Supporting Information for

Catalytic Chemoselective [3+3] Cycloadditions of Azomethine Ylides with Quinone Monoimides Leading to the Construction of A Dihydrobenzoxazine Scaffold

Cong-Shuai Wang, Ren-Yi Zhu, Yu-Chen Zhang and Feng Shi*

Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, and School of Chemistry & Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, China E-mail: fshi@jsnu.edu.cn

Contents:

- 1. General information (S2)
- 2. Screening of Catalysts and optimization of reaction conditions (S2)
- 3. General procedure for the synthesis of compounds 4 and 8 (S3-S4)
- 4. Characterization data of products 4, 5aaa and 8 (S5-S19)
- 5. NMR Spectra of products 4, 5aaa and 8 (S20-S49)
- 6. X-ray single crystal data for compounds 4aaa and 4acf (S50-S51)
- 7. Disscussion on the possible reaction pathway (S52)
- 8. The reaction using quinone instead of QMIs (S53)

1. General information:

¹H and ¹³C NMR spectra were measured respectively at 400 and 100 MHz, respectively. The solvents used for NMR spectroscopy were CDCl₃ and acetone- d_6 , using tetramethylsilane as the internal reference. HRMS spectra were recorded on a LTQ-Orbitrap mass spectrometer. Analytical grade solvents for the column chromatography and commercially available reagents were used as received. Substrates **3** were synthesized according to the literature method.¹

2. Screening of Catalysts and optimization of reaction conditions

Table 1. Screening of Catalysts and optimization of reaction conditions^a

entry	Cat.	solvent	T (°C)	х	1a:2a:3a	additives	cr ^b	yield (%) ^c
1	6a	CH ₂ ClCH ₂ Cl	50	30	1.2:1:1.2	3 Å	>95:5	N.R.
2	6b	CH ₂ ClCH ₂ Cl	50	30	1.2:1:1.2	3 Å	>95:5	N.R.
3	6c	CH ₂ ClCH ₂ Cl	50	30	1.2:1:1.2	3 Å	>95:5	22
4	6 d	CH ₂ ClCH ₂ Cl	50	30	1.2:1:1.2	3 Å	>95:5	54
5	6e	CH ₂ ClCH ₂ Cl	50	30	1.2:1:1.2	3 Å	>95:5	48
6^d	6f	CH ₂ ClCH ₂ Cl	50	30	1.2:1:1.2	3 Å	66:34	45
7	6d	CCl ₃ CH ₃	50	30	1.2:1:1.2	3 Å	>95:5	26
8	6d	CHCl ₂ CH ₂ Cl	50	30	1.2:1:1.2	3 Å	>95:5	23
9	6d	1,4-dioxane	50	30	1.2:1:1.2	3 Å	>95:5	44
10	6d	THF	50	30	1.2:1:1.2	3 Å	>95:5	41
11	6d	CH ₃ CN	50	30	1.2:1:1.2	3 Å	>95:5	38
12	6d	AcOEt	50	30	1.2:1:1.2	3 Å	>95:5	30
13	6d	toluene	50	30	1.2:1:1.2	3 Å	>95:5	N.R.
14	6d	CH ₂ ClCH ₂ Cl	65	30	1.2:1:1.2	3 Å	>95:5	61

1. A. B. Leduc, M. A. Kerr, Eur. J. Org. Chem. 2007, 237.

15	6d	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	3 Å	>95:5	69
16	6d	CH ₂ ClCH ₂ Cl	80	30	1.2:1:2	3 Å	>95:5	46
17	6d	CH ₂ ClCH ₂ Cl	80	30	2.4:2:1	3 Å	>95:5	33
18	6d	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	4 Å	>95:5	54
19	6d	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	5 Å	>95:5	72
20	6d	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	Na_2SO_4	>95:5	41
21	GaBr ₃	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	5 Å	>95:5	84
22	Sc(OTf) ₃	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	5 Å	>95:5	58
23	InCl ₃	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	5 Å	>95:5	N.R.
24	Cu(OTf) ₂	CH ₂ ClCH ₂ Cl	80	30	1.2:1:1.2	5 Å	>95:5	N.R.
25	GaBr ₃	CH ₂ ClCH ₂ Cl	80	50	1.2:1:1.2	5 Å	>95:5	22
26	GaBr ₃	CH ₂ ClCH ₂ Cl	80	15	1.2:1:1.2	5 Å	>95:5	98
27	GaBr ₃	CH ₂ ClCH ₂ Cl	80	15	1.2:1:1.2	-	>95:5	54

^aUnless otherwise indicated, the reaction was carried out at the 0.1 mmol scale and catalyzed by x mol% **Cat.** with additives (100 mg) in a solvent at T $^{\circ}$ C for 48 h. ^bThe *cr* value referred to the ratio of **4aaa:5aaa** and it was determined by ¹H NMR. ^cIsolated yield. ^dNo chiral induction was observed (0% ee) in the presence of this chiral catalyst.

3. General procedure for the synthesis of compounds 4 and 8:

Under an argon atmosphere, 1,2-dicholoroethane (0.5 mL) was added to the mixture of aldehydes 1 (0.12 mmol), amino-esters 2 (0.1 mmol), the catalyst GaBr₃ (0.015 mmol) and 5Å molecular sieves (100 mg). After being stirred at 30 °C for 30 min, the solution of quinone monoimides 3 (0.12 mmol) in 1,2-dicholoroethane (0.5 mL) was added to the reaction mixture, which was further stirred at 80 °C for 48 h. Then, the reaction mixture was filtered to remove molecular sieves and the solid powder was washed with ethyl acetate. The resultant solution was concentrated under the reduced pressure to give the residue, which was purified through flash column chromatography on silica gel (flushed by 10% Et₃N/petrol ether in advance) to afford pure products 4.

For products **4jaa-4qaa**: 1,2-dicholoroethane (3 mL) was added to the mixture of aldehydes **1** (0.6 mmol), amino-esters **2** (0.5 mmol), the catalyst **6e** (0.1 mmol) and 5Å molecular sieves (300 mg). After being stirred at 50 °C for 3h, the solution of quinone monoimides **3** (0.6 mmol) in 1,2-dicholoroethane (5 mL) was added to the reaction mixture, which was further stirred at 65 °C for 24 h. Then, the reaction mixture was filtered to remove molecular sieves and the solid powder was washed with ethyl acetate. The resultant solution was concentrated under the reduced pressure to give the residue, which was purified through flash column chromatography on silica gel (flushed by 10% Et₃N/petrol ether in advance) to afford pure products **4**.

1,2-dicholoroethane (1 mL) was added to the mixture of aldehyde **1a** (0.24 mmol), amino-ester **2a** (0.2 mmol), the catalyst **6e** (0.04 mmol) and 5Å molecular sieves (150 mg). After being stirred at 50 °C for 3h, the solution of quinone **7** (0.24 mmol) in 1,2-dicholoroethane (1.5 mL) was added to the reaction mixture, which was further stirred at 65 °C for 24 h. Then, the reaction mixture was filtered to remove molecular sieves and the solid powder was washed with ethyl acetate. The resultant solution was concentrated under the reduced pressure to give the residue, which was purified through flash column chromatography on silica gel (flushed by 10% Et₃N/petrol ether in advance) to afford pure products **8**.

4. Characterization data of products 4, 5aaa and 8 Diethyl

6-(4-methylphenylsulfonamido)-2-(4-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4aaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 98%; white solid; mp: 74-76 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.81 (d, *J* = 8.7 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 2.5 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.91 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 6.67 (s, 1H), 5.70 (d, *J* = 12.1 Hz, 1H), 4.36 – 4.24 (m, 3H), 4.23 – 4.15 (m, 1H), 3.54 (d, J = 12.1 Hz, 1H), 2.38 (s, 3H), 1.36 – 1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.7, 152.3, 148.2, 144.2, 143.7, 135.9, 129.6, 127.5, 127.2, 125.4, 124.5, 123.6, 118.6, 118.1, 82.8, 66.5, 63.5, 62.8, 21.5, 14.1, 13.8; IR (KBr): 3263, 2925, 2855, 1728, 1599, 1523, 1495, 1462, 1397, 1347, 1295, 1159, 1090, 1040, 970, 906, 849, 816, 671 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇N₃O₉S-H)⁻ requires m/z 568.1390, found m/z 568.1408.

Diethyl

7-hydroxy-4-(4-methylphenylsulfonamido)-3-(4-nitrophenyl)isoindoline-1,1-dicar boxylate (5aaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; white solid; mp: 61-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 2H), 7.41 – 3.37 (m, 4H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.85 – 6.79 (m, 2H), 5.61 (d, *J* = 3.0 Hz, 1H), 5.45 (s, 1H), 4.41 – 4.23 (m, 4H), 3.55 (d, *J* = 4.1 Hz, 1H), 2.42 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.4, 152.6, 149.6, 147.6, 144.1, 141.2, 136.3, 130.0, 129.6, 129.3, 127.1, 123.9, 123.4, 123.0, 119.0, 77.7, 64.9, 63.7, 63.4, 21.6, 14.0, 13.9; IR (KBr): 3273, 2982, 2926, 1792, 1684, 1635, 1576, 1472, 1436, 1395, 1346, 1260, 1185, 1159, 1091, 1018, 945, 858, 815, 758 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇N₃O₉S+Na)⁻ requires m/z 592.1366, found m/z 592.1370.

Diethyl

6-(4-methylphenylsulfonamido)-2-(3-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3

H)-dicarboxylate (4baa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 92%; white solid; mp: 72-73 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.28 – 8.22 (m, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.63 – 7.55 (m, 3H), 7.44 (d, J = 2.3 Hz, 1H), 7.22 (d, J = 8.2 Hz, 2H), 6.93 – 6.83 (m, 2H), 6.58 (s, 1H), 5.70 (d, J = 12.0 Hz, 1H), 4.40 – 4.25 (m, 3H), 4.24 – 4.15 (m, 1H), 3.55 (d, J = 12.0 Hz, 1H), 2.38 (s, 3H), 1.37 – 1.27 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.7, 152.3, 148.3, 143.7, 139.6, 135.9, 132.6, 129.6, 129.5, 127.2, 125.5, 124.6, 123.9, 121.7, 118.6, 82.6, 66.5, 63.5, 62.8, 21.5, 14.0, 13.8; IR (KBr): 3269, 2965, 1736, 1533, 1496, 1398, 1348, 1260, 1160, 1091, 1026, 905, 809, 732, 676, 605 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇N₃O₉S-H)⁻ requires m/z 568.1390, found m/z 568.1404.

Diethyl

6-(4-methylphenylsulfonamido)-2-(2-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4caa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 56%; white solid; mp: 64-66 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 1H), 7.89 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.38 (d, *J* = 2.5 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.92 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 1H), 6.67 (s, 1H), 6.21 (d, *J* = 12.8 Hz, 1H), 4.41 – 4.25 (m, 3H), 4.18 – 4.10 (m, 1H), 3.61 (d, *J* = 12.9 Hz, 1H), 2.37 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 167.8, 152.7, 148.6, 143.7, 136.1, 132.9, 131.8, 129.7, 129.6, 129.6, 127.8, 127.3, 125.4, 124.6, 124.2, 118.7, 118.3, 80.1, 66.8, 63.4, 62.8, 21.5, 13.9, 13.8; IR (KBr): 3264, 2981, 2927, 1733, 1684, 1597, 1558, 1497, 1472, 1363, 1282, 1228, 1185, 1160, 1091, 1031, 980, 814 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇N₃O₉S-H)⁻ requires m/z 568.1390, found m/z 568.1417.

Diethyl

2-(4-cyanophenyl)-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H)-dicarboxylate (4daa): Flash column chromatography eluent, petroleum ether

/ethyl acetate = 4/1; Reaction time = 48h; yield: 96%; white solid; mp: 138-140 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (q, *J* = 8.4 Hz, 4H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 2.6 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.90 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 1H), 6.69 (s, 1H), 5.65 (d, *J* = 12.0 Hz, 1H), 4.35 – 4.24 (m, 3H), 4.22 – 4.14 (m, 1H), 3.51 (d, *J* = 12.1 Hz, 1H), 2.38 (s, 3H), 1.34 – 1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 167.7, 152.4, 143.7, 142.4, 136.0, 132.3, 129.7, 129.5, 127.8, 127.2, 125.4, 124.5, 118.6, 118.1, 112.8, 82.9, 66.5, 63.5, 62.7, 21.5, 14.0, 13.8; IR (KBr): 3283, 2984, 1742, 1593, 1498, 1399, 1333, 1297, 1239, 1160, 1094, 1017, 972, 877, 820, 708, 671 cm⁻¹; ESI FTMS exact mass calcd for (C₂₈H₂₇N₃O₇S-H)⁻ requires m/z 548.1492, found m/z 548.1532.

Diethyl

2-(3-cyanophenyl)-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4eaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 88%; white solid; mp: 68-70 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 2.6 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.90 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 1H), 6.69 (s, 1H), 5.63 (d, *J* = 12.0 Hz, 1H), 4.38 – 4.25 (m, 3H), 4.23 – 4.15 (m, 1H), 3.51 (d, *J* = 12.0 Hz, 1H), 2.38 (s, 3H), 1.36 – 1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 167.7, 152.3, 143.7, 139.1, 135.9, 132.5, 130.9, 130.2, 129.6, 129.4, 129.3, 127.2, 126.4, 125.4, 124.5, 118.6, 118.0, 112.6, 82.6, 66.5, 63.5, 62.8, 21.5, 14.0, 13.8; IR (KBr): 3265, 2982, 1735, 1595, 1497, 1395, 1330, 1230, 1160, 1091, 1026, 920, 813, 684 cm⁻¹; ESI FTMS exact mass calcd for (C₂₈H₂₇N₃O₇S-H)⁻ requires m/z 548.1492, found m/z 548.1536.

Diethyl

6-(4-methylphenylsulfonamido)-2-(4-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]o xazine-4,4(3H)-dicarboxylate (4faa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 92%; white solid; mp: 67-69 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 2.6 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.90 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.83 (d, *J* = 8.7 Hz, 1H), 6.56 (s, 1H), 5.67 (d, *J* = 11.7 Hz, 1H), 4.36 – 4.25 (m, 3H), 4.22 – 4.15 (m, 1H), 3.53 (d, *J* = 11.9 Hz, 1H), 2.38 (s, 3H), 1.36 – 1.24 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.7, 152.6, 143.7, 136.1, 129.5, 129.3, 127.2, 126.8, 125.7, 125.5, 125.4, 124.6, 118.6, 118.1, 83.2, 66.6, 63.4, 62.7, 21.5, 14.0, 13.8; IR (KBr): 3267, 2984, 1737, 1498, 1398, 1369, 1327, 1259, 1163, 1066, 1024, 973, 813, 672 cm⁻¹; ESI FTMS exact mass calcd for (C₂₈H₂₇F₃N₂O₇S-H)⁻ requires m/z 591.1413, found m/z 591.1451.

Diethyl

2-(4-chlorophenyl)-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H)-dicarboxylate (4gaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 91%; white solid; mp: 68-70 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (t, *J* = 8.3 Hz, 4H), 7.41 – 7.37 (m, 3H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.88 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 1H), 6.43 (s, 1H), 5.59 (d, *J* = 11.5 Hz, 1H), 4.34 – 4.23 (m, 3H), 4.22 – 4.15 (m, 1H), 3.49 (d, *J* = 11.5 Hz, 1H), 2.38 (s, 3H), 1.34 – 1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 167.8, 152.9, 143.6, 136.3, 136.0, 134.9, 129.5, 129.1, 128.7, 127.8, 127.2, 125.6, 124.8, 118.5, 118.0, 83.3, 66.6, 63.3, 62.6, 21.5, 14.4, 13.8; IR (KBr): 3265, 2965, 1736, 1496, 1399, 1368, 1260, 1160, 1109, 1024, 968, 868, 808, 673 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇ClN₂O₇S-H)⁻ requires m/z 557.1149, found m/z 557.1153.

Diethyl

2-(3,4-dichlorophenyl)-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H)-dicarboxylate (4haa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 89%; white solid; mp: 70-72 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 1.6 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.49 – 7.40 (m, 3H), 7.22 (d, *J* = 8.2 Hz, 2H), 6.88 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.44 (s, 1H), 5.57 (d, J = 11.7 Hz, 1H), 4.34 – 4.26 (m, 3H), 4.23 – 4.16 (m, 1H), 3.49 (d, J = 11.9 Hz, 1H), 2.38 (s, 3H), 1.34 – 1.24 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.7, 152.5, 143.7, 137.7, 135.9, 133.1, 132.7, 130.5, 129.5, 129.3, 128.5, 127.2, 125.8, 125.5, 124.7, 118.5, 118.0, 82.6, 66.5, 63.4, 62.7, 21.5, 14.0, 13.8; IR (KBr): 3262, 2964, 2925, 2856, 1736, 1497, 1446, 1397, 1369, 1330, 1261, 1160, 1092, 1027, 915, 869, 807, 672 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₆Cl₂N₂O₇S-H)⁻ requires m/z 591.0760, found m/z 591.0761.

Diethyl

6-(4-methylphenylsulfonamido)-2-(3,4,5-trifluorophenyl)-2H-benzo[e][1,3]oxazin e-4,4(3H)-dicarboxylate (4iaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 83%; white solid; mp: 138-140 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 2.6 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.88 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 1H), 6.36 (s, 1H), 5.54 (d, *J* = 11.9 Hz, 1H), 4.34 – 4.26 (m, 3H), 4.23 – 4.16 (m, 1H), 3.47 (d, *J* = 11.9 Hz, 1H), 2.38 (s, 3H), 1.34 – 1.27 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 167.6, 152.2, 143.7, 135.9, 129.5, 129.4, 127.2, 125.6, 124.5, 118.5, 118.0, 111.6, 111.0, 110.8, 82.1, 66.4, 63.5, 62.8, 21.5, 14.0, 13.8; IR (KBr): 3269, 2926, 1737, 1624, 1597, 1532, 1496, 1446, 1392, 1374, 1330, 1262, 1231, 1162, 1092, 1046 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₅F₃N₂O₇S-H)⁻ requires m/z 577.5490, found m/z 577.5495.

Diethyl

6-(4-methylphenylsulfonamido)-2-phenyl-2H-benzo[e][1,3]oxazine-4,4(3H)-dicar boxylate (4jaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 24h; yield: 90%; white solid; mp: 64-66 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.57 (m, 4H), 7.47 – 7.40 (m, 4H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.91 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 1H), 6.45 (s, 1H), 5.64 (d, *J* = 11.5 Hz, 1H), 4.37 – 4.27 (m, 3H), 4.26 – 4.17 (m, 1H), 3.56 (d, *J* = 11.5 Hz, 1H), 2.41 (s, 3H), 1.35 (t, *J* = 4.4 Hz, 3H), 1.30 (t, *J* = 4.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 167.9, 153.2, 143.6, 137.5, 136.0, 129.5, 129.0, 128.9, 128.5, 127.2, 126.3, 125.6, 124.8, 118.6, 118.0, 84.09, 66.8, 63.2, 62.6, 21.5, 14.0, 13.8; IR (KBr): 3267, 2964, 1737, 1497, 1398, 1261, 1160, 1093, 1024, 866, 805, 701, 601 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₈N₂O₇S-H)⁻ requires m/z 523.1539, found m/z 523.1544.

Diethyl

6-(4-methylphenylsulfonamido)-2-(m-tolyl)-2H-benzo[e][1,3]oxazine-4,4(3H)-dic arboxylate (4kaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 24h; yield: 77%; white solid; mp: 80-82 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.37 (m, 3H), 7.32 – 7.28 (m, 1H), 7.23 – 7.19 (m, 3H), 6.88 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 1H), 6.41 (s, 1H), 5.57 (d, *J* = 11.2 Hz, 1H), 4.35 – 4.23 (m, 3H), 4.23 – 4.16 (m, 1H), 3.53 (d, *J* = 11.2 Hz, 1H), 2.38 (s, 3H), 2.37 (s, 3H), 1.31 (t, *J* = 5.2 Hz, 3H), 1.28 (t, *J* = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 167.9, 153.2, 143.6, 138.3, 137.5, 136.0, 129.8, 129.5, 128.8, 128.5, 127.2, 126.8, 125.6, 124.9, 123.3, 118.6, 118.0, 84.2, 66.8, 63.2, 62.6, 21.5, 21.4, 14.0, 13.8; IR (KBr): 3264, 2964, 1736, 1497, 1399, 1368, 1330, 1261, 1160, 1092, 1023, 867, 804, 701 cm⁻¹; ESI FTMS exact mass calcd for (C₂₈H₃₀N₂O₇S-H)⁻ requires m/z 537.1696, found m/z 537.1717.

Diethyl

6-(4-methylphenylsulfonamido)-2-(p-tolyl)-2H-benzo[e][1,3]oxazine-4,4(3H)-dica rboxylate (4laa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 24h; yield: 41%; white solid; mp: 78-80 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 2.5 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 4H), 6.89 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.80 (d, *J* = 8.7 Hz, 1H), 6.66 (s, 1H), 5.58 (d, *J* = 11.2 Hz, 1H), 4.33 – 4.26 (m, 3H), 4.22 – 4.16 (m, 1H), 3.52 (d, *J* = 11.2 Hz, 1H), 2.38 (s, 3H), 2.37 (s, 3H), 1.31 (t, *J* = 4.4 Hz, 3H), 1.28 (t, *J* = 4.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.9, 153.2, 143.6, 138.9, 136.0, 134.7, 129.5, 129.2, 128.9, 127.2, 126.2, 125.4, 124.7, 118.6, 117.9, 84.0, 66.8, 63.2, 62.6, 21.5, 21.3, 14.0, 13.8; IR (KBr): 3263, 2981, 1736, 1497, 1399, 1368, 1330, 1261, 1161, 1091, 1028, 926, 813, 731, 670 cm⁻¹; ESI FTMS exact mass calcd for (C₂₈H₃₀N₂O₇S-H)⁻ requires m/z 537.1696, found m/z 537.1719.

Diethyl

6-(4-methylphenylsulfonamido)-2-(thiophen-2-yl)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4maa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 24h; yield: 62%; white solid; inseparable chemoselective isomers; 59:41 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.52 (m, 5H), 7.43 (d, *J* = 2.5 Hz, 1H), 7.37 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.26 – 7.18 (m, 4H), 7.05 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.94 – 6.81 (m, 4H), 6.68 – 6.54 (m, 2H), 6.04 (d, *J* = 6.6 Hz, 0.7H), 5.88 (d, *J* = 11.1 Hz, 1H), 5.44 (d, *J* = 6.6 Hz, 0.7H), 4.34 – 4.15 (m, 6.8H), 3.74 (d, *J* = 11.2 Hz, 1H), 2.40 (s, 2.1H), 2.39 (s, 3H), 1.33 – 1.24 (m, 10.2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 169.2, 167.7, 156.1, 152.6, 143.7, 143.7, 140.3, 135.9, 129.6, 129.5, 129.4, 129.2, 129.0, 128.3, 127.4, 127.2, 127.1, 126.8, 126.1, 125.9, 125.8, 125.4, 124.6, 124.5, 118.5, 118.4, 117.8, 81.2, 66.5, 63.3, 63.2, 62.7, 62.5, 62.1, 21.5, 14.4, 14.0, 13.9, 13.8; IR (KBr): 3267, 2982, 1737, 1498, 1398, 1370, 1257, 1159, 1091, 1025, 912, 814, 710 cm⁻¹; ESI FTMS exact mass calcd for (C₂₅H₂₆N₂O₇S₂-H)⁻ requires m/z 529.1103, found m/z 529.1103.

Diethyl

6-(4-methylphenylsulfonamido)-2-(thiophen-3-yl)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4naa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 5/1; Reaction time = 24h; yield: 71%; white solid; mp: 138-140 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.51 - 7.49 (m, 1H), 7.41 (d, *J* = 2.6 Hz, 1H), 7.34 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.25 - 7.23 (m, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.91 - 6.88 (m, 2H), 6.79 (d, *J* = 8.7 Hz, 1H), 5.68 (s, 1H), 4.32 - 4.24 (m, 3H), 4.21 - 4.15 (m, 1H), 3.62 (s, 1H), 2.37 (s, 3H), 1.33 - 1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 167.9, 152.8, 143.7, 139.1, 136.0, 129.6, 129.3, 127.3, 126.3, 125.9, 125.4, 124.5, 123.3, 118.5, 118.0, 81.3, 66.5, 63.3, 62.7, 21.5, 14.0, 13.9; IR (KBr): 3255, 2981, 2932, 1735, 1691, 1606, 1507, 1398, 1327, 1231, 1157, 1091, 1052, 915, 867, 811, 672 cm⁻¹; ESI FTMS exact mass calcd for $(C_{25}H_{26}N_2O_7S_2-H)^-$ requires m/z 529.1103, found m/z 529.1109.

Diethyl

6-(4-methylphenylsulfonamido)-2-(m-tolyl)-2H-benzo[e][1,3]oxazine-4,4(3H)-dic arboxylate (40aa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 24h; yield: 56%; white solid; mp: 116-118 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.86 (s, 1H), 6.80 (d, *J* = 2.2 Hz, 1H), 6.75 (dd, *J* = 8.4, 2.3 Hz, 1H), 6.48 (d, *J* = 8.4 Hz, 1H), 5.09 (d, *J* = 12.8 Hz, 1H), 4.32 (d, *J* = 8.2 Hz, 1H), 4.28 – 4.15 (m, 4H), 3.10 (dd, *J* = 12.8, 8.2 Hz, 1H), 2.36 (s, 3H), 1.80 – 1.73 (m, 1H), 1.69 – 1.51 (m, 6H), 1.30 – 1.21 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 168.0, 154.9, 143.5, 136.5, 135.9, 129.4, 128.8, 127.5, 124.8, 120.3, 110.4, 100.0, 62.3, 62.1, 61.9, 47.5, 37.4, 25.2, 22.7, 22.6, 21.5, 14.1, 14.0; IR (KBr): 3268, 2933, 1742, 1483, 1400, 1306, 1233, 1160, 1091, 1024, 864, 814, 704 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₃₄N₂O₇S-H)⁻ requires m/z 529.2009, found m/z 529.2018.

Diethyl

2-(heptan-3-yl)-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H) -dicarboxylate (4paa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 5/1; Reaction time = 24h; yield: 74%; white solid; inseparable chemoselective isomers; 58:42 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 4.8H), 7.31 (d, *J* = 2.5 Hz, 1.4H), 7.20 – 7.17 (m, 4.8H), 6.84 (dd, *J* = 8.8, 2.6 Hz, 1.4H), 6.76 – 6.73 (m, 2.4H), 6.70 – 6.64 (m, 3.4H), 6.48 (d, *J* = 8.4 Hz, 1H), 5.05 (dd, *J* = 13.1, 10.5 Hz, 1H), 4.51 – 4.42 (m, 1.4H), 4.34 (d, *J* = 7.7 Hz, 1H), 4.30 – 4.07 (m, 11H), 3.23 – 3.18 (m, 2.4H), 2.36 – 2.35 (s, 7.2H), 1.71 – 1.47 (m, 9H), 1.34 – 1.23 (m, 23H), 0.98 – 0.81 (m, 13H), 0.77 – 0.68 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 168.9, 168.3, 168.0, 155.5, 153.7, 143.5, 143.5, 136.1, 135.8, 129.5, 129.4, 128.5, 127.4, 127.3, 125.4, 124.8, 124.4, 120.7, 118.4, 118.2, 110.0, 109.9, 101.4, 101.2, 85.2, 85.1, 66.7, 63.2, 62.3, 62.2, 61.9, 50.0, 49.9, 43.4, 43.3, 28.2, 27.7, 26.1, 25.2, 23.2, 23.0, 21.8, 21.5, 21.2, 14.0, 13.9, 13.8, 11.4, 11.3, 8.4, 8.1; IR (KBr): 3266, 2964, 2869, 1738, 1603, 1490, 1390, 1249, 1159, 1095, 1026, 933, 867, 813, 672 cm⁻¹; ESI FTMS exact mass calcd for $(C_{28}H_{38}N_2O_7S-H)^-$ requires m/z 545.2322, found m/z 545.2333.

Diethyl

2-cyclopentyl-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H)-d icarboxylate (4qaa): Flash column chromatography eluent, petroleum ether /ethyl acetate = 5/1; Reaction time = 24h; yield: 81%; white solid; mp: 114 - 116 °C; 41:59 cr; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 2.4 Hz, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.83 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.69 (d, *J* = 8.7 Hz, 1H), 6.42 (s, 1H), 4.34 - 4.13 (m, 6H), 3.21 (s, 1H), 2.37 (s, 3H), 1.86 - 1.79 (m, 2H), 1.65 - 1.49 (m, 4H), 1.32 - 1.24 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 168.1, 153.5, 143.5, 136.1, 129.5, 128.4, 127.3, 125.6, 124.8, 118.3, 118.1, 86.8, 66.7, 63.2, 62.4, 43.7, 28.2, 27.8, 25.7, 25.6, 21.5, 14.0, 13.9; IR (KBr): 3272, 2961, 2868, 1741, 1635, 1502, 1461, 1390, 1259, 1159, 1095, 1027, 957, 869, 671 cm⁻¹; ESI FTMS exact mass calcd for (C₂₆H₃₂N₂O₇S-H)⁻ requires m/z 515.1852, found m/z 515.1860.

Methyl

4-(3-chlorophenyl)-6-(4-methylphenylsulfonamido)-2-(4-nitrophenyl)-3,4-dihydr o-2H-benzo[e][1,3]oxazine-4-carboxylate (4aba): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48 h; yield: 87%; inseparable diastereomers; 83:17 dr; white solid; mp: 102-104 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.26(m, *J* = 8.8 Hz, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.30 (m, 4H), 7.28 – 7.17 (m, 3H), 7.03 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.54 (s, 1H), 5.39 (d, *J* = 14.1 Hz, 1H), 3.78 (s, 3H), 3.71 (d, *J* = 14.1 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 155.5, 144.8, 143.9, 135.9, 129.8, 128.5, 127.3, 126.5, 125.8, 123.5, 119.7, 119.4, 81.3, 65.7, 53.7, 21.6; IR (KBr): 3268, 2921, 1738, 1524, 1495, 1345, 1252, 1160, 1090, 1021, 913, 808, 732 cm⁻¹; ESI FTMS exact mass calcd for $(C_{29}H_{24}ClN_3O_7S-H)^-$ requires m/z 592.0945, found m/z 592.0955.

Methyl

4-(4-chlorophenyl)-6-(4-methylphenylsulfonamido)-2-(4-nitrophenyl)-3,4-dihydr o-2H-benzo[e][1,3]oxazine-4-carboxylate (4aca): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48 h; yield: 82%; inseparable diastereomers; 80:20 dr; white solid; mp: 102-104 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.7 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.27 (m, 3H), 7.23 – 7.18 (m, 3H), 7.05 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.56 (s, 1H), 5.35 (d, *J* = 14.1 Hz, 1H), 3.74 (s, 3H), 3.68 (d, *J* = 14.1 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 152.3, 148.1, 144.8, 143.9, 140.4, 135.8, 134.3, 129.7, 129.5, 129.0, 128.6, 127.3, 127.2, 125.8, 123.5, 123.1, 119.9, 119.4, 81.3, 65.6, 53.7, 21.6; IR (KBr): 3265, 2958, 2852, 1736, 1614, 1524, 1493, 1456, 1345, 1255, 1160, 1092, 1019, 807 cm⁻¹; ESI FTMS exact mass calcd for (C₂₉H₂₄ClN₃O₇S-H)⁻ requires m/z 592.0945, found m/z 592.0959.

Methyl

4-(4-fluorophenyl)-6-(4-methylphenylsulfonamido)-2-(4-nitrophenyl)-3,4-dihydro -**2H-benzo[e][1,3]oxazine-4-carboxylate (4ada):** Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48 h; yield: 77%; inseparable diastereomers; 80:20 dr; white solid; mp: 108-110 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.7, 2H), 7.72 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.25 – 7.20 (m, 4H), 7.07 – 6.99 (m, 3H), 6.95 (d, *J* = 8.7, 2H), 6.51 (s, 1H), 5.36 (d, *J* = 14.1 Hz, 1H), 3.74 (s, 3H), 3.68 (d, *J* = 14.1 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 152.3, 148.1, 144.9, 143.9, 137.7, 135.9, 130.2, 130.1, 129.7, 127.6, 127.3, 127.3, 125.7, 123.5, 123.1, 119.3, 115.4, 115.2, 81.2, 65.5, 53.6, 21.6; IR (KBr): 3268, 2961, 1737, 1498, 1345, 1260, 1159, 1093, 1021, 804, 735 cm⁻¹; ESI FTMS exact mass calcd for (C₂₉H₂₄FN₃O₇S-H)⁻ requires m/z 576.1241, found m/z 576.1261.

Methyl

6-(4-methylphenylsulfonamido)-2-(4-nitrophenyl)-4-phenyl-3,4-dihydro-2H-benz o[e][1,3]oxazine-4-carboxylate (4aea): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48 h; yield: 84%; inseparable diastereomers; 80:20 dr; white solid; mp: 84-86 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.30 (m, 3H), 7.25 – 7.19 (m, 4H), 7.08 – 7.00 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.49 (s, 1H), 5.38 (d, *J* = 14.0 Hz, 1H), 3.73 (s, 3H), 3.68 (d, *J* = 14.0 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 152.4, 148.0, 145.1, 143.8, 141.8, 135.9, 129.7, 128.9, 128.4, 128.3, 128.3, 127.3, 127.3, 125.7, 123.5, 123.3, 120.3, 119.2, 81.3, 66.0, 53.5, 21.6; IR (KBr): 3277, 2961, 2921, 2852, 1736, 1614, 1524, 1494, 1453, 1345, 1259, 1160, 1093, 1022, 912, 857, 804, 698 cm⁻¹; ESI FTMS exact mass calcd for (C₂₉H₂₅N₃O₇S-H)⁻ requires m/z 558.1335, found m/z 558.1363.

Methyl

4-(4-chlorophenyl)-6-(4-chlorophenylsulfonamido)-2-(4-nitrophenyl)-3,4-dihydro -**2H-benzo[e][1,3]oxazine-4-carboxylate** (4acf): Flash column chromatography eluent, petroleum ether /ethyl acetate = 5/1; Reaction time = 24h; yield: 56%; white solid; mp: 88-90 °C; 83:17 dr; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 7.0 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.66 – 7.63 (m, 2H), 7.43 (dd, *J* = 5.4, 3.7 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.20 – 7.15 (m, 3H), 7.09 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.98 – 6.95 (m, 1H), 6.87 (s, 1H), 5.35 (d, *J* = 14.1 Hz, 1H), 3.74 (s, 3H), 3.68 (d, *J* = 14.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 152.5, 148.1, 144.7, 140.4, 139.6, 137.2, 134.4, 129.6, 129.4, 128.8, 128.8, 128.7, 128.7, 127.6, 127.3, 125.9, 123.6, 123.5, 123.1, 120.0, 119.5, 81.3, 65.6, 53.7.; IR (KBr): 3312, 3087, 2955, 1735, 1654, 1608, 1586, 1522, 1491, 1397, 1346, 1245, 1164, 1045, 1013, 972, 856, 754, 704 cm⁻¹; ESI FTMS exact mass calcd for (C₂₈H₂₁Cl₂N₃O₇S-H)⁻ requires m/z 612.0399, found m/z 612.0375.

Diethyl

6-(2-methylphenylsulfonamido)-2-(4-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4aab): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 87%; white solid; mp: 68-70 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.88 – 7.84 (m, 1H), 7.80 (d, *J* = 8.6 Hz, 2H), 7.43 (td, *J* = 7.5, 1.2 Hz, 1H), 7.39 (d, *J* = 2.5 Hz, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 7.7 Hz, 1H), 6.88 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 6.62 (s, 1H), 5.67 (d, *J* = 12.1 Hz, 1H), 4.36 – 4.25 (m, 3H), 4.25 – 4.17 (m, 1H), 3.52 (d, *J* = 12.1 Hz, 1H), 2.60 (s, 3H), 1.36 – 1.28 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.6, 152.4, 148.4, 144.2, 137.3, 137.2, 133.1, 132.5, 129.9, 129.3, 127.6, 126.3, 125.2, 124.4, 123.7, 118.7, 118.1, 82.8, 66.5, 63.6, 62.8, 20.5, 14.1, 13.9; IR (KBr): 3280, 2927, 1728, 1525, 1396, 1349, 1262, 1160, 1131, 1021, 976, 850, 802, 758, 692 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇N₃O₉S-H)⁻ requires m/z 568.1390, found m/z 568.1414.

Diethyl

6-(4-methoxyphenylsulfonamido)-2-(4-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3H)-dicarboxylate (4aac): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 97%; white solid; mp: 71-73 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.41 (d, *J* = 2.5 Hz, 1H), 6.95 – 6.83 (m, 4H), 6.60 (s, 1H), 5.70 (d, *J* = 12.1 Hz, 1H), 4.36 – 4.25 (m, 3H), 4.25 – 4.17 (m, 1H), 3.83 (s, 3H), 3.54 (d, *J* = 12.1 Hz, 1H), 1.33 (t, *J* = 5.0 Hz, 3H), 1.30 (t, *J* = 5.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.7, 163.0, 152.4, 148.3, 144.2, 130.5, 129.7, 129.4, 127.6, 125.7, 124.7, 123.7, 118.6, 118.1, 114.1, 82.8, 66.6, 63.6, 62.8, 55.6, 14.1, 13.9; IR (KBr): 3270, 2970, 1736, 1597, 1526, 1497, 1463, 1347, 1260, 1156, 1093, 1024, 975, 832, 802, 727 cm⁻¹; ESI FTMS exact mass calcd for (C₂₇H₂₇N₃O₁₀S-H)⁻ requires m/z 584.1339, found m/z 584.1382.

Diethyl

6-(4-(tert-butyl)phenylsulfonamido)-2-(4-nitrophenyl)-2H-benzo[e][1,3]oxazine-4 ,4(3H)-dicarboxylate (4aad): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 95%; white solid; mp: 80-82 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.27 (m, 2H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.68 – 7.63 (m, 2H), 7.50 (d, *J* = 2.6 Hz, 1H), 7.48 – 7.44 (m, 2H), 6.96 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 6.74 (s, 1H), 5.73 (d, *J* = 12.1 Hz, 1H), 4.41 – 4.27 (m, 3H), 4.28 – 4.17 (m, 1H), 3.57 (d, *J* = 12.1 Hz, 1H), 1.39 – 1.30 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.7, 156.7, 152.3, 148.2, 144.2, 136.1, 129.7, 127.6, 127.0, 126.1, 125.3, 124.4, 123.7, 118.6, 118.2, 82.8, 66.6, 63.5, 62.8, 35.2, 31.1, 14.1, 13.9; IR (KBr): 3269, 2965, 1736, 1597, 1526, 1496, 1398, 1346, 1261, 1163, 1090, 1024, 977, 803, 752 cm⁻¹; ESI FTMS exact mass calcd for (C₃₀H₃₃N₃O₉S-H)⁻ requires m/z 610.1860, found m/z 610.1854.

Diethyl

2-(4-nitrophenyl)-6-(phenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H)-dicar boxylate (4aae): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 94%; white solid; mp: 138-140 °C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.71 – 7.68 (m, 2H), 7.58 – 7.52 (m, 1H), 7.48 – 7.41 (m, 3H), 6.91 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.87 – 6.82 (m, 1H), 6.62 (s, 1H), 5.70 (d, *J* = 12.1 Hz, 1H), 4.38 – 4.25 (m, 3H), 4.25 – 4.17 (m, 1H), 3.54 (d, *J* = 12.1 Hz, 1H), 1.33 (t, *J* = 6.0 Hz, 3H), 1.29 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.7, 152.5, 148.3, 144.2, 138.9, 132.9, 129.3, 129.0, 127.6, 127.2, 125.7, 124.8, 123.7, 118.7, 118.2, 82.8, 66.6, 63.6, 62.9, 14.1, 13.9; IR (KBr): 3263, 2981, 1737, 1525, 1395, 1346, 1235, 1162, 1093, 1027, 971, 852, 752, 724, 690 cm⁻¹; ESI FTMS exact mass calcd for (C₂₆H₂₅N₃O₉S-H)⁻ requires m/z 554.1234, found m/z 554.1281.

Diethyl

6-(4-chlorophenylsulfonamido)-2-(4-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3

H)-dicarboxylate (4aaf): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 90%; white solid; mp: 72-74 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.26 (m, 2H), 7.82 (d, *J* = 8.6 Hz, 2H), 7.66 – 7.60 (m, 2H), 7.44 – 7.37 (m, 3H), 6.94 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 6.64 (s, 1H), 5.70 (d, *J* = 12.0 Hz, 1H), 4.37 – 4.25 (m, 3H), 4.25 – 4.18 (m, 1H), 3.54 (d, *J* = 12.0 Hz, 1H), 1.33 (t, *J* = 6.0, 3H), 1.29 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.6, 152.7, 148.2, 144.10, 139.5, 137.3, 129.3, 128.9, 128.7, 127.7, 126.0, 125.0, 123.7, 118.8, 118.2, 82.9, 66.6, 63.6, 62.9, 14.1, 13.9; IR (KBr): 3268, 2981, 1736, 1525, 1496, 1398, 1346, 1236, 1164, 1091, 1022, 975, 853, 755, 609 cm⁻¹; ESI FTMS exact mass calcd for (C₂₆H₂₄ClN₃O₉S-H)⁻ requires m/z 588.0844, found m/z 588.0873.

Diethyl

6-(3-bromophenylsulfonamido)-2-(4-nitrophenyl)-2H-benzo[e][1,3]oxazine-4,4(3 H)-dicarboxylate (4aag): Flash column chromatography eluent, petroleum ether /ethyl acetate = 4/1; Reaction time = 48h; yield: 79%; white solid; mp: 135-137 $^{\circ}$ C; >95:5 cr; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.7 Hz,2H), 7.89 (s, 1H), 7.82 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 1.5 Hz, 1H), 7.31 (t, *J* = 7.9 Hz, 1H), 6.96 – 6.84 (m, 2H), 6.53 (s, 1H), 5.71 (d, *J* = 12.0 Hz, 1H), 4.37 – 4.29 (m, 3H), 4.26 – 4.20 (m, 1H), 3.56 (d, *J* = 12.1 Hz, 1H), 1.34 (t, *J* = 6.1 Hz, 3H), 1.31 (t, *J* = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.6, 152.8, 148.3, 144.1, 140.8, 136.0, 130.5, 130.0, 128.8, 127.6, 125.9, 125.1, 123.7, 123.0, 118.9, 118.3, 82.9, 66.5, 63.6, 62.9, 14.1, 13.9; IR (KBr): 3266, 2988, 1738, 1526, 1497, 1399, 1370, 1259, 1161, 1091, 913, 868, 733, 696 cm⁻¹; ESI FTMS exact mass calcd for (C₂₆H₂₄BrN₃O₉S-H)⁻ requires m/z 632.0339, found m/z 632.0338.

Diethyl

2-cyclopentyl-6-(4-methylphenylsulfonamido)-2H-benzo[e][1,3]oxazine-4,4(3H)-d icarboxylate (8): Flash column chromatography eluent, petroleum ether /ethyl acetate = 5/1; Reaction time = 24h; yield: 66%; white solid; mp: 110-112 °C; ¹H NMR (400 MHz, Acetone- d_6) δ 8.17 – 8.14 (m, 2H), 7.96 (s, 1H), 7.75 (s, 1H), 7.66 – 7.63 (m, 2H), 6.72 – 6.67 (m, 2H), 5.85 (d, J = 5.6 Hz, 1H), 4.37 – 4.25 (m, 4H), 4.21 (d, J = 5.6 Hz, 1H), 1.30 – 1.26 (m, 6H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.0, 170.8, 152.0, 147.0, 146.5, 145.8, 130.5, 129.4, 122.7, 117.7, 117.6, 115.7, 77.7, 64.7, 64.6, 62.4, 62.1, 13.4; IR (KBr): 3685, 3645, 3373, 2965, 2859, 1733, 1603, 1516, 1462, 1348, 1264, 1099, 1022, 860, 819, 753, 702 cm⁻¹; ESI FTMS exact mass calcd for (C₂₀H₂₀N₂O₈-H)⁻ requires m/z 415.1142, found m/z 415.1149.

5. NMR Spectra of products 4, 5aaa and 8

4baa

4iaa

4jaa

4maa (inseparable chemoselective isomers)

1-1-1-228 1-1-228 1-2

4naa

4paa (inseparable chemoselective isomers)

4aba (inseparable diastereomers)

4aca (inseparable diastereomers)

4ada (inseparable diastereomers)

4aea (inseparable diastereomers)

4acf (the mixture of two diastereomers)

4aac

133

4aae $\begin{array}{c} -28.28\\ -8.26\\ -6.82\\$ 6.71 5.68 3.55 8.28 27.83 EtO₂0 7.8 6.6 8 6 7.6 7.4 f1 (ppm) 50 8 2.6 8.6 8.4 8.0 7.2 8.2 7.0 6.8 7.0 Ч Б. 3.5 3:07 4 3:07 4 3:07 4 2:00 7 2:00 7 2: 1.00-I 3.084 2.02 H 1.00-1 3.19 3.24 € 8.5 8.0 6.5 6.0 0.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.0 2.5 2.0 1.5 1.0 0.5 ~ 169.04 ~ 167.68 -132.93 -132.56 -125.69 -123.68 -123.68 -118.67 <14.07 <13.89 --82.84 10 EtO₂C EtO₂

90 80 f1 (ppm)

70

60

50

40

30

20

10

170

160

150

130

120

140

110

100

4aag

6. X-ray single crystal data for compound 4aaa and 4acf

Empirical formula	C27 H27 N3 O9 S	C27 H27 N3 O9 S			
Formula weight	569.57	569.57			
Temperature	296 K	296 K			
Wavelength	0.71073 Å	0.71073 Å			
Crystal system	Triclinic	Triclinic			
Space group	P -1				
Unit cell dimensions	a = 8.3006(6) Å	$\alpha = 86.352(4)^{\circ}$.			
	b = 9.3862(7) Å	$\beta = 87.532(4)^{\circ}$.			
	c = 17.7170(15) Å	$\gamma = 77.772(4)^{\circ}$.			
Volume	1345.68(18) Å ³				
Z	2	2			
Density (calculated)	1.406 Mg/m ³	1.406 Mg/m ³			
Absorption coefficient	0.180 mm ⁻¹	0.180 mm ⁻¹			
F(000)	596	596			
Crystal size	0.39 x 0.32 x 0.3 mm ³	0.39 x 0.32 x 0.3 mm ³			
Theta range for data collection	2.224 to 25.929°.	2.224 to 25.929°.			
Index ranges	-10<=h<=10, -11<=k<=	-10<=h<=10, -11<=k<=11, -21<=l<=21			
Reflections collected	20031	20031			
Independent reflections	5190 [R(int) = 0.0272]	5190 [R(int) = 0.0272]			
Completeness to theta = 26.000°	98.0 %	98.0 %			
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents			
Max. and min. transmission	1.0000 and 0.1631	1.0000 and 0.1631			
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²			
Data / restraints / parameters	5190 / 0 / 405	5190 / 0 / 405			
Goodness-of-fit on F ²	1.066				
Final R indices [I>2sigma(I)]	R1 = 0.0693, wR2 = 0.2	R1 = 0.0693, wR2 = 0.2010			
R indices (all data)	R1 = 0.0938, wR2 = 0.2	R1 = 0.0938, w $R2 = 0.2277$			
Extinction coefficient	0.004(2)	0.004(2)			
Largest diff. peak and hole	0.577 and -0.402 e.Å ⁻³	0.577 and -0.402 e.Å ⁻³			

Empirical formula	C28 H21 Cl2 N3 O7 S			
Formula weight	614.44			
Temperature	173.1500 K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 8.4575(2) Å	α= 80.3987(13)°.		
	b = 12.5061(3) Å	β= 85.8752(13)°.		
	c = 13.4396(3) Å	$\gamma = 78.3825(13)^{\circ}$.		
Volume	1371.80(6) Å ³			
Ζ	2			
Density (calculated)	1.488 Mg/m ³			
Absorption coefficient	0.366 mm ⁻¹			
F(000)	632			
Crystal size	0.39 x 0.32 x 0.3 mm ³			
Theta range for data collection	2.096 to 27.533°.			
Index ranges	-10<=h<=10, -16<=k<=14, -15<=l<=17			
Reflections collected	23016			
Independent reflections	6251 [R(int) = 0.0269]			
Completeness to theta = 26.000°	99.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7456 and 0.6233			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	6251 / 0 / 371			
Goodness-of-fit on F ²	1.045			
Final R indices [I>2sigma(I)]	R1 = 0.0497, $wR2 = 0.1327$			
R indices (all data)	R1 = 0.0809, wR2 = 0.1534			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.496 and -0.548 e.Å ⁻³			

Based on the experiment results and previous investigations on 1,3-DCs of azomethine ylide, we suggested a possible reaction pathway to explain the formation of [3+3] cycloaddition products **4**. Initially, the condensation of aldehydes **1** with amino-esters **2** in the presence of GaBr₃ afforded azomethine ylides **A**, which underwent Michael addition with QMIs **3** at the C3-postion, thus generating transient intermediates **B**. The intermediates **B** rapidly isomerized into their phenol forms **C**, which subsequently carried out the intramolecular *oxa*-Mannich reaction to give [3+3] cycloaddition products **4**. Instead, the formation of [3+2] cycloaddition products **5** might include a concerted 1,3-DC of azomethine ylides **A** with the electron-deficient C=C bond of QMIs **3** to generate intermediates **D**, which could also quickly isomerize into the final products **5**. So, the experimentally observed excellent chemoselectivity may largely be ascribed to the action of catalyst GaBr₃ or **6e** in activating the substrates and stabilizing the possible transition states, thus benefiting a stepwise [3+3] reaction pathway rather than a concerted [3+2] reaction process.

8. The reaction using quinone instead of QMIs:

At last, we tried the reaction using quinone 7 instead of QMIs 3 under the optimal conditions (eq. 7). As expected, this reaction exclusively afforded the [3+2] cycloaddition product 8 in 66% yield, which was in accord with the literature.²

$$\begin{array}{c|c} \mathsf{CHO} & & \mathsf{CO}_2\mathsf{Et} \\ \mathsf{F} & \mathsf{NH}_2 \\ \mathsf{NO}_2 \\ \mathsf{1a} & \mathsf{2a} & \mathsf{7} \end{array} \xrightarrow{\begin{array}{c} 20 \text{ mol}\% \text{ 6e, } 65 \ ^\circ \mathsf{C} \\ \mathsf{O} & \mathsf{CO}_2\mathsf{Et} \\ \mathsf{O} & \mathsf{O}_2\mathsf{NO}_2$$

² For some examples: a) C. Wang, X.-H. Chen, S.-M. Zhou, L.-Z. Gong, *Chem. Commun.* 2010, 46, 1275; b) Z. He, T. Liu, H. Tao, C.-J. Wang, *Org. Lett.* 2012, 14, 6230; c) K. Liu, H.-L. Teng, L. Yao, H.-Y. Tao, C.-J. Wang, *Org. Lett.* 2013, 15, 2250.