Supportive Information

A simple but highly efficient multi-formyl phenol/amine system for fluorescence detection of

peroxide explosive vapour

Wei Xu^{[a] [b]}, Yanyan Fu^[b], Yixun Gao^[b], Junjun Yao^[b], Tianchi Fan^[b], Defeng Zhu^[b], Qingguo He^{*[b]}, Huimin Cao^[b], Jiangong Cheng^{*[a] [b]}

^[a] ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, China

^[b] State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China.

E-mail: <u>hqg@mail.sim.ac.cn;</u> <u>jgcheng@mail.sim.ac.cn;</u>

Fax:+86-21-62511070-8934; Tel: +86-21-62511070-8967.

Sup	portive Information1
1.	Synthesis3
	2,4,6-triformyl phenol (TFP):4
	2,4-diformyl 1-naphthol (DFN):5
	4-bromo diformyl phenol (4BrBFP):5
	3-bromo triformyl phenol (3BrTFP):5
2.	Performance details6
	Figures for detailed sensing performance (S1-S3)6
3.	Experiments about mechanism (S4-S7)8
	NMR titration experiment9
	IR spectra12
	Cyclic voltammetry curves13
	Carboxylic group doping experiment13
4.	Performance of other probes in the system14
5.	Fluorescence properties14
6.	Detail information about linear fit (Figure 2)16
7.	Parameter settings of Materials Studio 7.019
	The frontier molecular orbitals:19
	Dynamics simulation:19

Catalogue

1. Synthesis

The synthetic route for **TFP** is shown in Scheme S2. 23.1 mg **TFP** was dispersed in 5 mL ethanol. After adding 0.5 mL diethylamine (Et_2NH), the **TFP** sample was dissolved with an immediate heat release. The excess amine in the solution was evaporated in vacuum to afford 32.1 mg **TFP-I** (yield, 98.5%). Then the solution of **TFP-I** were drop-casted on quartz slides, the sensing performance was tested in several kinds of analytes, such as water, *n*-hexane, ethanol, toluene, THF and peroxide.

The chemical constitution of **TFP-I** has been proved by mass spectra together with ¹H-NMR. Mass spectra presented that **TFP-I** is consists of cation Et_2NH^+ (74.0965 with +1 charge) and anion TFP⁻ (177.0193 with -1 charge). And ¹H-NMR shows that three hydrogens of aldehyde groups shift to high field from 10.31, 10.00 and 8.52 ppm to 10.22, 9.53 and 7.96 ppm with the introduction of Et_2NH , which proved the existence of anion TFP⁻.

All solvents and reagents were purchased from commercial sources and used as received except special indication. ¹H NMR spectra were measured on a Brucker DRX500 instrument, using tetramethylsilane (TMS) as the internal standard substance. A KW-4A Spin Coater (Institute of Microelectronics, CAS) was used to dry the films. Mass spectra were measured on a Bruker Daltonics Inc. APEXII FT-ICR Mass Spectrometry and an Agilent 7890A/5975C Gas Chromatography Mass Spectrometry (GC-MASS). UV–Vis absorption spectra were measured on a Jasco V-670 spectrophotometer while fluorescence spectra and time-course were measured on a Jasco FP 6500 spectrometer. Cyclic voltammetry (CV) measurement were operated with a CH Instruments electrochemical analyzer.

The solvent is tetrahydrofuran (THF) and the concentration for the film fabrication is $2 \text{ mg/mL} (10^{-5} \text{ M})$. The solution was deposited on quartz slides in a spin coater at the rotation speed of 2000 r/min. Then the films were further dried under vacuum for 20

minutes and the UV-Vis absorption and fluorescence analysis of the films was conducted.

Scheme S1 Synthetic route of TFP, DFN, 4BrBFP and 3BrTFP

2,4,6-triformyl phenol (TFP):

6.9 g (65 mmol) phenol, 70 mL trifluoroacetic acid (TFA) and 20.1 g (143 mmol) hexamethylenetetramine (HMTA) was added into a flask and the mixed solvent was refluxed at 120°C for 20 hours. The solvent was heated to 150°C for 3 hours and cooled back to 120°C. For initiating the hydrolysis reaction, 100 mL 3N hydrochloric

acid was added into the solvent and the solvent was heated at 102° C for 30 minutes, followed by natural cooling, filtering, washing and drying process. The product was recrystallized in DMF and the yield was 4.28 g (37.3%).

TFP ¹H NMR (500MHz, DMSO-d₆) δ 10.31(s,2H) 10.00(s,1H) 8.52(s,2H); TFP-I ¹H NMR (500MHz, DMSO-d₆) δ 10.22(s,2H) 9.53(s,1H) 7.96(s,2H) 6.87(s,2H) 2.88(q,4H) 1.12(t,6H); ¹³C NMR (126 MHz, DMSO) δ 191.13, 189.02, 180.26, 136.15, 128.57, 117.40, 41.39, 11.01.

The three derivatives are synthesized with the same method of TFP.

2,4-diformyl 1-naphthol (DFN):

1.44 g (10 mmol) 1-naphthol and 3.1 g (22 mmol) HMTA was reacted in 10 mL TFA and the yield was 1.7 g (85%).

¹H NMR (500MHz, DMSO-d₆) δ 10.31(s,1H) 10.20(s,1H) 9.22(d,1H) 8.48(d,1H) 8.45(s,1H) 7.91(t,1H) 7.73(t,1H); ¹³C NMR (126 MHz, DMSO-d₆) δ 193.85, 189.63, 170.35, 140.27, 139.11, 124.83, 115.69, 110.09, 34.32, 30.37, 20.97; m/z=201.0545

4-bromo diformyl phenol (4BrBFP):

1.72 g (10 mmol) 4-bromo phenol and 3.1 g (22 mmol) HMTA was reacted in 10 mL TFA and the yield was 1.3 g (57%).

¹H NMR (500MHz, DMSO-d₆) δ 11.58(s,1H) 10.20(s,2H) 8.13(s,2H); ¹³C NMR (126 MHz, DMSO-d₆) δ 190.86, 160.79, 138.48, 125.65, 111.23; m/z=228.9494

3-bromo triformyl phenol (3BrTFP):

1.72 g (10 mmol) 3-bromo phenol and 3.1 g (22 mmol) HMTA was reacted in 10 mL TFA and the yield was 440 mg (yield,17.2%).

¹H NMR (500MHz, DMSO-d₆) δ 10.18(s,1H) 10.06(s,2H) 8.30(s,1H); ¹³C NMR (126 MHz, DMSO-d₆) δ 194.17, 192.37, 164.29, 139.28, 133.56, 132.74, 127.25, 124.69, 124.61, 124.13, 123.63, 115.16; m/z=256.9807

2. Performance details

Figures for detailed sensing performance (S1-S3)

Fig. S1 Absorption and emission spectra of TFP and TFP-I films

Fig. S2 Quenching rate of TFP-I in vapour of common solvents comparing to different concentration H_2O_2 vapour

Fig. S3 Time course of TFP-I in (a) different concentration of H_2O_2 vapour (b) peroxide explosive vapour

3. Experiments about mechanism (S4-S7)

NMR titration experiment

^{1.3 10.2 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9} fl (ppm)

190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 f1 (ppm)

Fig. S4 The ¹H and ¹³C NMR titration experiment. To 1.5 mL TFP-I/d6-DMSO (0.15 mmol) was added 30% $H_2O_2 0 \mu L$ (1), 15 μL (2), 30 μL (3), 45 μL (4) and 60 μL (5), corresponding molar ratio of the aldehyde groups and the peroxide ranges from 3:0, 3:1, 3:2, 1:1 to 3:4.

To show the oxidation process from aldehyde group to carboxylic group, NMR titration experiment has been conducted, upon incremental addition of 30% peroxide aqueous solution into four NMR tubes with the same concentration of TFP-I (26.7 mg/0.15 mmol TFP-I solved in 1.5 mL d6-DMSO). The addition amount of 30% peroxide aqueous solution is 15 μ L (0.15 mmol), 30 μ L (0.3 mmol), 45 μ L (0.45 mmol) and 60 μ L (0.6 mmol) respectively. In Fig. S4, the first and third graph show the whole ¹H and ¹³C spectra, while the second and fourth graph are the partial enlarged drawings to show the detail of the spectra. The fifth graph shows the structures and their corresponding chemical shifts in the ¹³C-NMR spectra of the most oxidized sample.

New chemical shifts related to the formation of carboxylic groups occur and increase in pace with the increasing addition amout of peroxide solution. The reactivity of the TFP-I in solution decreases a lot compared with the vapour phase reactivity, so that the oxidation is not complete even enough peroxide solution has been added into the tube. There are many new small peaks in the spectra after the addition of peroxide, but only a few of them is distinct. According to the ¹H spectra, there are a new peak in the high field area, and the 8.247 ppm peak belongs to the bezene hydrogen of the oxidized product. According to the ¹³C spectra, two new peaks has been observed in the area of the carboxylic group. 164.867 ppm peak is related to the carboxylic groups while the 162.326 ppm peak is related to the carbon nearby the phenol anion group.

IR spectra

Fig. S5 The infra-red spectra of a TFP-I film before (blue) and after (red) oxidation process

Cyclic voltammetry curves

Fig. S6 Cyclic voltammetry curves of TFP and TFP-I

Fig. S6 shows the cyclic voltammetry curves of TFP and TFP-I. Ag/AgCl electrode is used as the reference electrode and the oxidation potentials are separately 1.0V for TFP and 2.3V for TFP-I.

Carboxylic group doping experiment

Fig. S7 Quenching curves in saturated H_2O_2 vapour at 8°C (2 mg/1 mL **TFP-I**/THF with **TFP-O_1** A:0 mg; B:0.01 mg; C:0.2 mg;D:0.3 mg)

4. Performance of other probes in the system

Fig. S8 Sensing curve of 4BrBFP-I, 3BrTFP-I and DFN-I in H_2O_2 vapour

5. Fluorescence properties

Table S1 H_2O_2 sensing performance in 300 seconds

Film	Excitation/emission Wavelength(nm)	Vapour	Concentration	Quenching rate (%)
TFP	343/470	air	/	10
		H_2O_2	225ppm/saturated	18
	420/590	H ₂ O ₂	225ppm	92
			225ppm	90
TFP-I			(2 weeks in air)	
			37.5ppm	48.8
			18.8ppm	41.1

			2ppm	29
			1ppm	25
			20ppb	11.5
			10ppb	8.45
			250ppt	5.15
			30ppt	3.45
			6ppt	2.55
		Air	/	-3
		H ₂ O	saturated	-19
		THF	saturated	-17.5
		n-hexane	saturated	-19
		toluene	saturated	-23
		EtOH	saturated	-18.8
DFN-I	360/568	H_2O_2	saturated	86
4BrBFP-I	420/517	H_2O_2	saturated	-12.5
3BrTFP-I	390/550	H ₂ O ₂	saturated	75

Table S2 sensing property of TFP-I for peroxide explosives in 100 seconds

Vapour	Concentration/ppb	Quenching rate (%)
ТАТР	78000/saturated	29.3

	4875	19.3
	2438	17
	1219	15.1
	610	11.9
	305	8.9
	152	7.8
	78	5
	40	4.7
	20	4
	10	3.3
DADP	saturated	42

6. Detail information about linear fit (Figure 2)

To estimate the detection limit, we measured the changes in fluorescence intensity of TFP-I films exposed to H_2O_2 vapour in a wide range of concentration. Then with the assistance of Origin software, the quenching data of the fluorescence of TFP-I (1- I/I0) have been well-fitted in logarithmic coordinates. The linear fit is based on the Langmuir equation with an assumption that the quenching efficiency is proportional to the surface adsorption of vapour. In reference with the state of the test instruments and related articles, the concentration value correspond to 0.01 quenching rate was regarded as the detection limit.

We select one percent fluorescence quenching rate to calculate the detection limit,

with the reference of several published articles. ((a) Y. K. Che, X. M. Yang, S. Loser and L. Zang, Nano Lett., 2008, 8,2219; (b) B. P. Jiang, D. S. Guo and Y. Liu, J. Org. Chem., 2011, 76,6101.)

Linear Fit for Figure2a on linearized scales.

yscale(Y) = A + B * xscale(X)

Parameter Value Error

- A -1.19377 0.00531
- B 0.19079 0.00138
- R SD N P

0.99655 4.0653 10 <0.0001

A(X)	B(Y)	C(Y)	D(Y)	Mean(Y94	SD(yEr-)
	Quenching rate	10.		Mean	Standard Deviation
				Statistics	Statistics On Ro
4875	0.193	0.192	0.193	0.19267	5.7735E-4
2438	0.17	0.174	0.176	0.17333	0.00306
1219	0.151	0.156	0.1606	0.15587	0.0048
610	0.119	0.122	0.126	0.12233	0.00351
305	0.089	0.0866	0.0859	0.08717	0.00163
152	0.078	0.0747	0.0797	0.07747	0.00254
78	0.05	0.052	0.0509	0.05097	0.001
40	0.047	0.0497	0.04884	0.04851	0.00138
20	0.04	0.043	0.0394	0.0408	0.00193
10	0.033	0.03	0.037	0.03333	0.00351

Linear Fit for Figure2b on linearized scales.

yscale(Y) = A + B * xscale(X)

Parameter Value Error

A -1.79842 0.01067

B 0.29455 0.00301

R SD N P

0.99375 3.88861 10 <0.0001

7. Parameter settings of Materials Studio 7.0

The frontier molecular orbitals:

Step1. Forcite Anneal:	Step2. DMol3 Geometry Optimization	
	Quality Fine	
Annealing cycles: 10;	Energy 1.0e-5	
Initial temperature: 300K	Max. force 0.002 Ha/Å	
Mid-cycle temperature: 1000K	Max. displacement 0.05 Å	
Heating ramps per cycle: 7	Max. iterations: 50	
Dynamics steps per ramp: 1000	Max. step size: 0.3 Å	
Ensemble: NVT	Functional: GGA-BLYP	
Optimize after each cycle	Use symmetry	
Quality: Ultra-fine	Intergration accuracy: Fine	
Forcefield: Dreiding	SCE tolerance Fine	
Charges: Use current	Core treatment All Electron	
Quality: Ultra-fine	Posis set DND+ 4.4	
Summation method: Electrostatic: atom based;	Orbital cutoff quality Fine	
Van der waals: atom based		
	Properties: Optics; Orbitals	

Dynamics simulation:

Step 1.Forcite Geometry Optimization	Step 2.Forcite Dynamics
Ensemble: NVE	Ensemble: NVE
Quality: Ultra-fine	Total simulation time: 500ps
Forcefield: COMPASS II	Quality: Ultra-fine
Charges: Forcefield assigned	Forcefield: COMPASS II

Quality: Ultra-fine

Summation method: Electrostatic: atom based; Van der waals: atom based Charges: Forcefield assigned

Quality: Ultra-fine

Summation method: Electrostatic: atom based; Van der waals: atom based