 \times 10^{-6} \text{ M})$ in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. As shown in the figure depicted below, the substrate **15** consists of *i*-Bu (red line) and *n*-Pr (blue line) moieties. The reported Taft's steric substituent constants (E_s) for *i*-Bu and *n*-Pr are -0.93 and -0.36, respectively.⁷ Therefore, the red colored *i*-Bu and the blue colored *n*-Pr moieties can be assigned to L and M groups, respectively.

Fig. S17 ECCD spectra of **16** $(1.5 \times 10^{-3} \text{ M})$ in the presence of **BP1** $(1.5 \times 10^{-6} \text{ M})$ in 1% CH₂Cl₂/hexane at 25 °C. Dashed box: proposed working model for assigning the absolute configuration of the chiral guest. The assignment of L, M, and S groups in the substrate **16** and the prediction of CD signs of the host-guest complexes of **BP1** with (*R*)-**16** and (*S*)-**16** can be achieved as follows.

As shown in the figure depicted on the right, the substrate **16** consists of *i*-Pr moiety (red line) and two C4 units (purple and blue lines). As for these C4 units, the blue colored C4 unit consists of two sp^3 and two sp^2 carbons, while the purple colored C4 unit

ОН

contains three sp^3 and one sp^2 carbon. In general, sp^2 carbon-containing compounds tend to have smaller A values than those of the corresponding sp^3 carbon-containing compounds (e.g. H₂C=CH-, A = 1.49 or 1.68 kcal mol⁻¹; CH₃CH₂-, A = 1.79 kcal mol⁻¹).⁶ Hence, the purple colored C4 unit should be larger than the blue colored C4 unit in the substrate. The purple colored C4 unit can be regarded as *n*-Bu substituent. Then, we compared the Taft's steric substituent constants (E_s) for *n*-Bu with that for *i*-Pr, as their A values were not available in the literature. The reported E_s for n-Bu and *i*-Pr are -0.39 and -0.47, respectively.⁸ Therefore, the red colored *i*-Pr should be larger than the purple colored C4 unit in the substrate. As a consequence, the red colored *i*-Pr moiety and the purple and blue colored C4 units can be assigned to L, M, and S groups, respectively, and the working models for the substrate 16 can be obtained as shown in the dashed box. In analogy with other monoalcoholic substrates examined, the host **BP1** approaches the hydroxyl group from the side of the S group of the substrate 16 to capture the hydroxyl lone pairs. When (R)-16 is used as the substrate, porphyrin ring P1 would rise above porphyrin ring P2 because of the steric repulsion between P1 and the cyclohexenyl moiety on the left side rather than the largest *i*-Pr substituent as shown in the dashed box upper half. As a result, P1 adopts a counter clockwise helicity relative to P2, which would produce a negative ECCD spectrum.

9. NMR Spectra of New Compounds

Fig. S18 ¹H NMR spectrum of compound 3 (500 MHz, CDCl₃)

Fig. S19¹³C NMR spectrum of compound 3 (125 MHz, CDCl₃)

Fig. S20 ¹⁹F NMR spectrum of compound **3** (466 MHz, CDCl₃)

Fig. S21 ¹H NMR spectrum of compound 18 (500 MHz, CDCl₃)

Fig. S22¹³C NMR spectrum of compound **18** (125 MHz, CDCl₃)

Fig. S23¹⁹F NMR spectrum of compound 18 (466 MHz, CDCl₃)

Fig. S25¹³C NMR spectrum of compound 4 (125 MHz, CDCl₃)

Fig. S26¹⁹F NMR spectrum of compound **4** (466 MHz, CDCl₃)

Fig. S28¹³C NMR spectrum of compound 5 (125 MHz, CDCl₃)

Fig. S29¹⁹F NMR spectrum of compound **5** (466 MHz, CDCl₃)

Fig. S31 ¹³C NMR spectrum of compound 19 (125 MHz, CDCl₃)

Fig. S32 ¹⁹F NMR spectrum of compound 19 (466 MHz, CDCl₃)

Fig. S34 ¹³C NMR spectrum of compound 6 (125 MHz, CDCl₃)

Fig. S35 ¹⁹F NMR spectrum of compound **6** (466 MHz, CDCl₃)

Fig. S36 ¹H NMR spectrum of compound 7 (500 MHz, CDCl₃)

Fig. S37 ¹³C NMR spectrum of compound 7 (125 MHz, CDCl₃)

Fig. S39 ¹H NMR spectrum of compound BP1 (500 MHz, CDCl₃)

