Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

## Luminescence Switches of a Persistent Room-Temperature Phosphorescent Pure Organic Molecules in Response to External Stimuli

 $Pengchong \ Xue, ^{*[a]} \ Jiabao \ Sun, ^{[a]} \ Peng \ Chen, ^{[b]} \ Panpan \ Wang, ^{[a]} \ Boqi \ Yao, ^{[a]} \ Peng \ Gong, ^{[a]} \ Zhenqi \ Zhang ^{[a]} \ and \ Ran \ Lu^{*[a]}$ 

[a] State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, P.R. China

[b] Key Laboratory of Functional Inorganic Material Chemistry (MOE), Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin, P. R. China

E-mail: xuepengchong@jlu.edu.cn; luran@mail.jlu.edu.cn

## **EXPERIMENTAL SECTION**

Instruments and experimental methods: Infrared spectra were measured using a Nicolet-360 FT-IR spectrometer by incorporating the samples in KBr disks. The UVvis spectra were determined on a Mapada UV-1800pc spectrophotometer. C, H, and N elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer. Photoluminescence measurements were taken on a Shimadzu RF-5301 Luminescence Spectrometer. The absolute fluorescence quantum yields were measured on an Edinburgh FLS920 steady state spectrometer using an integrating sphere. Luminescent decay experiments were measured on an Edinburgh FLS920 spectrometer. EPLED-360 picosecond flash lamp with 898ps pulse duration and μF920 microsecond flash lamp (pulse width < 2 μs) were used to measure timeresolved fluorescent and phosphorescent spectra, respectively. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Mercury plus 400 MHz. The fluorescence quantum yields of CBA in different solvents were measured by comparing to standards (quinine sulfate in 1 M  $H_2SO_4$  aqueous solution,  $\Phi_F = 0.65$ ). The XRD patterns were obtained on an Empyrean X-ray diffraction instrument equipped with graphite-mono-chromatized  $CuK_{\alpha}$  radiation ( $\lambda = 1.5418 \text{ Å}$ ), by employing a scanning rate of  $0.026^{\circ} \text{ s}^{-1}$  in the 20 range from 5 to 30°. Geometrical optimization for CBA was performed by density functional theory (DFT) calculations at B3LYP/6-31G (d, p) level with the Gaussian 09W program package. Electronic transition data obtained by the TD/DFT-B3LYP/6-31G(d,p) calculation based on the configuration at ground state.

Carbazole (≥95%) and 4-bromobenzaldehyde (99%) were purchased from Aldrich, other chemicals purchased from Sinopharm Chemical Reagent Co.,Ltd.

Single crystal of **CBA** was obtained by slowing solvent evaporation in *n*-hexane and selected for X-ray diffraction analysis on in a Rigaku RAXIS-RAPID diffractometer using graphite-monochromated Mo- $K_{\alpha}$  radiation ( $\lambda = 0.71073$  Å). The crystal was kept at room temperature during data collection. The structures were solved by the direct methods and refined on F2 by full-matrix least-square using the SHELXTL-97 program. The C, N, O and H atoms were easily placed from the subsequent Fourier-difference maps and refined anisotropically. CCDC 1037574 contains the supplementary crystallographic data for this paper.

## Synthesis of BVDA

$$+ \bigvee_{O} \frac{K_2CO_3, \text{ toluene}}{P(t\text{-Bu})_3, Pd(OAc)_2}$$
CBA

Scheme S1 Synthesis route of CBA.

## 4-(9H-carbazol-9-yl)benzaldehyde (CBA)

The mixture of carbazole (2.0 g, 12 mmol), 4-bromobenzaldehyde (2.5 g, 13.5 mmol),  $K_2CO_3$  (4.15 g, 30 mmol), palladium acetate (0.2 g, 1.0 mmol), tri-tert-butylphosphine (0.3 ml, 1.2 mmol) in 20 ml of anhydrous toluene was refluxed 24 h under nitrogen atmosphere. After the solvent was moved, the residue was purified by column chromatography (petroleum ether/ $CH_2Cl_2$ , V/V=1: 1) to afford 2.3 white solid (71% in yield). Element analysis (%): calculated for  $C_{19}H_{13}NO$ : C, 84.11; H, 4.83; N, 5.16; found: C, 84.16; H, 4.78; N, 5.12.  $^1H$  NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.11 (s, 1H), 8.14 (t, J=7.4 Hz, 4H), 7.79 (d, J=8.2 Hz, 2H), 7.50 (d, J=8.2 Hz, 2H), 7.43 (t, J=7.6 Hz, 2H), 7.33 (t, J=7.4 Hz, 2H).  $^{13}C$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  190.99, 143.43, 140.09, 134.68, 131.41, 126.87, 126.31, 123.99, 120.84, 120.53, 109.78.

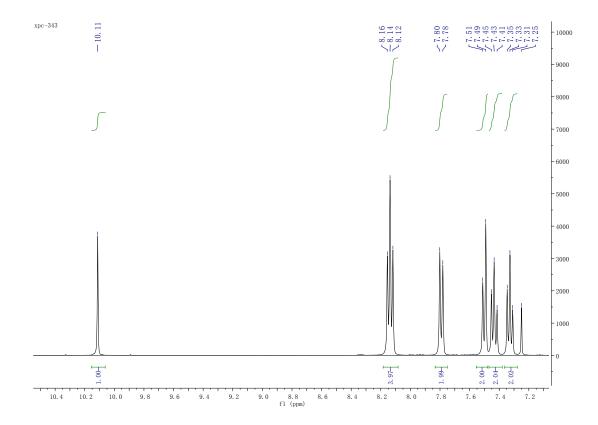



Fig. S1  $^1$ H NMR of CBA in CDCl<sub>3</sub>.




Fig. S2 <sup>13</sup>C NMR of CBA in CDCl<sub>3</sub>.

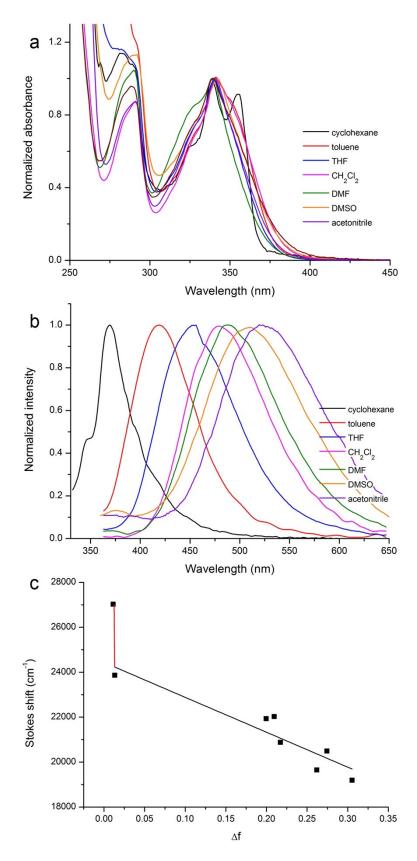



Fig. S3 Absorption (a) and fluorescence (b) spectra of CBA in different solvents and the Lippert-Mataga plot (c).

 $\label{lem:condition} \textbf{Table S1} \ \mbox{Absorption and fluorescence data of $CBA$ in different solvents.}$ 

| solvents     | $\lambda_{abs}$ (nm) | $\lambda_{em}$ (nm) | Φ     |
|--------------|----------------------|---------------------|-------|
| Cyclohexane  | 339                  | 370                 | 0.048 |
| Toluene      | 341                  | 419                 | 0.058 |
| THF          | 340                  | 454                 | 0.047 |
| $CH_2Cl_2$   | 341.5                | 478                 | 0.28  |
| DMF          | 339                  | 487                 | 0.12  |
| DMSO         | 342                  | 508                 | 0.09  |
| Acetonitrile | 341                  | 522                 | 0.017 |

**Table S2.** Computed vertical excitation spectra of **CBA** in cyclohexane based on the optimal structure at ground state.

| Transition            | Transition assignment      | Transition type | E (eV) | λ <sub>abs</sub> (nm) | Oscillator strength |
|-----------------------|----------------------------|-----------------|--------|-----------------------|---------------------|
| $S_0 \rightarrow S_1$ | HOMO→LUMO (100%)           | π-π*            | 3.1896 | 388.71                | 0.2631              |
| $S_0 \rightarrow T_3$ | HOMO-6→LUMO+5 (3.1%)       | π-π*            | 3.1626 | 392.04                | 0.0000              |
|                       | <b>HOMO-3→LUMO (18.4%)</b> | n-π*            |        |                       |                     |
|                       | HOMO-2→LUMO+1 (3.2%)       | n-π*            |        |                       |                     |
|                       | HOMO-2→LUMO+4 (2.4%)       | n-π*            |        |                       |                     |
|                       | HOMO-1→LUMO (6.8%)         | $\pi$ - $\pi$ * |        |                       |                     |
|                       | HOMO-1→LUMO+1 (55.8%)      | π-π*            |        |                       |                     |
|                       | HOMO→LUMO+3 (10.2%)        | π-π*            |        |                       |                     |
| $S_0 \rightarrow T_2$ | HOMO-3→LUMO (71.2%)        | n-π*            | 3.1531 | 393.21                | 0.0000              |
|                       | HOMO-3→LUMO+4 (4.1%)       | n-π*            |        |                       |                     |
|                       | HOMO-2→LUMO (7.6%)         | n-π*            |        |                       |                     |
|                       | HOMO-1→LUMO (2.3%)         | π-π*            |        |                       |                     |
|                       | HOMO-1→LUMO+1 (12.5%)      | $\pi$ - $\pi$ * |        |                       |                     |
|                       | HOMO→LUMO+3 (2.3%)         | $\pi$ - $\pi$ * |        |                       |                     |
| $S_0 \rightarrow T_1$ | HOMO-4→LUMO (13.8%)        | π-π*            | 2.7452 | 451.65                | 0.0000              |
|                       | <b>HOMO→LUMO (86.2%)</b>   | π-π*            |        |                       |                     |
|                       |                            |                 |        |                       |                     |

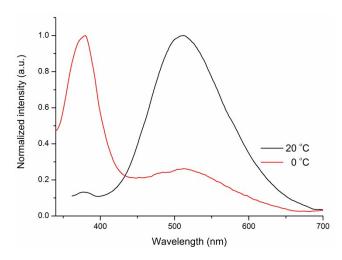
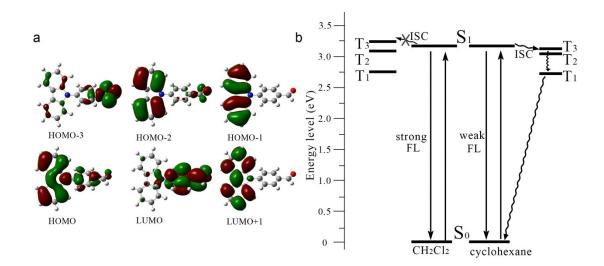




Fig. S4 Fluorescence spectra of CBA in DMSO ( $10^{-5}$  M) at 20 °C and 0 °C.



**Fig. S5** (a) Frontier molecular orbitals of CBA, and (b) Energy levels of the singlet and triplet states in cyclohexane and  $CH_2Cl_2$ , which obtained by quantum chemical calculation.

**Table S3.** Computed vertical excitation spectra of CBA in  $\text{CH}_2\text{Cl}_2$  based on the optimal structure at ground state.

| Transition            | Transition assignment        | Transition type | E (eV) | λ <sub>abs</sub> (nm) | Oscillator strength |
|-----------------------|------------------------------|-----------------|--------|-----------------------|---------------------|
| $S_0 \rightarrow S_1$ | HOMO→LUMO (100%)             | π-π*            | 3.1939 | 388.19                | 0.2646              |
| -                     | HOMO-3→LUMO (89.6%)          | n-π*            | 3.2013 | 387.29                | 0.0000              |
| C .T                  | HOMO-3→LUMO+4 (3.8%)         | n-π*            |        |                       |                     |
| $S_0 \rightarrow T_3$ | HOMO-3→LUMO+6 (2.7%)         | n-π*            |        |                       |                     |
|                       | HOMO-2→LUMO (4.0%)           | n-π*            |        |                       |                     |
| $S_0 \rightarrow T_2$ | HOMO-6→LUMO+5 (3.9%)         | π-π*            | 3.1626 | 392.04                | 0.0000              |
|                       | HOMO-2→LUMO+4 (2.2%)         | n-π*            |        |                       |                     |
|                       | HOMO-2→LUMO+1 (4.2%)         | n-π*            |        |                       |                     |
|                       | HOMO-1→LUMO (8.8%)           | $\pi$ - $\pi$ * |        |                       |                     |
|                       | <b>HOMO-1→LUMO+1 (68.3%)</b> | $\pi$ - $\pi$ * |        |                       |                     |
|                       | HOMO→LUMO+3 (12.7%)          | π-π*            |        |                       |                     |
|                       | HOMO-4→LUMO (13.8%)          | π-π*            |        |                       |                     |
| $S_0 \rightarrow T_1$ | <b>HOMO→LUMO (86.2%)</b>     | $\pi$ - $\pi$ * | 2.7467 | 451.39                | 0.0000              |
|                       |                              |                 |        |                       |                     |

**Table S4.** Energy levels of orbital in cyclohexane and CH<sub>2</sub>Cl<sub>2</sub>.

|         | cyclohexane <sup>a</sup> CH <sub>2</sub> Cl <sub>2</sub> |          |
|---------|----------------------------------------------------------|----------|
| orbital | eV                                                       | eV       |
| LUMO+5  | 1.02272                                                  | 0.99661  |
| LUMO+4  | 0.38488                                                  | 0.3672   |
| LUMO+3  | 0.01686                                                  | -0.01084 |
| LUMO+2  | -0.6158                                                  | -0.57074 |
| LUMO+1  | -0.88935                                                 | -0.91676 |
| LUMO    | -1.91145                                                 | -1.92849 |
| НОМО    | -5.60339                                                 | -5.62188 |
| НОМО-1  | -5.95573                                                 | -5.98745 |
| НОМО-2  | -6.98666                                                 | -7.01576 |
| НОМО-3  | -7.09251                                                 | -7.15366 |
| НОМО-4  | -7.33911                                                 | -7.33437 |
| НОМО-5  | -7.46234                                                 | -7.42135 |
| НОМО-6  | -7.75552                                                 | -7.78448 |
|         |                                                          |          |

 $<sup>^{\</sup>rm a}$  HOMO-2 and HOMO-3 are  $n^2$  configuration; HOMO and LUMO are  $\pi$  orbitals.

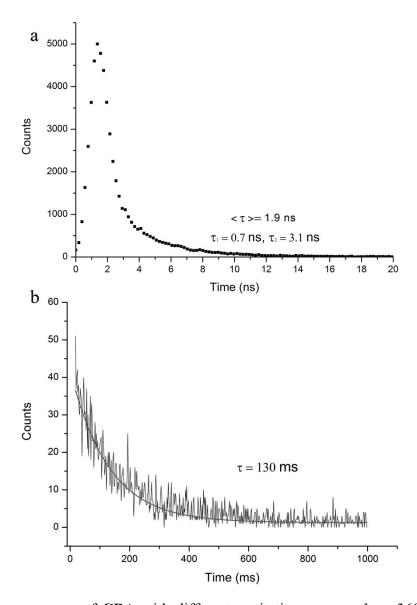
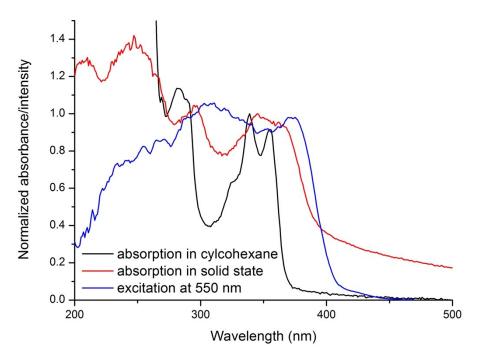
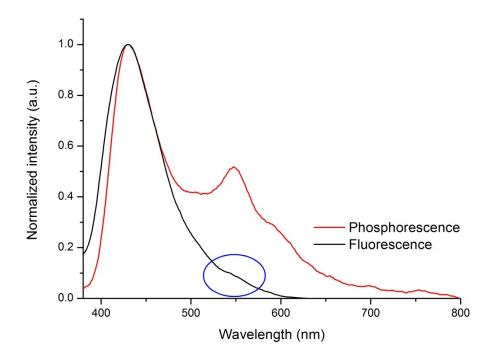
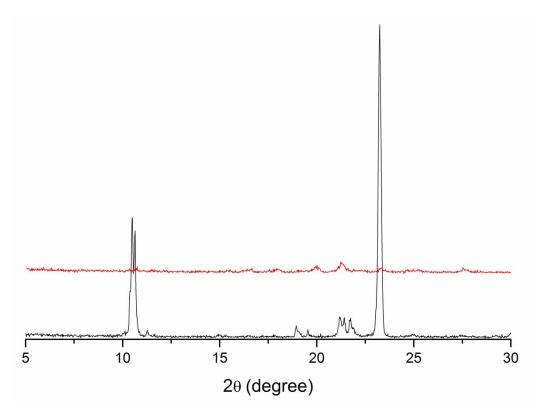
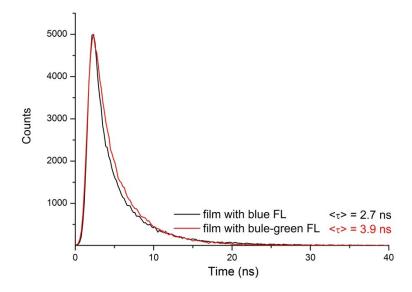



Fig. S6 Decay curves of CBA with different excitation sources.  $\lambda_{ex}$ = 360 nm,  $\lambda_{em}$ = 450 nm.



Fig. S7 Absorption and excitation spectra of CBA in cyclohexane and solid state.  $\lambda_{em} = 550$  nm.

**Table S5.** Computed vertical excitation spectra of **CBA** based on the molecular conformation in crystal at ground state.


| Transition            |                                                                                                                    | Transition type                      | E<br>(eV) | $\lambda_{abs}$ (nm) | Oscillator strength |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|----------------------|---------------------|
| $S_0 \rightarrow S_1$ | HOMO→LUMO (100%)                                                                                                   |                                      | 3.4217    | 362.35               | 0.2041              |
| $S_0 \rightarrow T_3$ | HOMO-3→LUMO (48.0%)<br>HOMO-3→LUMO+4 (2.1%)<br>HOMO-2→LUMO (47.7%)<br>HOMO-2→LUMO+4 (2.1%)                         | n-π*<br>n-π*<br>n-π*<br>n-π*         | 3.3801    | 366.81               | 0.0000              |
| $S_0 \rightarrow T_2$ | HOMO-6→LUMO+5 (3.7%)<br>HOMO-2→LUMO+1 (2.6%)<br>HOMO-1→LUMO (4.6%)<br>HOMO-1→LUMO+1 (76.3%)<br>HOMO→LUMO+3 (12.7%) | π-π*<br>n-π*<br>π-π*<br>π-π*<br>π-π* | 3.2705    | 379.10               | 0.0000              |
| $S_0 \rightarrow T_1$ | HOMO-5→LUMO+2 (2.1%)<br>HOMO-4→LUMO (11.3%)<br>HOMO→LUMO (86.6%)                                                   | π-π*<br>π-π*<br>π-π*                 | 2.9592    | 418.98               | 0.0000              |



**Fig. S8** Photoluminescence (red) and phosphorescence spectra of ground powder under excitation at 360 nm. Blue circle shows weak emission bands from phosphorescence.



**Fig. S9** XRD patterns of **CBA** in crystal (black) and ground powders (red) after aging 10 min.



**Fig. S10** Fluorescence decay curves of **CBA** after grinding and further grinding on the surface of filter.  $\lambda_{ex} = 360$  nm,  $\lambda_{ex} = 450$  nm.