Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

A Supramolecular Approach for Designing Emissive Solid-State Carbazole Arrays

L. M. Lifshits,^a B. Č. Noll,^b J. K. Klosterman.^a

a: Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, 141 Overman Hall, Bowling Green OH 43403

b: Bruker AXS, Inc. 5465 East Cheryl Parkway, Madison, WI 53711-5373

Contents

- 1. General information
- 2. Materials
- 3. Ligand synthesis
- 4. NMR spectra
- 5. MOFs syntheses
- 6. Single crystal X-Ray diffraction analyses
- 7. Powder X-Ray diffraction patterns
- 8. TGA analyses
- 9. IR analyses
- 10. Photophysical measurements
- 11. Crystallographic Data Tables
- 12. References

1. General information

Proton (¹H), carbon (¹³C), COSY, HSQC and HMBC NMR experiments were performed on Bruker AVANCEIII 500 MHz NMR. Chemical shifts are given in parts per million (ppm) and referenced to solvent signals for CDCl₃ (7.26 ppm) or DMSO-d₆ (2.50 ppm) for ¹H NMR, and CDCl₃ (77.00 ppm) or DMSO-d₆ (39.52 ppm) in ¹³C NMR.

Silica gel (60Å, 40-63 μ m) was used as stationary phase for column chromatography. IR spectra were obtained on Shimadzu FTIR-8400S spectrophotometer with spectroscopic grade KBr as a pellet supporter. Melting points (uncorrected) were measured with Laboratory devices, Inc. Melt-Temp II with a thermocouple. HRMS (ESI+) spectra were obtained in the University of Michigan Mass Spectrometry lab, 3411 Chemistry, 930 N University Ave, Ann Arbor, MI 48103. Elemental analysis for C, H and N content was carried out in the Atlantic Microlab, 6180 Atlantic Blvd., Suite M, Norcross, GA 30071 with instrument nominal accuracy $\pm 0.3\%$.

Powder X-Ray diffraction measurements were carried out with a Bruker D8 Advance PXRD with a 2.2kW Cu anode long fine focus ceramic X-Ray tube and LinxEye detector. Single crystal diffraction measurements were carried out in the Bruker AXS, Inc. on a Bruker D8 Venture system equipped with a multilayer mirror monochromator and a Cu K α sealed tube (λ =1.54178Å). The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were collected for absorptions effects using the multi-scan method (SADABS). The structures were solved and refined with the Bruker SHELXTL Software Package. Complete crystallographic data, in CIF format, have been deposited with the Cambridge Crystallographic Data Centre. CCDC 1061880 – 1061883 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

UV-Vis absorption spectra were recorded with Shimadzu UV-2401 PC spectrophotometer (equipped an integrating sphere for diffuse reflectance measurements of solids). Fluorescence measurements were performed on Horiba Fluorolog FL3-11 spectrofluorometer. Steady state emission spectra were collected using a 450W xenon lamp with computer controlled excitation shutter with excitation and observation at the reported wavelength maximum. Lifetime decays were then measured using time-correlated single photon counting (TCSPC) with a 340nm NanoLED. Absolute quantum yields of solids and **1a** in cyclohexane solution were measured at Hamamatsu absolute PI quantum yield spectrometer C11347. Measurements were repeated on three different batches of freshly prepared samples and observed standard deviations were within instrumental error (±0.01).

2. Materials

All reagents were purchased from commercial suppliers (Aldrich, Alfa Aesar, BDH, EMD, Matrix Scientific, Strem Chemicals, VWR) and used without further purification. Solvents were purchased from commercial suppliers and used without further purification. Dry solvents were purified using an MBraun Solvent Purification System and stored over molecular sieves. Deuterated solvents were purchased from Cambridge Isotope Laboratories. The spectrophotometric measurements of solutions were carried out in solvents of spectrophotometric quality from EMD.

3. Ligand Syntheses

Scheme S1. Ligand 1b synthesis.

Dimethyl 5-(9H-carbazol-9-yl)-isophthalate (1a)

Adapted from literature protocols.¹ Carbazole **2** (0.40 g, 2.40 mmol) was mixed with dimethyl 5bromoisophthalate **3** (0.55 g, 2.00 mmol), dipalladium(0) trisdibenzylideneacetone (Pd₂dba₃) (0.05 g, 0.06 mmol), Cs₂CO₃ (1.63 g, 5.00 mmol) and 2-dicyclohexylphosphino-2',4',6'-triisopropylphenyl (XPhos) (0.05 g, 0.10 mmol) in the round bottom flask. The flask was evacuated and refilled with nitrogen. Compounds mixture was dissolved in degased toluene (16 mL), then heated to 112°C and kept at that temperature. Reaction was monitored by ESI-MS until full conversion of starting materials to the product was observed after 24 hours of refluxing. Reaction was quenched with saturated aqueous solution of EDTA and NaHCO₃ (16 mL), extracted with EtOAc (3x100 mL), washed with H₂O deionized, dried over MgSO₄ (anhydrous), filtered. Solvent was removed under reduced pressure. Column chromatography was performed to purify crude product. Gradient column was found to be the most effective way of separation: starting from solvents mixture as eluent (dichloromethane:hexane, v:v = 1:3) to pure dichloromethane. Dimethyl 5-(*9H*-carbazol-9-yl)-isophthalate **1a** was obtained as a yellowish solid (0.55 g, 77% yield). M.p. 186-189 °C.

¹H NMR (500 MHz, CDCl₃, δ): 8.78 (t, J = 1.5 Hz, 1H), 8.46 (d, J = 1.5 Hz, 2H), 8.16 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 3.99 (s, 6H).

 ^{13}C NMR (125 MHz, CDCl_3, δ): δ 165.49, 140.39, 138.52, 132.58, 132.10, 129.28, 126.26, 123.67, 120.59, 120.49, 109.38, 52.70.

HRMS-ESI⁺ (*m*/*z*): [M+H] ⁺ calcd for C₂₂H₁₇NO₄, 360.1230; found 360.1231.

5-(9H-carbazol-9-yl)-isophthalic acid (1b)

Dimethyl 5-(9*H*-carbazol-9-yl)-isophthalate **1a** (1.20 g, 3.34 mmol) was dissolved in THF (50 mL) and MeOH (30 mL) was added. After that NaOH aqueous was added (80 mL of 1.8M solution). Reaction mixture was heated to 55°C and kept at that temperature. Reaction completion was monitored by TLC, which showed full conversion after 12 hours. After that reaction mixture was cooled down and organic solvents were removed under reduced pressure. Aqueous layer was acidified with HCl (4M) until white precipitate occurred. Precipitate was washed with H₂O deionized and dried under high vacuum. 5-(9*H*-carbazol-9-yl)-isophthalic acid **1a** was obtained as a yellowish solid (1.00 g, 95% yield). Yield of ligand **1b** after all steps: 73%. M.p. 340 °C dec.

¹H NMR (500 MHz, DMSO-d₆, δ): 13.63 (bs, 2H), 8.57 (t, J = 1.5 Hz, 1H), 8.32 (d, J = 1.5 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 2H).

 ^{13}C NMR (125 MHz, DMSO-d_6, $\delta)$: 165.95,139.85, 137.69, 133.54, 131.02, 128.61, 126.60, 123.07, 120.78, 120.68, 109.41.

HRMS-ESI⁻ (*m/z*): [M-H] ⁻ calcd for C₂₀H₁₃NO₄, 330.0772; found 330.0770.

4. NMR spectra

Assignments of signals based on 2D NMR experiments (COSY, HMBC, HSQC). **4.1 Ligand 1a**

Figure S1. 500 MHz ¹H NMR Spectrum of 1a CDCl₃ at 298 K.

Figure S2. 125 MHz ¹³C NMR Spectrum of 1a in CDCl₃ at 298 K.

Figure S4. 125 MHz ¹³C NMR Spectrum of 1b in DMSO-d₆ at 298 K.

5. MOFs syntheses

General procedure: Metal salts were dissolved in the specified solvent mixture and added to a solution of **1b** in the same solvent mixture. The reaction solution was well-stirred, separated into vials of 2mL size and placed in the isothermal oven. Crystals' appearance in the vials was monitored. Obtained crystals were collected, evaluated under microscope and washed with suitable solvents. Crystals were dried in air and/or under high vacuum as required.

CuCbz MOF: Cu(NO₃)₂•2.5H₂O (0.08 g, 0.36 mmol) was dissolved in 1:1 NMP:EtOH solvent mixture (11.5 mL) and added to the solution of **1b** (0.10 g, 0.30 mmol) in the same solvent mixture (11.5 mL). Vials with reaction mixture were placed in the isothermal oven at 85°C. First crystals (green uniform rhombohedra platelets) appeared after 4 hours in the oven. Crystals were collected after 5 days in the oven. Crystals were washed with 1:1 NMP:EtOH (3 times), with EtOH (3 times), dried in air and then under high vacuum to give CuCbz MOF as green crystals (0.05 g, 34% yield). Anal. Calcd for C₂₅H₂₀N₂O₅Cu: C, 61.03; H, 4.10; N, 5.69, O, 16.26; Cu, 12.92. Found: C, 60.74; H, 4.16; N, 5.64.

Notes: the procedure above was successfully reproduced at different scales from 0.01 g to 0.30 g of ligand **1b**. Crystalline powder was obtained when reaction was scaled up to 0.40 g of **1b**. Smaller but more uniform crystals were obtained after 4 days in the oven when vials were kept at 55°C instead of 85°C. Crystals obtained at either 55°C or 85°C are of SXRD quality.

CoCbz MOF: $Co(NO_3)_2 \cdot 6H_2O$ (0.10 g, 0.36 mmol) was dissolved in 1:3 DMF:MeOH solvent mixture (11.5 mL) and added to the solution of **1b** (0.10 g, 0.30 mmol) in the same solvent mixture (11.5 mL). Vials with reaction mixture were placed in the isothermal oven at 70°C. First crystals (purple uniform rhombohedra platelets) appeared overnight. Crystals were collected after 5 days in the oven. Crystals were washed with 1:1 DMF:MeOH (3 times), with MeOH (3 times), dried in air and then under high vacuum to give CoCbz MOF as purple crystals (0.12 g, 44% yield).

Anal. Calcd for C₄₅H₃₅N₃O₁₁Co₂: C, 59.28; H, 3.86; N, 4.60, O, 19.30, Co, 12.92. Found: C, 58.44; H, 4.40; N, 4.90.

Notes: the procedure above was successfully reproduced at different scales from 0.01 g to 0.30 g of ligand **1b**. The best conditions for SXRD quality crystals were found to be 1:6 DMF:MeOH and 70°C. The conditions for the best total yield were found to be 1:3 DMF:MeOH, 85°C, 5 days.

ZnCbz MOF: $Zn(NO_3)_2 \cdot 6H_2O$ (0.10 g, 0.36 mmol) was dissolved in DMF:EtOH (v:v = 1:1) solvent mixture (11.5 mL) and added to the solution of **1b** (0.10 g, 0.30 mmol) in the same solvent mixture (11.5 mL). Vials with reaction mixture were placed in the isothermal oven at 55°C. First crystals (clear uniform prisms) appeared after 4 days in the oven and kept appearing during next days. Crystals were collected after 9 days in the oven. Crystals were washed with 1:1 DMF:EtOH (3 times), with MeOH (3 times), dried in air and then under high vacuum to give ZnCbz MOF as colorless crystals (0.10 g, 33 % yield). Anal. Calcd for $C_{51}H_{48}N_5O_{12}Zn_2$: C, 58.13; H, 4.59; N, 6.64, O, 18.22, Zn, 12.41. Found C, 57.70; H, 4.35; N, 6.65.

Notes: the procedure above was successfully reproduced at different scales from 0.01 g to 0.20 g of ligand **1b**. The best conditions for SXRD quality crystals were found to be 1:1 DMF:EtOH, 55°C, 4 days or 1:1 DMF:MeOH, room temperature, 1 month. The conditions for the best total yield were found to be 1:1 DMF:EtOH, 55°C, 9 days.

New peaks slowly appear over several hours in the PXRD trace for crystals of ZnCbz MOF washed in EtOH, presumably due to solvent lose. Thus all reported photophysical measurements were immediately performed on fresh crystals washed with DMA, which exhibited structural integrity for ~2 days in air due to the lower volatility. It is important to note that photophysical measurements of freshly EtOH washed crystals were similar to DMA washed crystals indicating that the majority of the carbazole materials remains intact.

6. Single crystal X-Ray diffraction analyses

Table S1.	Crystallographic d	lata for 1a

Chemical formula	C ₂₂ H ₁₇ NO ₄
<i>M</i> _r	359.36
Crystal system, space group	Triclinic, <i>P-1</i>
Temperature (K)	130(2)
a, b, c (Å)	7.3977 (5), 11.6656 (7), 20.3981 (13)
α, β, γ (°)	76.247 (3), 83.564 (3), 88.301 (4)
V (Å ³)	1699.07 (19)
Ζ	4
Radiation type	Cu <i>Κ</i> α
μ (mm ⁻¹)	0.80
Crystal size (mm)	0.32 × 0.21 × 0.05
Density (g/cm ³)	1.405

Data collection

Diffractometer	Bruker D8 VENTURE diffractometer
Absorption correction	multi-scan
T _{min} , T _{max}	0.790, 0.960
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	6574, 6574, 5471
R _{int}	0.030
(sin θ/λ) _{max} (Å ⁻¹)	0.625

Refinement

$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.109, 1.05
No. of reflections	6574
No. of parameters	492
No. of restraints	193
H-atom treatment	H-atom parameters constrained

$\Delta ho_{max},\;\Delta ho_{min}$ (e Å ⁻³)	0.24, -0.27
R-factor (%)	4.78
Computer programs: SHELXL2013 (Sheldrick, 2013).	

A total of 3265 frames were collected. The total exposure time was 20.43 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 6574 reflections to a maximum angle of 74.50° (0.80 Å resolution), of which 6574 were independent (average redundancy 1.000, completeness = 96.6%, Rsig = 4.50%) and 5471 (83.22%) were greater than $2\sigma(F2)$. The final cell constants of a = 7.3977(5) Å, b = 11.6656(7) Å, c = 20.3981(13) Å, α = 76.247(3)°, β = 83.564(3)°, γ = 88.301(4)°, volume = 1699.07(19) Å³, are based upon the refinement of the XYZ-centroids of 9585 reflections above $20\sigma(I)$ with 4.485° < 20< 148.9°. Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7860 and 0.9610. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 4 for the formula unit, C22H17NO4. The final anisotropic full-matrix least-squares refinement on F² with 492 variables converged at R₁ = 4.78%, for the observed data and wR₂ = 10.90% for all data. The goodness-of-fit was 1.048. The largest peak in the final difference electron density synthesis was 0.235 e-/Å³ and the largest hole was -0.266 e-/Å³ with an RMS deviation of 0.053 e-/Å³. On the basis of the final model, the calculated density was 1.405 g/cm3 and F(000), 752 e-.

Figure S5. Top: ORTEP of 1a (generated by Platon).

Table S2. Crystallographic data for CuCbz MOF

Chemical formula	$C_{25}H_{20}CuN_2O_5$
<i>M</i> _r	491.97
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	299
a, b, c (Å)	27.7412 (11), 11.1140 (5), 15.0069 (6)
α, β, γ (°)	90, 102.921 (2), 90
<i>V</i> (Å ³)	4509.7 (3)
Ζ	8
Radiation type	Cu Ka
μ (mm ⁻¹)	1.70
Crystal size (mm)	0.14 × 0.10 × 0.08
Density (g/cm ³)	1.449
Data collection	
Diffractometer	Bruker D8 VENTURE diffractometer
Absorption correction	Multi-scan Sheldrick, G. M. (2012). TWINABS v2012/1. Bruker AXS Inc. Madison, WI 53711, USA.
T _{min} , T _{max}	0.80, 0.87
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	4492, 4492, 4249
R _{int}	0.056
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.112, 1.10
No. of reflections	4492
No. of parameters	364
No. of restraints	116
H-atom treatment	H-atom parameters constrained

Δho_{max} , Δho_{min} (e Å ⁻³)	0.61, -0.29
R-factor (%)	4.05

Computer programs: *APEX2* v2012.10-1 (Bruker-AXS Inc., 2012), *SAINT* v8.35A (Bruker AXS Inc., 2012), *SHELXS97* (Sheldrick, 2008), *SHELXL2014/7* (Sheldrick, 2014), Jmol: an open–source Java viewer for chemical structures in 3D. http://www.jmol.org/, *APEX2* v2012.12 (Bruker, 2011)

A total of 3834 frames were collected. The total exposure time was 22.03 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 4636 reflections to a maximum _ angle of 72.40° (0.81 Å resolution), of which 4636 were independent (average redundancy 1.000, completeness = 93.3%, Rsig = 3.33%) and 4322 (93.23%) were greater than 2_(F²). The final cell constants of a = 27.7412(11) Å, b = 11.1140(5) Å, c = 15.0069(6) Å, β = 102.921(2)°, volume = 4509.7(3) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 σ (I). Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7978 and 0.8702.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C 1 2/c 1, with Z = 8 for the formula unit, $C_{25}H_{17}CuN_2O_5$. The final anisotropic full-matrix least-squares refinement on F² with 366 variables converged at R₁ = 4.05%, for the observed data and wR₂ = 11.20% for all data. The goodness-of-fit was 1.083. The largest peak in the final difference electron density synthesis was 0.597 e-/Å³ and the largest hole was -0.28 e-/Å³ with an RMS deviation of 0.083 e-/Å³. On the basis of the final model, the calculated density was 1.449 g/cm3 and F(000), 2024 e-.

Figure S6. ORTEP of CuCbz MOF unit cell (generated by Platon checkcif).

Figure S7. ORTEP of CuCbz MOF asymmetric unit (generated by Mercury).

Table S3. Crystallographic data for CoCbz MOF

Chemical formula	$C_{45}H_{35}Co_2N_3O_{11}\bullet 0.663(CH_4O)\bullet 0.337(C_3H_7NO)$
Mr	959.48
Crystal system, space group	Monoclinic, P2 ₁ /n
Temperature (K)	100
a, b, c (Å)	10.1480 (6), 14.9006 (8), 28.1544 (16)
α, β, γ (°)	90, 92.505 (3), 90
V (Å ³)	4253.2 (4)
Z	4
Radiation type	Cu Kα
μ (mm ⁻¹)	6.70
Crystal size (mm)	0.15 × 0.08 × 0.05
Density (g/cm ³)	1.498
Data collection	
Diffractometer	Bruker D8 VENTURE diffractometer
Absorption correction	Multi-scan Sheldrick, G. M. (2014). <i>SADABS</i> v2014/5. Bruker AXS Inc. Madison, WI 53711, USA.
T_{\min}, T_{\max}	0.708, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	48714, 7955, 6826
R _{int}	0.054
(sin θ/λ) _{max} (Å ⁻¹)	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.093, 1.04
No. of reflections	7955
No. of parameters	666
No. of restraints	74
H-atom treatment	H-atom treated by a mixture of independent and constrained refinement

Δho_{max} , Δho_{min} (e Å ⁻³)	0.51, -0.33
R-factor (%)	3.95

Computer programs: Bruker Instrument Service v3.0.28 (Bruker, 2013), SAINT v8.34A (Bruker, 2013), SHELXS v2013/1(Sheldrick, 2013), SHELXL2014/7 (Sheldrick, 2014), APEX2 v2015.1-rc1 (Bruker, 2015)

Figure S8. ORTEP of CoCbz MOF unit cell (generated by Platon checkcif)

Figure S9. ORTEP of CoCbz MOF asymmetric unit (generated by Mercury).

Table S4. Single-crystal data for ZnCbz MOF

Chemical formula	$C_{48}H_{42}Zn_2N_4O_{11}\bullet C_3H_7NO$
<i>M</i> _r	1054.69
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	10.3375(4), 17.0695(4), 26.9368(7)
α, β, γ (°)	90, 90, 90
<i>V</i> (Å ³)	4753.2 (2)
Z	4
Radiation type	Cu Ka
μ (mm ⁻¹)	1.827
Crystal size (mm)	0.19 × 0.14 × 0.11
Density (g/cm ³)	1.474
Data collection	
Diffractometer	Bruker D8 VENTURE diffractometer
Absorption correction	Multi-scan Sheldrick, G. M. (2012). <i>SADABS</i> v2012/1. Bruker AXS Inc. Madison, WI 53719, USA.
T _{min} , T _{max}	0.772, 0.818
No. of measured, independent and observed $[l > 2\sigma(l)]$ reflections	36376, 9547, 8472
R _{int}	0.057
(sin θ/λ) _{max} (Å-1)	0.603
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.0071, 1.02
No. of reflections	9547
No. of parameters	642
No. of restraints	0
H-atom treatment	H-atom treated by a mixture of independent and

constrained refinement

$\Delta ho_{max}, \ \Delta ho_{min}$ (e Å ⁻³)	0.42, -0.33
R-factor (%)	3.48

Computer programs: Bruker Instrument Service v3.0.30-rc3 (Bruker, 2013), *SAINT* v8.34A (Bruker, 2013), SHELXT (Sheldrick, 2014), *SHELXL2014/7* (Sheldrick, 2014).

Figure S10. ORTEP of ZnCbz MOF unit cell (generated by Platon checkcif).

Figure S11. ORTEP of ZnCbz MOF asymmetric unit (generated by Mercury).

Figure S12. Secondary-building unit (SBU) in CuCbz MOF. Carbon = pale green; oxygen = red; nitrogen = blue; copper = forest green. Carbazoles as blue spheres.

Table S5. Characteristic distances and angles in CuCbz MOF SBU.^a

Characteristic		Characteristic angles, °	
distar	nces, Å		
Cu1 O1	1.9519(16)	O1 Cu1 O2	87.62(8)
Cu1 O2	1.9562(17)	O1 Cu1 O4	89.59(8)
Cu1 O3	1.9751(17)	O1 Cu1 O3	167.47(7)
Cu1 O4	1.9699(17)	O1 Cu1 Cu1	87.92(5)
Cu1 O5	2.1500(2)	O1 Cu1 O5	100.9(5)
Cu1 Cu1	2.66	O2 Cu1 O5	90.3(5)
		O2 Cu1 O4	167.35(7)
		O2 Cu1 O3	88.93(9)
		O2 Cu1 Cu1	83.67(5)
		O3 Cu1 O5	91.1(5)
		O3 Cu1 Cu1	79.73(5)
		O4 Cu1 O5	102.3(5)
		O4 Cu1 O3	91.16(8)
		O4 Cu1 Cu1	83.91(5)
		O5 Cu1 Cu1	169.1(5)

^a The numbering scheme in Fig. S12 and Table S5 differs from the atom numbering in the corresponding cif file.

Figure S13. Secondary-building unit (SBU) in CoCbz MOF. Carbon = pale green; oxygen = red; nitrogen = blue; cobalt = purple. Carbazoles as blue spheres.

Table S6. Characteristic bonds and angles in CoCbz MOF SBU.^a

Charact	eristic		
Distanc	es, Å	Characteristic	angles, °
Co1 O1	1.989(4)	O1 Co1 O4	90.95(18)
Co1 O2	1.989(4)	O1 Co1 O6	98.99(16)
Co1 O3	2.147(4)	O1 Co1 O3	94.05(16)
Co1 O4	2.165(4)	O1 Co1 O5	159.60(17)
Co1 O5	2.159(4)	O2 Co1 O1	96.70(19)
Co1 O6	2.147(4)	O2 Co1 O6	101.28(17)
Co2 O4	2.106(4)	O2 Co1 O3	100.24(16)
Co2 O7	2.108(5)	O2 Co1 O5	92.67(19)
Co2 O8	2.100(4)	O2 Co1 O4	160.16(17)
Co2 O9	2.102(5)	O3 Co1 O5	102.09(15)
Co2 O10	2.070(4)	O3 Co1 O4	60.84(15)
Co2 O11	2.049(4)	O5 Co1 O4	86.18(18)
Co1-Co2	3.43 Å	O6 Co1 O3	153.27(15)
		O6 Co1 O5	61.30(15)
		O6 Co1 O4	95.53(16)
		O7 Co2 O6	87.35(19)
		O8 Co2 O6	88.63(16)
		O8 Co2 O7	92.22(19)
		O9 Co2 O7	86.3(2)
		O9 Co2 O6	173.3(2)
		O9 Co2 O8	89.60(19)
		O10 Co2 O8	86.75(17)
		O10 Co2 O7	177.1(2)
		O10 Co2 O9	91.1(2)
		O10 Co2 O6	95.29(16)
		O11 Co2 O10	93.15(19)
		O11 Co2 O9	88.8(2)
		O11 Co2 O8	178.36(17)
		O11 Co2 O7	87.8(2)
		O11 Co2 O6	93.01(17)

^a The numbering scheme in Fig. S13 and Table S6 differs from the atom numbering in the corresponding cif file.

Figure S14. Secondary-building unit (SBU) in ZnCbz MOF. *Carbon = pale green; oxygen = red; nitrogen = blue; zinc = yellow. Carbazoles as blue spheres*

Table S7. Characteristic bonds and angles in ZnCbz MOF SBU.^a

Character	ISTIC					
Distances, Å		Characteristi	Characteristic angles, °			
Zn1 O1	1.963(2)	O1 Zn1 O3	99.52(11)			
Zn1 O2	1.951(3)	O1 Zn1 O4	138.13(10)			
Zn1 O3	2.007(3)	O2 Zn1 O1	105.15(11)			
Zn1 O4	1.966(2)	O2 Zn1 O3	108.02(10)			
Zn2 O5	2.067(3)	O2 Zn1 O4	103.07(11)			
Zn2 O6	2.071(3)	O3 Zn1 O4	100.41(11)			
Zn2 07	2.088(3)	O5 Zn2 O6	97.63(10)			
Zn2 O8	2.145(3)	O5 Zn2 O9	91.42(11)			
Zn2 O9	2.094(3)	O5 Zn2 O7	86.77(12)			
Zn2 O10	2.030(3)	O5 Zn2 O8	175.97(11)			
Zn1-Zn2	3.594	O6 Zn2 O7	86.62(11)			
		O6 Zn2 O9	169.78(12)			
		O6 Zn2 O8	86.38(11)			
		O7 Zn2 O9	89.18(11)			
		07 Zn2 08	93.15(12)			
		O9 Zn2 O8	84.55(11)			
		O10 Zn2 O5	95.16(11)			
		O10 Zn2 O6	93.41(11)			
		O10 Zn2 O7	178.04(13)			
		O10 Zn2 O9	90.47(10)			
		O10 Zn2 O8	84.89(12)			
	i = i i	- 1166 E 11				

^a The numbering scheme in Fig. S14 and Table S7 differs from the atom numbering in the corresponding cif file.

C)

Figure S15. *Left:* Bonds and angles of parallelograms formed by SBUs centroids in Cbz MOF structures. *Right:* Dihedral angles between isophthalates of one square unit of the square grids of Cbz MOFs. Carbon = pale green; oxygen = red; copper = green; cobalt = purple; zinc = yellow; carbazoles = blue spheres.

c) Figure S16. Characteristic distances and angles of intraligand interactions in Cbz MOFs.

Figure S17. Offset of parallel carbazoles in Co cbz MOF.

Table S8. Summary of closest intraligand interactions				
п ••• п СН ••• п,				
	(Å)	(Å)		
Ligand 1a	3.45	-		
CuCbz	3.87	-		
CoCbz	3.56	3.02		
		3.18		
		3.21		
ZnCbz	-	2.64		
		2.72		
		2.76		

Figure S18. Conformations of 5-(9H-carbazol-9-yl) isophlalates in a) **1a** b) **CuCbz** c) **CoCbz** d) **ZnCbz** MOFs. Twist Angle = dihedral angle between carbazole plane and isophthalate plane. Metal ions are omitted in view ii for the sake of clarity.

C)

Figure S19. 2D Square grids and cleft-like packing motifs found between neighboring layers in a) **Cu Cbz MOF**; b) **CoCbz MOF**; c) **Zn Cbz MOF**. Carbazoles of one layer in green, carbazoles of neighboring layer in magenta.

7. Powder X-Ray diffraction patterns

Air Stability of CbzMOFs

Figure S23. Air stability of **Cbz MOF**s. PXRD spectra of as-synthesized MOFs and repeated measurements of the same samples after a) 1 day and b) longer in air under ambient conditions.

ZnCbz MOF: no changes observed PXRD for ~2 days if washed with non-volatile solvent (DMA) prior to drying. If washed with volatile solvent (EtOH) and then dried in air, new small peaks appear in the PXRD spectrogram after two days.

Figure S24. TGA profiles for a) 1a; b) 1b; c) CuCbz MOF; d) CoCbz MOF e) ZnCbz MOF under N₂ flow at 10°C min ⁻¹ scan rate

Figure S25. Carbonyl regions from the Infrared Spectra of a) 1a; b) 1b; c) CuCbz MOF; d) CoCbz MOF; and e) ZnCbz MOF.

10. Photophysical measurements

Figure S26. (a) Normalized diffuse reflectance spectra of **1a** and **Cbz MOF**s. Normalized solid-state (b) excitation and (c) emission of **1a** and **Zn Cbz MOF**s (reproduced from Figure 2b for ease of comparison). $\lambda_{ex} = 290$ nm. UV-vis absorption, excitation, and emission traces of **1a** in cyclohexane included for comparison.

The deep green and purple colors of Cu CbzMOF and Co CbzMOF arise from weak, metal centered transitions centered around 740 cm⁻¹ and 558 cm⁻¹, respectively. These bands appear amplified in diffuse reflection spectrum as strong absorption bands weakly reflect (due to strong absorption of light) whereas bands of weak absorption produce more intense diffuse reflection bands (due to weak light absorption) than in a transmission spectrum. See reference [2].

10.2 Time dependent emission decay profiles

Figure S27. Lifetime decay and residual traces for **1a** in cyclohexane ($\lambda_{ex} = 340 \text{ nm}$, $\lambda_{em} = 390 \text{ nm}$); **1a** (solid) ($\lambda_{ex} = 340 \text{ nm}$, $\lambda_{em} = 410$); and **ZnCbz MOF** ($\lambda_{ex} = 340 \text{ nm}$, $\lambda_{em} = 450$)

Table S9. Sum	Table S9. Summary of photophysical data*						
	1a (CH)	1a (solid)	ZnCbz MOF	CoCbz MOF	CuCbz MOF		
λ_{max} (abs), nm	290, 305, 320, 335	288, 340	300, 340	290, 340, 365sh, 558	290, 335, 365sh, 740		
λ_{em} , (em), nm	390	410	430	_	_		
$\Delta^{ ilde{ u}}$ (cm ⁻¹)	0	1,250	2,385				
<i>τ</i> ₁ (α ₁), ns	3.55	6.7 (0.9)	13.1 (0.3)				
<i>τ</i> ₂ (α ₂), ns		41.9 (0.1)	37.1 (0.7)				
< <i>₁</i> >ª, ns	3.55	7.31	23.9				
X ²	1.39	2.63	1.49				
Φ _f	0.04 ^b	0.04 ^b	0.11 ^b				
<i>k</i> _f ^c (s ⁻¹)	1.10 × 10 ⁸	5.47 × 10 ⁷	4.76 × 10 ⁷				
<i>k_{nr}^d</i> (s ⁻¹)	2.71 × 10 ⁹	1.31 × 10 ⁹	3.70 × 10 ⁸				

^{*} Data from Table 1 included for ease of comparison. ^a < τ > = 1/($\alpha_1/\tau_1 + \alpha_2/\tau_2$); ^b absolute emission QY ± 0.01, ^c k_f = Φ_f / < τ >. ^d k_{nr} = (1 - Φ_f)/ < τ >.

11 Crystallographic Data Tables

 Table S10. Crystallographic Bond Distances (Å) and Angles (°) for 1a.

N1_1—C12_1	1.391 (3)	N1_2—C12_2	1.394 (3)
N1_1—C1_1	1.401 (3)	N1_2—C1_2	1.400 (3)
N1 1-C13 1	1,423 (3)	N1 2-C13 2	1.418 (3)
$01_{-}1-0.01_{-}1$	1 209 (3)	01^{2} - 01^{2} - 01^{2}	1 205 (3)
0^{2} 1 0^{10} 1	1.200 (0)	0^{-2} 0^{-2} 0^{-2}	1.200 (0)
	1.339 (3)	02_2_019_2	1.340 (3)
02_1	1.445 (3)	02_2_020_2	1.448 (3)
O3_1—C21_1	1.203 (3)	O3_2—C21_2	1.206 (3)
O4_1—C21_1	1.341 (3)	O4_2—C21_2	1.340 (3)
O4_1—C22_1	1.447 (3)	O4_2-C22_2	1.450 (3)
$C1^{-}1-C2^{-}1$	1.392 (3)	C1_2_C2_2	1.401 (3)
$C1^{-}1-C6^{-}1$	1,408 (3)	$C1^{2}-C6^{2}$	1,410 (3)
$C_{2} = C_{3} = C_{3}$	1 385 (3)	$C_{2}^{-2} = C_{2}^{-2}$	1 385 (3)
$02_1 - 00_1$	0.05	$02_2 - 03_2$	1.565 (5)
	0.95		0.95
C3_1—C4_1	1.397 (4)	03_204_2	1.403 (3)
C3_1—H3_1	0.95	C3_2—H3_2	0.95
C4_1—C5_1	1.375 (4)	C4_2—C5_2	1.373 (3)
C4_1—H4_1	0.95	C4_2—H4_2	0.95
C5 1—C6 1	1.402 (3)	C5 2—C6 2	1.394 (3)
C5_1—H5_1	0.95	C5 2—H5 2	0.95
C6 1 - C7 1	1 441 (3)	C6.2-C7.2	1 445 (3)
	1.441 (0)	C7 2 C8 2	1.302 (3)
	1.400 (3)		1.392 (3)
	1.403 (3)	07_2-012_2	1.406 (3)
C8_1—C9_1	1.372 (4)	C8_2—C9_2	1.384 (3)
C8_1—H8_1	0.95	C8_2—H8_2	0.95
C9_1—C10_1	1.398 (4)	C9_2—C10_2	1.395 (3)
C9 1—H9 1	0.95	C9 2—H9 2	0.95
$C10^{-}1-C11^{-}1$	1,389 (3)	C10 2-C11 2	1.386 (3)
$C10^{-}1-H10^{-}1$	0.95	C_{10}^{-} 2—H10 ⁻ 2	0.95
$C_{11} 1_{-}C_{12} 1$	1 400 (3)	$C_{11}^{-11} 2 C_{12}^{-12} 2$	1 303 (3)
	0.05	$C_{11}^{-2} = C_{12}^{-2}$	1.000 (0)
	0.95		0.95
013_1-018_1	1.385 (3)	013_2-018_2	1.385 (3)
C13_1—C14_1	1.394 (3)	C13_2—C14_2	1.392 (3)
C14_1—C15_1	1.389 (3)	C14_2—C15_2	1.388 (3)
C14_1—H14_1	0.95	C14_2—H14_2	0.95
C15 1—C16 1	1.394 (3)	C15 2-C16 2	1.386 (3)
C15_1—C19_1	1.489 (3)	C15_2_C19_2	1.488 (3)
$C_{16} 1 - C_{17} 1$	1 382 (3)	$C_{16}^{-2} = C_{17}^{-2}$	1 393 (3)
	0.05		0.05
	0.95		0.95
	1.390 (3)		1.393 (3)
C17_1—C21_1	1.493 (3)	C17_2—C21_2	1.490 (3)
C18_1—H18_1	0.95	C18_2—H18_2	0.95
C20_1—H20A_1	0.98	C20_2—H20A_2	0.98
C20_1—H20B_1	0.98	C20_2-H20B_2	0.98
C20 1—H20C 1	0.98	C20 2—H20C 2	0.98
C22 1—H22A 1	0.98	C22 2—H22A 2	0.98
$C_{22} + H_{22} + H$	0.00	$C_{22} = H_{22} + C_{22}$	0.00
	0.30		0.90

C22_1—H22C_1	0.98	C22_2—H22C_2	0.98
C12_1-N1_1-C1_1	108.47 (19)	C12_2—N1_2—C1_2	108.14 (19)
C12_1_N1_1_C13_1	126.00 (19)	C12_2_N1_2_C13_2	125.85 (19)
C1_1_N1_1_C13_1	125.0 (2)	C1_2_N1_2_C13_2	125.77 (19)
C19 1—O2 1—C20 1	114.56 (19)	C19 2—O2 2—C20 2	114.5 (2)
C21_1_O4_1_C22_1	114.79 (18)	C21 ² —O4 ² —C22 ²	114.63 (19)
C2 1—C1 1—N1 1	130.2 (2)	N1 2-C1 2-C2 2	130.0 (2)
C2 ¹ —C1 ¹ —C6 ¹	121.4 (2)	N1_2_C1_2_C6_2	108.90 (19)
N1 ⁻ 1—C1 ⁻ 1—C6 ⁻ 1	108.4 (2)	C2_2_C1_2_C6_2	121.1 (2) ´
C3 ¹ —C2 ¹ —C1 ¹	117.8 (2)	C3 2—C2 2—C1 2	117.8 (2)
C3 1—C2 1—H2 1	121.1	C3 2—C2 2—H2 2	121.1
C1 1—C2 1—H2 1	121.1	C1 2—C2 2—H2 2	121.1
C2 1—C3 1—C4 1	121.3 (2)	C2 2—C3 2—C4 2	121.0 (2)
C2 1—C3 1—H3 1	119.4	C2 2—C3 2—H3 2	119.5
C4 1—C3 1—H3 1	119.4	C4 2—C3 2—H3 2	119.5
C5 1—C4 1—C3 1	121.2 (2)	C5 2 - C4 2 - C3 2	121.3 (2)
C5 1—C4 1—H4 1	119.4	C5 2—C4 2—H4 2	119.4
C3 1—C4 1—H4 1	119.4	C3 2—C4 2—H4 2	119.4
C4 1 - C5 1 - C6 1	118.6 (2)	C4 2 - C5 2 - C6 2	118.9 (2)
C4 1 - C5 1 - H5 1	120.7	C4 2 - C5 2 - H5 2	120.6
$C_{1} = C_{2} = C_{1} = C_{2} = C_{2$	120.7	$C_{1}^{-2} = C_{2}^{-1} + C_{2}^{-2}$	120.0
C5 1 - C6 1 - C1 1	119.8 (2)	C5 2 - C6 2 - C1 2	119 9 (2)
$00_{-1} 00_{-1} 01_{-1}$	133.2 (2)	C5 2 - C6 2 - C7 2	133.2 (2)
$C_1 = C_2 = C_1 = C_2 $	107.0 (2)	$00_2 - 00_2 - 07_2$	106.8 (2)
C8 1 - C7 1 - C12 1	119 9 (2)	$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	120.0(2)
$C_{8} = 1 - C_{7} = 1 - C_{6} = 1$	133.0 (2)	C8 2 - C7 2 - C6 2	133 1 (2)
$C_{1} = C_{1} = C_{1$	107.1 (2)	$C_{2}^{-}C_{1}^{-}C_{2}^{-}C$	106.9 (2)
$C_{1} = C_{1} = C_{1$	118 8 (2)	$012_2 01_2 00_2$	100.0(2) 118.0(2)
	120.6		120.5
$C_{3}^{-1} = C_{3}^{-1} = C_{$	120.0	$C_{3}^{2} = C_{3}^{2} = C_{3$	120.5
$C_{1} = C_{2} = C_{1} = C_{1} = C_{1}$	120.0	$C_{1}^{2} = C_{2}^{2} = C_{1}^{2} C_{2}^{2}$	120.3
	121.1 (2)		120.3 (2)
$C_{0} = C_{0} = C_{0$	119.4	$C_0_2 - C_9_2 - H_9_2$	119.9
$C_{10} = C_{9} = C_{10} = C_$	1014(0)	$C10_2 - C9_2 - 119_2$	119.9
$C_{11} = C_{10} = C_{9} = 1$	121.4 (2)	$C11_2 - C10_2 - C9_2$	122.1 (2)
	110.3	$C11_2 - C10_2 - 1110_2$	119.0
$C_{3}^{-1} = C_{10}^{-1} = 1 + C_{10}^{-1} = 1$	117.4 (2)	C_{9}^{2} C_{10}^{2} C_{10}^{10} C_{10}^{11} C_{10}^{12} $C_{$	117.1 (2)
$C10_1 - C11_1 - C12_1$	101.4 (2)	$C10_2 - C11_2 - C12_2$	101 4
$C10_1 - C11_1 - H11_1$	121.0	$C10_2 - C11_2 - H11_2$	121.4
N1 1 C12 1 C11 1	121.3	$C12_2 - C11_2 - I111_2$	121.4
$N_1 = C_1 = C_1 = C_1 = C_1$	129.0 (2)	$C11_2 - C12_2 - N1_2$	129.1 (2)
$N_{1} = C_{12} = C_{1}$	109.0 (2)		121.0 (2)
$C12_1 - C12_1 - C1_1$	121.4 (2)	$N1_2 - C12_2 - C1_2$	109.2 (2)
$C10_1 - C13_1 - C14_1$	120.0 (2)	$C10_2 - C13_2 - C14_2$	120.0 (2)
$C18_1 - C13_1 - N1_1$	120.0 (2)	$C18_2 - C13_2 - N1_2$	120.1 (2)
$014_1 - 013_1 - 101_1$	120.0 (2) 110 G (2)	$C14_2 - C13_2 - N1_2$	119.0 (Z)
	119.0 (Z)	$015_2 - 014_2 - 013_2$	119.5 (2)
C12_1—C14_1—H14_1	120.2	$C_{12} = C_{14} = H_{14} = C_{12}$	120.3
C13_1—C14_1—H14_1	120.2	$C_{13} = -C_{14} = -H_{14} = 2$	120.3
U14_1—U15_1—U16_1	120.3 (2)	016_2—015_2—014_2	120.9 (2)

C14_1—C15_1—C19_1	122.0 (2)	C16_2—C15_2—C19_2	117.4 (2)
C16_1—C15_1—C19_1	117.7 (2)	C14_2—C15_2—C19_2	121.7 (2)
C17_1—C16_1—C15_1	119.6 (2)	C15_2—C16_2—C17_2	119.4 (2)
C17_1-C16_1-H16_1	120.2	C15_2—C16_2—H16_2	120.3
C15_1—C16_1—H16_1	120.2	C17_2—C16_2—H16_2	120.3
C16_1—C17_1—C18_1	120.4 (2)	C16_2—C17_2—C18_2	120.0 (2)
C16_1—C17_1—C21_1	122.1 (2)	C16_2—C17_2—C21_2	122.2 (2)
C18_1—C17_1—C21_1	117.4 (2)	C18_2—C17_2—C21_2	117.8 (2)
C13_1—C18_1—C17_1	119.9 (2)	C13_2—C18_2—C17_2	120.2 (2)
C13_1-C18_1-H18_1	120.0	C13_2—C18_2—H18_2	119.9
C17_1—C18_1—H18_1	120.0	C17_2—C18_2—H18_2	119.9
O1_1—C19_1—O2_1	123.5 (2)	O1_2—C19_2—O2_2	123.4 (2)
O1_1—C19_1—C15_1	123.6 (2)	O1_2—C19_2—C15_2	124.4 (2)
O2_1—C19_1—C15_1	112.8 (2)	O2_2—C19_2—C15_2	112.2 (2)
O2_1—C20_1—H20A_1	109.5	O2_2-C20_2-H20A_2	109.5
O2_1—C20_1—H20B_1	109.5	O2_2-C20_2-H20B_2	109.5
H20A_1-C20_1-H20B_1	109.5	H20A_2—C20_2—H20B_2	109.5
O2_1—C20_1—H20C_1	109.5	O2_2-C20_2-H20C_2	109.5
H20A_1—C20_1—H20C_1	109.5	H20A_2—C20_2—H20C_2	109.5
H20B_1-C20_1-H20C_1	109.5	H20B_2-C20_2-H20C_2	109.5
O3_1—C21_1—O4_1	123.5 (2)	O3_2-C21_2-O4_2	123.9 (2)
O3_1—C21_1—C17_1	123.9 (2)	O3_2—C21_2—C17_2	124.0 (2)
O4_1—C21_1—C17_1	112.5 (2)	O4_2—C21_2—C17_2	112.1 (2)
O4_1—C22_1—H22A_1	109.5	O4_2-C22_2-H22A_2	109.5
O4_1-C22_1-H22B_1	109.5	O4_2—C22_2—H22B_2	109.5
H22A_1—C22_1—H22B_1	109.5	H22A_2—C22_2—H22B_2	109.5
O4_1-C22_1-H22C_1	109.5	O4_2-C22_2-H22C_2	109.5
H22A_1—C22_1—H22C_1	109.5	H22A_2—C22_2—H22C_2	109.5
H22B_1—C22_1—H22C_1	109.5	H22B_2-C22_2-H22C_2	109.5

Cu1—O4 ⁱ	1.9526 (15)	C14—H14	0.93
Cu1—O1	1.9548 (16)	C15—C16	1.393 (3)
Cu1—O2 ⁱⁱ	1.9684 (16)	C15—C19	1.498 (3)
Cu1—O3 ⁱⁱⁱ	1.9749 (16)	C16—C17	1.388 (3)
Cu1—O5'	2.13 (4)	C16—H16	0.93
Cu1—O5	2.17 (2)	C17—C18	1.389 (3)
Cu1—Cu1 ⁱⁱ	2.6618 (6)	C17—C20	1.500 (3)
N1—C1	1.389 (3)	C18—H18	0.93
N1—C12	1.396 (3)	N2—C21	1.320 (9)
N1—C13	1.420 (3)	N2—C24	1.439 (12)
O1—C19	1.258 (3)	N2—C25	1.446 (12)
O2—C19	1.253 (3)	O5—C21	1.24 (2)
O2—Cu1 ⁱⁱ	1.9684 (16)	C21—C22	1.621 (16)
O3—C20	1.252 (3)	C22—C23	1.213 (17)
O3—Cu1 ^{iv}	1.9749 (16)	C22—H22A	0.97
O4—C20	1.254 (3)	C22—H22B	0.97
$04-Cu1^{\vee}$	1 9526 (15)	C23—C24	1 495 (12)
C1—C2	1 395 (4)	C23—H23A	0.97
C1—C6	1 403 (3)	C23—H23B	0.97
C2—C3	1 367 (4)	C24—H24A	0.97
C2—H2	0.93	C24—H24B	0.97
C3—C4	1 390 (5)	C25—H25A	0.96
C3—H3	0.93	C25—H25B	0.96
C4—C5	1 367 (5)	C25—H25C	0.96
C4—H4	0.93	N2'-C21'	1 346 (18)
C5—C6	1 395 (4)	N2'	1 46 (2)
C5—H5	0.93	N2'-C25'	1.53 (3)
C6—C7	1.447 (4)	05'—C21'	1.18 (4)
C7—C8	1 398 (4)	C21'—C22'	1 47 (2)
C7—C12	1.411 (3)	C22'—C23'	1.55 (2)
C8—C9	1.372 (5)	C22'—H22C	0.97
C8—H8	0.93	C22'—H22D	0.97
C9—C10	1.388 (5)	C23'—C24'	1.44 (3)
C9—H9	0.93	C23'—H23C	0.97
C10_C11	1,380 (4)	C23'—H23D	0.97
C10—H10	0.93	C24'—H24C	0.97
C11_C12	1.384 (4)	C24'—H24D	0.97
C11_H11	0.93	C25'—H25D	0.96
C13—C14	1.384 (3)	C25'—H25E	0.96
C13—C18	1.391 (3)	C25'—H25F	0.96
C14—C15	1 391 (3)		
04^{i} Cu1 - 01	87 57 (7)	C16-C17-C18	120 53 (19)
04^{i} -02^{i}	89.61 (7)	C16-C17-C20	110 57 (10)
$01-01-02^{ii}$	167.31 (7)	C_{18} C_{17} C_{20}	110 88 (10)
$O4^{i}$	167 45 (7)	C17 - C18 - C13	119 6 (2)
01_Cu1_03 ^{III}	89.03 (8)	C17_C18_H18	120.2
$02^{\parallel}-02^{\parallel}-03^{\parallel}$	91 08 (8)	C13_C18_H18	120.2
04^{i} - Cu1 - 05'	102 0 (10)	02-019-01	126.0 (2)
	102.0 (10)		. 20.0 (2)

Table S11. Crystallographic Bond Distances (Å) and Angles (°) for CuCbz MOF.

O1—Cu1—O5'	96.7 (11)	O2—C19—C15	117.86 (19)
O2 ⁱⁱ —Cu1—O5'	96.0 (11)	O1—C19—C15	116.10 (19)
O3 ⁱⁱⁱ —Cu1—O5'	90.4 (10)	O3—C20—O4	126.6 (2)
O4 ⁱ —Cu1—O5	101.0 (5)	O3—C20—C17	116.19 (19)
O1—Cu1—O5	90.5 (6)	O4—C20—C17	117.18 (19)
O2 ⁱⁱ —Cu1—O5	102.2 (6)	C21—N2—C24	115.1 (9)
O3 ⁱⁱⁱ —Cu1—O5	91.1 (5)	C21—N2—C25	120.7 (8)
O4 ⁱ —Cu1—Cu1 ⁱⁱ	87.93 (5)	C24—N2—C25	124.1 (8)
O1—Cu1—Cu1 ⁱⁱ	83.64 (5)	C21—O5—Cu1	120.8 (14)
O2 ⁱⁱ —Cu1—Cu1 ⁱⁱ	83.89 (5)	O5-C21-N2	129.8 (13)
O3 ⁱⁱⁱ —Cu1—Cu1 ⁱⁱ	79.69 (5)	O5-C21-C22	131.4 (13)
O5'—Cu1—Cu1 ⁱⁱ	170.1 (10)	N2-C21-C22	98.4 (8)
O5—Cu1—Cu1 ⁱⁱ	169.1 (5)	C23—C22—C21	113.5 (13)
C1—N1—C12	108.62 (19)	C23—C22—H22A	108.9
C1-N1-C13	126.3 (2)	C21—C22—H22A	108.9
C12-N1-C13	125.1 (2)	C23—C22—H22B	108.9
C19—O1—Cu1	123.59 (14)	C21—C22—H22B	108.9
C19—O2—Cu1 ⁱⁱ	122.72 (14)	H22A—C22—H22B	107.7
C20-O3-Cu1 ^{iv}	127.17 (14)	C22—C23—C24	107.7 (10)
$C_{20} - O_{4} - C_{1}^{v}$	118.49 (14)	C22—C23—H23A	110.2
N1-C1-C2	129.3 (2)	C24—C23—H23A	110.2
N1-C1-C6	109 1 (2)	C22—C23—H23B	110.2
C2C1C6	121 6 (3)	C24—C23—H23B	110.2
C_{3} C_{2} C_{1}	117 4 (3)	H23A—C23—H23B	108.5
C3—C2—H2	121.3	N_{2} C24 C23	104.3 (7)
C1—C2—H2	121.3	N2-C24-H24A	110.9
C_{2} C_{3} C_{4}	122.0 (3)	C23—C24—H24A	110.9
C2—C3—H3	119.0	N2-C24-H24B	110.9
C4—C3—H3	119.0	C23—C24—H24B	110.9
C_{5} C_{4} C_{3}	120.8 (3)	H24A_C24_H24B	108.9
C5—C4—H4	119.6	N2	109.5
C3—C4—H4	119.6	N2-C25-H25B	109.5
C4 - C5 - C6	119.2 (3)	H25A = C25 = H25B	109.5
C4 - C5 - H5	120.4	N_{2} C_{25} H_{25} C_{25}	100.0
C6-C5-H5	120.4	$H_{25} = C_{25} = H_{25} C_{25}$	100.0
C5-C6-C1	119 2 (3)	H25B - C25 - H25C	109.5
C5-C6-C7	134.0 (3)	C21'-N2'-C24'	111 4 (16)
C1 - C6 - C7	106.8 (2)	C21' - N2' - C25'	104 9 (12)
C8 - C7 - C12	118 7 (3)	$C_{24} = N_{2} = C_{25}$	104.3(12) 142 7 (14)
C8 - C7 - C6	134 4 (3)	C21'-05'-C11	123 (3)
C12-C7-C6	106.8 (2)	05'-021'-N2'	120 (0)
$C_{12}^{}$	119 4 (3)	05'-021'-022'	110 (2)
	120.3	N2'	110(2)
	120.3	(2 - 02) - 022	102.7(14)
C8 - C9 - C10	120.0	$C_{21} = C_{22} = C_{23}$	102.7 (14)
	119.6	$C_{23} = C_{22} = H_{22} = C_{23}$	111.2
	110.6	C21'_C22'_H22D	111.2
$C_{11} = C_{10} = C_{10}$	121 7 (3)	C23'_C22'_H22D	111.2
C_{11} C_{10} H_{10}	110.2		100 1
	113.2		100.1

C9—C10—H10	119.2	C24'—C23'—C22'	107.3 (14)
C10-C11-C12	117.5 (3)	C24'—C23'—H23C	110.2
C10—C11—H11	121.2	C22'—C23'—H23C	110.2
C12—C11—H11	121.2	C24'—C23'—H23D	110.2
C11-C12-N1	129.5 (2)	C22'—C23'—H23D	110.2
C11—C12—C7	121.9 (2)	H23C—C23'—H23D	108.5
N1-C12-C7	108.6 (2)	C23'—C24'—N2'	106.4 (15)
C14—C13—C18	120.0 (2)	C23'—C24'—H24C	110.4
C14—C13—N1	119.96 (19)	N2'—C24'—H24C	110.4
C18—C13—N1	120.0 (2)	C23'—C24'—H24D	110.4
C13—C14—C15	120.4 (2)	N2'—C24'—H24D	110.4
C13—C14—H14	119.8	H24C—C24'—H24D	108.6
C15—C14—H14	119.8	N2'—C25'—H25D	109.5
C14—C15—C16	119.81 (19)	N2'—C25'—H25E	109.5
C14—C15—C19	119.94 (19)	H25D—C25'—H25E	109.5
C16—C15—C19	120.23 (19)	N2'—C25'—H25F	109.5
C17—C16—C15	119.57 (19)	H25D—C25'—H25F	109.5
C17—C16—H16	120.2	H25E—C25'—H25F	109.5
C15—C16—H16	120.2		

Symmetry codes: (i) x, -y+2, z-1/2; (ii) -x+1/2, -y+3/2, -z; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) x, -y+2, z+1/2.

Table S12	. Crystallographic	Bond Distances (Å	 and Angles (^a) for CoCbz MOF.
-----------	--------------------	-------------------	--	------------------

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O9'	2.01 (2)	C24—H24	0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O3	2.0459 (18)	C25—C26	1.392 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O5	2.0720 (17)	C25—C40 ⁱⁱ	1.491 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O11	2.092 (2)	C26—H26	0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O10	2.0933 (18)	C27—C28	1.386 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O9	2.107 (5)	C27—C32	1.413 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—O1	2.1113 (17)	C28—C29	1.383 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2—O6	1.9915 (17)	C28—H28	0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2—O4	1.9928 (18)	C29—C30	1.396 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2—O1	2.1448 (17)	C29—H29	0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2—O7	2.1548 (16)	C30—C31	1.377 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2—O2	2.1558 (18)	C30—H30	0.95
Co2—C12.472 (3)C31—H310.95Co2—C402.491 (2)C32—C331.445 (4)O1—C11.284 (3)C33—C341.398 (4)O2—C11.244 (3)C33—C381.411 (4)O3—C201.251 (3)C34—C351.381 (4)O4—C201.257 (3)C34—H340.95O5—C391.253 (3)C35—C361.393 (4)	Co2—O8	2.1725 (18)	C31—C32	1.391 (4)
Co2—C402.491 (2)C32—C331.445 (4)O1—C11.284 (3)C33—C341.398 (4)O2—C11.244 (3)C33—C381.411 (4)O3—C201.251 (3)C34—C351.381 (4)O4—C201.257 (3)C34—H340.95O5—C391.253 (3)C35—C361.393 (4)	Co2—C1	2.472 (3)	C31—H31	0.95
O1—C11.284 (3)C33—C341.398 (4)O2—C11.244 (3)C33—C381.411 (4)O3—C201.251 (3)C34—C351.381 (4)O4—C201.257 (3)C34—H340.95O5—C391.253 (3)C35—C361.393 (4)	Co2—C40	2.491 (2)	C32—C33	1.445 (4)
O2C11.244 (3)C33C381.411 (4)O3C201.251 (3)C34C351.381 (4)O4C201.257 (3)C34H340.95O5C391.253 (3)C35C361.393 (4)	O1—C1	1.284 (3)	C33—C34	1.398 (4)
O3—C20 1.251 (3) C34—C35 1.381 (4) O4—C20 1.257 (3) C34—H34 0.95 O5—C39 1.253 (3) C35—C36 1.393 (4)	O2—C1	1.244 (3)	C33—C38	1.411 (4)
O4—C20 1.257 (3) C34—H34 0.95 O5—C39 1.253 (3) C35—C36 1.393 (4)	O3—C20	1.251 (3)	C34—C35	1.381 (4)
O5-C39 1.253 (3) C35-C36 1.393 (4)	O4—C20	1.257 (3)	C34—H34	0.95
	O5—C39	1.253 (3)	C35—C36	1.393 (4)
U6-U39 1.258 (3) U35-H35 0.95	O6—C39	1.258 (3)	C35—H35	0.95
O7—C40 1.272 (3) C36—C37 1.392 (4)	O7—C40	1.272 (3)	C36—C37	1.392 (4)
O8—C40 1.260 (3) C36—H36 0.95	O8—C40	1.260 (3)	C36—H36	0.95
O10—C44 1.436 (3) C37—C38 1.383 (4)	O10—C44	1.436 (3)	C37—C38	1.383 (4)

O10—H10	0.78 (3)	C37—H37	0.95
O11—C45	1.419 (4)	C39—C4 ⁱⁱⁱ	1.508 (3)
O11—H11	0.81 (4)	C40—C25 ^{iv}	1.491 (3)
N1—C19	1.394 (3)	O9—C41	1.240 (7)
N1—C8	1.396 (3)	C41—N3	1.317 (6)
N1—C6	1.425 (3)	C41—H41	0.95
N2—C38	1.399 (3)	N3—C42	1.454 (6)
N2—C27	1.403 (3)	N3—C43	1.516 (8)
N2—C23	1.426 (3)	C42—H42A	0.98
C1—C2	1.494 (4)	C42—H42B	0.98
C2—C3	1.389 (3)	C42—H42C	0.98
C2—C7	1.397 (3)	C43—H43A	0.98
C3—C4	1.390 (4)	C43—H43B	0.98
C3—H3	0.95	C43—H43C	0.98
C4—C5	1.387 (3)	C44—H44A	0.98
C4—C39 ⁱ	1.508 (3)	C44—H44B	0.98
C5—C6	1.392 (4)	C44—H44C	0.98
C5—H5	0.95	C45—H45A	0.98
C6—C7	1.388 (4)	C45—H45B	0.98
C7—H7	0.95	C45—H45C	0.98
C8—C9	1.393 (4)	O9'—C41'	1.13 (3)
C8—C13	1.403 (4)	C41'—N3'	1.42 (4)
C9—C10	1.377 (4)	C41'—H41'	0.95
С9—Н9	0.95	N3'—C43'	0.99 (3)
C10—C11	1.391 (5)	N3'—C42'	1.43 (3)
C10—H10A	0.95	C42'—C43'	2.01 (4)
C11—C12	1.380 (5)	C42'—H42D	0.98
C11—H11A	0.95	C42'—H42E	0.98
C12—C13	1.391 (4)	C42'—H42F	0.98
C12—H12	0.95	C43'—H43D	0.98
C13—C14	1.447 (4)	C43'—H43E	0.98
C14—C15	1.392 (4)	C43'—H43F	0.98
C14—C19	1.405 (4)	O1S—C1S	1.443 (9)
C15—C16	1.372 (4)	O1S—H1S	1.07 (6)
C15—H15	0.95	C1S—H1S1	0.98
C16—C17	1.396 (4)	C1S—H1S2	0.98
C16—H16	0.95	C1S—H1S3	0.98
C17—C18	1.382 (4)	O1F—C1F	1.279 (13)
C17—H17	0.95	C1F—N1F	1.356 (14)
C18—C19	1.385 (4)	C1F—H1F	0.95
C18—H18	0.95	N1F—C2F	1.431 (11)
C20—C21	1.505 (3)	N1F—C3F	1.479 (13)
C21—C22	1.387 (3)	C2F—H2F1	0.98
C21—C26	1.387 (3)	C2F—H2F2	0.98
C22—C23	1.390 (3)	C2F—H2F3	0.98
C22—H22	0.95	C3F—H3F1	0.98
C23—C24	1.391 (3)	C3F—H3F2	0.98
C24—C25	1.389 (3)	C3F—H3F3	0.98
O9'—Co1—O3	97.3 (5)	C22-C23-N2	119.7 (2)

O9'—Co1—O5	161.0 (5)	C24—C23—N2	120.0 (2)
O3—Co1—O5	93.40 (8)	C25—C24—C23	119.5 (2)
O9'—Co1—O11	73.6 (5)	C25—C24—H24	120.3
O3—Co1—O11	88.68 (9)	C23—C24—H24	120.3
O5—Co1—O11	91.07 (9)	C24—C25—C26	120.3 (2)
O9'—Co1—O10	82.3 (5)	C24—C25—C40 ⁱⁱ	120.6 (2)
O3—Co1—O10	178.47 (7)	C26—C25—C40 ⁱⁱ	119.1 (2)
O5—Co1—O10	86.56 (7)	C21—C26—C25	120.0 (2)
O11—Co1—O10	89.79 (9)	C21—C26—H26	120.0
O3—Co1—O9	86.85 (14)	C25—C26—H26	120.0
O5—Co1—O9	178.13 (15)	C28—C27—N2	129.3 (2)
O11—Co1—O9	87.08 (16)	C28—C27—C32	122.0 (2)
O10—Co1—O9	93.14 (14)	N2-C27-C32	108.7 (2)
O9'—Co1—O1	100.0 (5)	C29—C28—C27	117.3 (2)
O3—Co1—O1	93.27 (7)	C29—C28—H28	121.3
O5—Co1—O1	95.01 (7)	C27—C28—H28	121.3
O11—Co1—O1	173.48 (9)	C28—C29—C30	121.5 (3)
O10—Co1—O1	88.26 (7)	C28—C29—H29	119.2
O9—Co1—O1	86.82 (15)	C30—C29—H29	119.2
O6—Co2—O4	96.54 (8)	C31—C30—C29	120.8 (3)
O6—Co2—O1	98.85 (7)	C31—C30—H30	119.6
O4—Co2—O1	101.47 (7)	C29—C30—H30	119.6
O6—Co2—O7	94.22 (7)	C30—C31—C32	119.1 (3)
O4—Co2—O7	100.17 (7)	C30—C31—H31	120.4
O1—Co2—O7	153.18 (6)	C32—C31—H31	120.4
O6—Co2—O2	159.56 (7)	C31—C32—C27	119.2 (3)
O4—Co2—O2	92.59 (8)	C31—C32—C33	133.9 (2)
O1—Co2—O2	61.31 (6)	C27—C32—C33	107.0 (2)
O7—Co2—O2	102.13 (6)	C34—C33—C38	118.9 (3)
O6—Co2—O8	90.88 (7)	C34—C33—C32	133.9 (3)
O4—Co2—O8	160.36 (7)	C38—C33—C32	107.2 (2)
O1—Co2—O8	95.28 (7)	C35—C34—C33	119.0 (3)
O7—Co2—O8	61.04 (6)	C35—C34—H34	120.5
O2—Co2—O8	86.47 (7)	C33—C34—H34	120.5
O6—Co2—C1	129.55 (8)	C34—C35—C36	121.2 (3)
O4—Co2—C1	100.47 (8)	C34—C35—H35	119.4 ໌
O1—Co2—C1	31.27 (7)	C36—C35—H35	119.4
O7—Co2—C1	128.18 (7)	C37—C36—C35	121.1 (3)
O2-Co2-C1	30.21 (7)	C37—C36—H36	119.5
O8—Co2—C1	88.54 (8)	C35—C36—H36	119.5
O6—Co2—C40	94.01 (7)	C38—C37—C36	117.5 (3)
O4—Co2—C40	130.48 (8)	C38—C37—H37	121.2
O1—Co2—C40	124.39 (7)	C36—C37—H37	121.2
O7—Co2—C40	30.70 (7)	C37—C38—N2	129.0 (2)
O2—Co2—C40	93.88 (7)	C37—C38—C33	122.2 (2)
O8—Co2—C40	30.38 (7)	N2—C38—C33	108.7 (2)
C1—Co2—C40	109.23 (8)	O5—C39—O6	127.3 (2)
C1—O1—Co1	138.36 (16)	O5—C39—C4 ⁱⁱⁱ	118.0 (2)
C1	88.58 (14)	O6—C39—C4 ⁱⁱⁱ	114.7 (2)

Co1—O1—Co2	107.40 (7)	O8—C40—O7	120.4 (2)
C1	89.10 (15)	08—C40—C25 ^{iv}	119.3 (2)
C20—O3—Co1	139.89 (17)	07—C40—C25 ^{iv}	120.2 (2)
C20—O4—Co2	127.52 (17)	O8—C40—Co2	60.67 (12)
C39—O5—Co1	132.76 (16)	O7—C40—Co2	59.86 (12)
C39—O6—Co2	130.78 (17)	C25 ^{iv} —C40—Co2	175.44 (17)
C40—O7—Co2	89.44 (14)	C41—O9—Co1	127.1 (3)
C40—O8—Co2	88.95 (14)	O9-C41-N3	126.0 (4)
C44—O10—Co1	122.68 (15)	O9—C41—H41	117.0
C44—O10—H10	109 (2)	N3—C41—H41	117.0
Co1—O10—H10	127 (2)	C41—N3—C42	122.2 (5)
C45—O11—Co1	125.2 (2)	C41—N3—C43	121.3 (5)
C45—O11—H11	100 (3)	C42—N3—C43	116.1 (4)
Co1-011-H11	125 (3)	N3—C42—H42A	109.5
C19—N1—C8	108.9 (2)	N3—C42—H42B	109.5
C19—N1—C6	125.5 (2)	H42A—C42—H42B	109.5
C8—N1—C6	125.4 (2)	N3—C42—H42C	109.5
C38—N2—C27	108.4 (2)	H42A—C42—H42C	109.5
C38—N2—C23	124.8 (2)	H42B—C42—H42C	109.5
C27—N2—C23	124.5 (2)	N3—C43—H43A	109.5
O2—C1—O1	120.3 (2)	N3—C43—H43B	109.5
O2-C1-C2	120.2 (2)	H43A—C43—H43B	109.5
O1—C1—C2	119.2 (2)	N3—C43—H43C	109.5
O2-C1-Co2	60.68 (13)	H43A—C43—H43C	109.5
O1-C1-Co2	60.15 (12)	H43B—C43—H43C	109.5
C2-C1-Co2	167.81 (19)	O10—C44—H44A	109.5
C3—C2—C7	119.9 (2)	O10—C44—H44B	109.5
C3—C2—C1	119.5 (2)	H44A—C44—H44B	109.5
C7—C2—C1	120.3 (2)	O10—C44—H44C	109.5
C2—C3—C4	120.5 (2)	H44A—C44—H44C	109.5
C2—C3—H3	119.7	H44B—C44—H44C	109.5
C4—C3—H3	119.7	O11—C45—H45A	109.5
C5—C4—C3	119.8 (2)	O11—C45—H45B	109.5
C5—C4—C39 ⁱ	122.6 (2)	H45A—C45—H45B	109.5
C3—C4—C39 ⁱ	117.6 (2)	O11—C45—H45C	109.5
C4—C5—C6	119.7 (2)	H45A—C45—H45C	109.5
C4—C5—H5	120.2	H45B—C45—H45C	109.5
C6—C5—H5	120.2	C41'—O9'—Co1	121.9 (16)
C7—C6—C5	120.8 (2)	O9'—C41'—N3'	120 (2)
C7—C6—N1	119.4 (2)	O9'—C41'—H41'	119.8
C5-C6-N1	119.7 (2)	N3'—C41'—H41'	119.8
C6—C7—C2	119.3 (2)	C43'—N3'—C41'	119 (3)
C6—C7—H7	120.4	C43'—N3'—C42'	111 (3)
C2C7H7	120.4	C41'—N3'—C42'	128 (2)
C9—C8—N1	129.2 (2)	N3'—C42'—C43'	27.5 (14)
C9—C8—C13	122.2 (3)	N3'—C42'—H42D	109.5
N1—C8—C13	108.5 (2)	C43'—C42'—H42D	102.7
C10—C9—C8	117.4 (3)	N3'—C42'—H42E	109.5
С10—С9—Н9	121.3	C43'—C42'—H42E	134.8

C8—C9—H9	121.3	H42D—C42'—H42E	109.5
C9—C10—C11	121.5 (3)	N3'—C42'—H42F	109.5
C9—C10—H10A	119.3	C43'—C42'—H42F	87.8
C11—C10—H10A	119.3	H42D—C42'—H42F	109.5
C12—C11—C10	120.7 (3)	H42E—C42'—H42F	109.5
C12—C11—H11A	119.6	N3'—C43'—C42'	42 (2)
C10-C11-H11A	119.6	N3'—C43'—H43D	109.5
C11—C12—C13	119.4 (3)	C42'—C43'—H43D	89.7
C11—C12—H12	120.3	N3'—C43'—H43E	109.5
C13—C12—H12	120.3	C42'—C43'—H43E	83.1
C12—C13—C8	118.7 (3)	H43D—C43'—H43E	109.5
C12—C13—C14	134.0 (3)	N3'—C43'—H43F	109.5
C8—C13—C14	107.2 (2)	C42'—C43'—H43F	150.7
C15—C14—C19	119.1 (3)	H43D—C43'—H43F	109.5
C15—C14—C13	134.0 (3)	H43E—C43'—H43F	109.5
C19—C14—C13	106.9 (2)	C1S—O1S—H1S	103 (3)
C16—C15—C14	119.3 (3)	O1S—C1S—H1S1	109.5
C16—C15—H15	120.3	O1S—C1S—H1S2	109.5
C14—C15—H15	120.3	H1S1—C1S—H1S2	109.5
C15—C16—C17	120.9 (3)	O1S—C1S—H1S3	109.5
C15—C16—H16	119.6	H1S1—C1S—H1S3	109.5
C17—C16—H16	119.6	H1S2—C1S—H1S3	109.5
C18—C17—C16	121.2 (3)	O1F—C1F—N1F	121.6 (15)
C18—C17—H17	119.4	O1F—C1F—H1F	119.2
C16—C17—H17	119.4	N1F—C1F—H1F	119.2
C17—C18—C19	117.6 (3)	C1F—N1F—C2F	119.7 (10)
C17—C18—H18	121.2	C1F—N1F—C3F	120.7 (11)
C19—C18—H18	121.2	C2F—N1F—C3F	119.6 (10)
C18—C19—N1	129.5 (2)	N1F—C2F—H2F1	109.5
C18—C19—C14	121.9 (2)	N1F—C2F—H2F2	109.5
N1—C19—C14	108.6 (2)	H2F1—C2F—H2F2	109.5
O3—C20—O4	126.7 (2)	N1F—C2F—H2F3	109.5
O3—C20—C21	117.0 (2)	H2F1—C2F—H2F3	109.5
O4—C20—C21	116.3 (2)	H2F2—C2F—H2F3	109.5
C22—C21—C26	119.9 (2)	N1F—C3F—H3F1	109.5
C22—C21—C20	120.5 (2)	N1F—C3F—H3F2	109.5
C26—C21—C20	119.5 (2)	H3F1—C3F—H3F2	109.5
C21—C22—C23	120.1 (2)	N1F—C3F—H3F3	109.5
C21—C22—H22	120.0	H3F1—C3F—H3F3	109.5
C23—C22—H22	120.0	H3F2—C3F—H3F3	109.5
C22—C23—C24	120.3 (2)		

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+3/2, *y*+1/2, -*z*+1/2; (iv) *x*-1, *y*, *z*.

Zn1—O4	1.951 (3)	C28—C29	1.376 (7)
Zn1—06	1.963 (2)	C28—H28	0.9500
Zn1—O8 ⁱ	1.966 (2)	C29—C30	1.407 (6)
Zn1—O1 ⁱⁱ	2.007 (3)	C29—H29	0.9500
Zn2—O5	2.030 (3)	C30—C31	1.387 (6)
Zn2—O7 ⁱ	2.067 (3)	C30—H30	0.9500
Zn2—O2 ⁱⁱ	2.071 (3)	C31—C32	1.394 (6)
Zn2—09	2.088 (3)	C31—H31	0.9500
Zn2—O10	2.094 (3)	C33—C34	1.385 (5)
Zn2—012	2.145 (3)	C33—C38	1.389 (5)
N1—C1	1.396 (5)	C34—C35	1.387 (5)
N1—C12	1.401 (5)	C34—H34	0.9500
N1—C13	1.431 (4)	C35—C36	1.385 (5)
C1—C2	1.391 (5)	C35—C39	1.516 (5)
C1—C6	1.410 (5)	C36—C37	1.384 (5)
C2—C3	1.393 (6)	C36—H36	0.9500
C2—H2	0.9500	C37—C38	1.398 (5)
C3—C4	1.394 (6)	C37—C40	1.508 (5)
C3—H3	0.9500	C38—H38	0.9500
C4—C5	1.380 (6)	C39—O5	1.251 (4)
C4—H4	0.9500	C39—O6	1.260 (4)
C5—C6	1.401 (6)	C40—O7	1.249 (4)
C5—H5	0.9500	C40—O8	1.266 (4)
C6—C7	1.441 (6)	O7—Zn2 ^{iv}	2.067 (3)
C7—C8	1.402 (5)	O8—Zn1 ^{iv}	1.966 (2)
C7—C12	1.416 (5)	N3—C43	1.314 (5)
C8—C9	1.375 (6)	N3—C41	1.444 (5)
C8—H8	0.9500	N3—C42	1.469 (5)
C9—C10	1.402 (6)	C41—H41A	0.9800
С9—Н9	0.9500	C41—H41B	0.9800
C10—C11	1.386 (6)	C41—H41C	0.9800
C10—H10	0.9500	C42—H42A	0.9800
C11—C12	1.384 (6)	C42—H42B	0.9800
C11—H11	0.9500	C42—H42C	0.9800
C13—C18	1.380 (5)	C43—O9	1.238 (5)
C13—C14	1.386 (5)	C43—H43	0.9500
C14—C15	1.393 (5)	N4—C46	1.315 (5)
C14—H14	0.9500	N4—C44	1.459 (5)
C15—C16	1.394 (5)	N4—C45	1.465 (5)
C15—C19	1.504 (5)	C44—H44A	0.9800
C16—C17	1.391 (5)	C44—H44B	0.9800
C16—H16	0.9500	C44—H44C	0.9800
C17—C18	1.397 (5)	C45—H45A	0.9800
C17—C20	1.505 (5)	C45—H45B	0.9800
C18—H18	0.9500	C45—H45C	0.9800
C19—O2	1.258 (4)	C46—O10	1.242 (4)
C19—O1	1.258 (5)	C46—H46	0.9500
O1—Zn1 ⁱⁱⁱ	2.007 (3)	O12—C50	1.427 (5)

 Table S13. Crystallographic Bond Distances (Å) and Angles (°) for ZnCbz MOF.

O2—Zn2 ⁱⁱⁱ	2.071 (3)	O12—H12	0.80 (5)
C20—O3	1.237 (4)	C50—C51	1.513 (6)
C20—O4	1.284 (4)	C50—H50A	0.9900
N2—C21	1.388 (5)	C50—H50B	0.9900
N2—C32	1.392 (5)	C51—H51A	0.9800
N2—C33	1.432 (5)	C51—H51B	0.9800
C21—C22	1.383 (6)	C51—H51C	0.9800
C21—C26	1.415 (5)	O11—C49	1.247 (5)
C22—C23	1.389 (6)	N5—C49	1.322 (5)
C22—H22	0.9500	N5—C47	1.452 (5)
C23—C24	1.397 (6)	N5—C48	1.461 (5)
C23—H23	0.9500	C47—H47A	0.9800
C24—C25	1.382 (7)	C47—H47B	0.9800
C24—H24	0.9500	C47—H47C	0.9800
C25—C26	1.398 (6)	C48—H48A	0.9800
C25—H25	0.9500	C48—H48B	0.9800
C26—C27	1.442 (6)	C48—H48C	0.9800
C27—C28	1.395 (6)	C49—H49	0.9500
C27—C32	1.415 (5)		
O4—Zn1—O6	105.15 (11)	C27—C28—H28	120.3
O4—Zn1—O8 ⁱ	103.07 (11)	C28—C29—C30	121.0 (4)
O6—Zn1—O8 ⁱ	138.13 (10)	C28—C29—H29	119.5
O4—Zn1—O1 ⁱⁱ	108.02 (10)	C30—C29—H29	119.5
O6—Zn1—O1 ⁱⁱ	99.52 (11)	C31—C30—C29	121.0 (5)
O8 ⁱ —Zn1—O1 ⁱⁱ	100.41 (11)	C31—C30—H30	119.5
05—Zn2—O7 ⁱ	95.16 (11)	C29—C30—H30	119.5
O5—Zn2—O2 ⁱⁱ	93.41 (11)	C30—C31—C32	117.5 (4)
O7 ⁱ —Zn2—O2 ⁱⁱ	97.63 (10)	C30—C31—H31	121.3
O5—Zn2—O9	178.04 (13)	C32—C31—H31	121.3
07 ⁱ —Zn2—O9	86.77 (12)	N2-C32-C31	129.2 (4)
O2 ⁱⁱ —Zn2—O9	86.62 (11)	N2-C32-C27	108.7 (4)
O5—Zn2—O10	90.47 (10)	C31—C32—C27	122.1 (4)
07 ⁱ —Zn2—O10	91.42 (11)	C34—C33—C38	120.4 (3)
O2 ⁱⁱ —Zn2—O10	169.78 (12)	C34—C33—N2	119.2 (3)
O9—Zn2—O10	89.18 (11)	C38—C33—N2	120.4 (3)
O5—Zn2—O12	84.89 (12)	C33—C34—C35	120.1 (3)
07 ⁱ —Zn2—O12	175.97 (11)	C33—C34—H34	119.9
O2 ⁱⁱ —Zn2—O12	86.38 (11)	C35—C34—H34	119.9
O9—Zn2—O12	93.15 (12)	C36—C35—C34	119.8 (3)
O10—Zn2—O12	84.55 (11)	C36—C35—C39	120.6 (3)
C1—N1—C12	108.7 (3)	C34—C35—C39	119.6 (3)
C1—N1—C13	125.0 (3)	C37—C36—C35	120.4 (3)
C12—N1—C13	125.8 (3)	C37—C36—H36	119.8
C2-C1-N1	128.8 (4)	C35—C36—H36	119.8
C2—C1—C6	122.5 (4)	C36—C37—C38	120.0 (3)
N1—C1—C6	108.6 (3)	C36—C37—C40	119.9 (3)
C1—C2—C3	116.6 (4)	C38—C37—C40	120.1 (3)
C1—C2—H2	121.7	C33—C38—C37	119.3 (3)

C3—C2—H2	121.7	C33—C38—H38	120.4
C2—C3—C4	122.0 (4)	C37—C38—H38	120.4
C2—C3—H3	119.0	O5—C39—O6	127.3 (3)
C4—C3—H3	119.0	O5—C39—C35	116.5 (3)
C5—C4—C3	120.7 (4)	O6—C39—C35	116.2 (3)
C5—C4—H4	119.7	C39—O5—Zn2	133.4 (2)
C3—C4—H4	119.7	C39—O6—Zn1	133.7 (2)
C4—C5—C6	119.2 (4)	O7—C40—O8	125.7 (3)
C4—C5—H5	120.4	O7—C40—C37	117.9 (3)
C6—C5—H5	120.4	O8—C40—C37	116.3 (3)
C5—C6—C1	119.0 (4)	C40—O7—Zn2 ^{iv}	128.2 (2)
C5—C6—C7	133.6 (4)	C40—O8—Zn1 ^{iv}	121.5 (2)
C1—C6—C7	107.3 (3)	C43—N3—C41	124.0 (4)
C8—C7—C12	118.5 (4)	C43—N3—C42	118.9 (4)
C8—C7—C6	134.5 (4)	C41—N3—C42	117.1 (4)
C12—C7—C6	106.9 (3)	N3—C41—H41A	109.5
C9—C8—C7	119.4 (4)	N3—C41—H41B	109.5
C9—C8—H8	120.3	H41A—C41—H41B	109.5
C7—C8—H8	120.3	N3—C41—H41C	109.5
C8—C9—C10	121.2 (4)	H41A—C41—H41C	109.5
C8—C9—H9	119.4	H41B—C41—H41C	109.5
C10—C9—H9	119.4	N3—C42—H42A	109.5
C11—C10—C9	120.8 (4)	N3—C42—H42B	109.5
C11—C10—H10	119.6	H42A—C42—H42B	109.5
C9—C10—H10	119.6	N3—C42—H42C	109.5
C12-C11-C10	118.0 (4)	H42A—C42—H42C	109.5
C12—C11—H11	121.0	H42B—C42—H42C	109.5
C10—C11—H11	121.0	O9—C43—N3	124.5 (4)
C11-C12-N1	129.5 (4)	O9—C43—H43	117.7
C11—C12—C7	122.1 (4)	N3—C43—H43	117.7
N1-C12-C7	108.4 (3)	C43—O9—Zn2	120.7 (3)
C18—C13—C14	121.0 (3)	C46—N4—C44	120.0 (3)
C18—C13—N1	118.8 (4)	C46—N4—C45	121.9 (3)
C14—C13—N1	120.2 (4)	C44—N4—C45	118.0 (3)
C13—C14—C15	119.3 (4)	N4—C44—H44A	109.5
C13—C14—H14	120.3	N4—C44—H44B	109.5
C15—C14—H14	120.3	H44A—C44—H44B	109.5
C14—C15—C16	119.7 (4)	N4—C44—H44C	109.5
C14—C15—C19	119.8 (4)	H44A—C44—H44C	109.5
C16—C15—C19	120.4 (3)	H44B—C44—H44C	109.5
C17—C16—C15	120.9 (3)	N4—C45—H45A	109.5
C17—C16—H16	119.6	N4—C45—H45B	109.5
C15—C16—H16	119.6	H45A—C45—H45B	109.5
C16—C17—C18	118.8 (4)	N4—C45—H45C	109.5
C16—C17—C20	121.4 (3)	H45A—C45—H45C	109.5
C18—C17—C20	119.8 (4)	H45B—C45—H45C	109.5
C13—C18—C17	120.3 (4)	O10—C46—N4	123.8 (4)
C13—C18—H18	119.8	O10—C46—H46	118.1
C17—C18—H18	119.8	N4—C46—H46	118.1

O2—C19—O1	124.4 (4)	C46—O10—Zn2	118.1 (2)
O2—C19—C15	117.5 (3)	C50—O12—Zn2	128.1 (2)
O1—C19—C15	118.0 (3)	C50—O12—H12	111 (4)
C19—O1—Zn1 ⁱⁱⁱ	109.1 (2)	Zn2—O12—H12	120 (4)
C19—O2—Zn2 ⁱⁱⁱ	168.6 (3)	O12—C50—C51	111.7 (4)
O3—C20—O4	124.8 (4)	O12—C50—H50A	109.3
O3—C20—C17	120.0 (3)	C51—C50—H50A	109.3
O4—C20—C17	115.2 (3)	O12—C50—H50B	109.3
C20—O4—Zn1	110.3 (2)	C51—C50—H50B	109.3
C21—N2—C32	108.9 (3)	H50A—C50—H50B	107.9
C21-N2-C33	124.5 (3)	C50—C51—H51A	109.5
C32—N2—C33	125.6 (3)	C50—C51—H51B	109.5
C22—C21—N2	128.9 (4)	H51A—C51—H51B	109.5
C22—C21—C26	122.3 (4)	C50—C51—H51C	109.5
N2-C21-C26	108.7 (4)	H51A—C51—H51C	109.5
C21—C22—C23	117.6 (4)	H51B—C51—H51C	109.5
C21—C22—H22	121.2	C49—N5—C47	121.2 (4)
C23—C22—H22	121.2	C49—N5—C48	120.4 (4)
C22—C23—C24	121.6 (5)	C47—N5—C48	118.4 (4)
C22—C23—H23	119.2	N5—C47—H47A	109.5
C24—C23—H23	119.2	N5—C47—H47B	109.5
C25—C24—C23	120.1 (4)	H47A—C47—H47B	109.5
C25—C24—H24	120.0	N5—C47—H47C	109.5
C23—C24—H24	120.0	H47A—C47—H47C	109.5
C24—C25—C26	120.1 (4)	H47B—C47—H47C	109.5
C24—C25—H25	120.0	N5—C48—H48A	109.5
C26—C25—H25	120.0	N5—C48—H48B	109.5
C25—C26—C21	118.3 (4)	H48A—C48—H48B	109.5
C25—C26—C27	134.7 (4)	N5—C48—H48C	109.5
C21—C26—C27	106.9 (4)	H48A—C48—H48C	109.5
C28—C27—C32	118.9 (4)	H48B—C48—H48C	109.5
C28—C27—C26	134.3 (4)	O11—C49—N5	125.4 (4)
C32—C27—C26	106.8 (4)	O11—C49—H49	117.3
C29—C28—C27	119.4 (4)	N5—C49—H49	117.3
C29—C28—H28	120.3		

Symmetry codes: (iv) -x+1, y-1/2, -z+3/2; (v) -x, y+1/2, -z+3/2; (vi) -x+3/2, -y+2, z+1/2.

11. References

[1] Huang, X.; Anderson, K.; Zim, D.; Jiang, L.; Buchwald, S. J. Amer. Chem. Soc., 2003, 125, 6653-6655.

[2] D. J. Dahm, Interpreting diffuse reflectance and transmittance: a theoretical introduction to absorption spectroscopy of scattering materials, NIR Publications, Chichester, U.K, 2007.