Electronic Supplementary Information

A one-step, modular route to optically-active diphos ligands

E. Louise Hazeland, Andy M. Chapman, Paul G. Pringle* and Hazel A. Sparkes

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

Email: paul.pringle@bristol.ac.uk

General Considerations

Unless otherwise stated, all of the following manipulations were carried out using Schlenk-line or glove-box techniques under a dry atmosphere of argon or N₂. Toluene and dichloromethane were dried using a Grubbs type solvent system and degassed by three sequential freeze-pump-thaw cycles. Deuterated benzene (C₆D₆) and dichloromethane (CD₂Cl₂) were dried over CaH₂, distilled and degassed by three sequential freeze-pump-thaw cycles and stored over 4 Å molecular sieves. (*S*)-(1,1'-binaphthalene-2,2'-dioxy)chlorophosphine (**1a**),¹ the (*S*)-3,3'-diphenyl-1,1'-binaphthalene-2,2'-diol (**1b**)² and (*S*)-3,3'-dimesityl-1,1'-binaphthalene-2,2'diol (**1c**),³ (2*R*,5*R*)-1-chloro-2,5-diphenylphospholane (**1d**),⁴ Me₃Si(CH₂)PPh₂ (**2a**),⁵ Me₃Si(CH₂)PⁱPr₂ (**2b**),⁵ Me₃Si(CH₂)PCy₂ (**2c**),⁶ and Me₃Si(CH₂)PⁱBu₂ (**2d**)⁷ were synthesised following literature methods or modifications thereof. All other reagents were used as received from Sigma-Aldrich, Acros or Strem Chemicals.

All NMR spectra were recorded on a Jeol ECS 400, Varian 400-MR, Varian VNMRS500 or a Bruker Avance IIIHD 500 equipped with a ¹³C-observe (DCH) cryogenic probe at ambient temperature. Mass spectra were recorded by the Mass Spectrometry service, School of Chemistry, University of Bristol on a VG Analytical Autospec, VG Analytical Quattro or Brüker Daltonics Apex IV spectrometer. Chemical shifts are referenced relative to high frequency of residual solvent (¹H and ¹³C), 85% H₃PO₄ (³¹P) and BF₃·OEt₂ (¹¹B). Elemental analysis was carried out by the Microanalytical Laboratory of the School of chemistry at the University of Bristol.

Synthesis of (S)-3,3'-diphenyl-1,1'-binaphthalene-2,2'-dioxy)bromophosphine (1b)

Prepared by modification of a literature procedure for (*S*)-(1,1'-binaphthalene-2,2'-dioxy)bromophosphine.⁸ To a suspension of the (*S*)-3,3'-diphenyl-1,1'-binaphthalene-2,2'-diol (0.51 g, 1.2 mmol) in toluene (10 mL) cooled to 0 °C, was added NEt₃ (0.32 mL, 2.3 mmol) and PBr₃ (0.12 mL, 1.3 mmol)). The

reaction mixture was warmed to ambient temperature and stirred for 5 h. The reaction mixture was then filtered and the solvent and excess PBr₃ removed under reduced pressure (with further addition/evaporation of toluene to remove any traces of PBr₃) to give the product as a light orange solid (0.37 g, 0.68 mmol, 57%). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ 192.74. ¹H NMR (400 MHz, C₆D₆): δ 6.94-7.32 (ar. CH), 7.45-7.91 (ar. CH). ¹³C{¹H} NMR (101 MHz, C₆D₆): δ 125.10 (d, *J* = 2.5 Hz, quat. *C*), 126.10 (ar. CH), 126.27 (ar. CH), 126.30 (ar. CH), 126.32 (ar. CH), 126.86 (ar. CH), 127.01 (ar. CH), 127.34 (ar. CH), 127.39 (ar. CH), 127.97 (ar. CH), 128.17 (ar. CH), 128.35 (ar. CH), 128.48 (ar. CH), 128.57 (quat. *C*), 128.67 (ar. CH), 128.91 (ar. CH), 128.97 (ar. CH), 130.10 (ar. CH), 130.15 (ar. CH), 130.68 (ar. CH), 131.54 (ar. CH), 131.68 (ar. CH), 132.05 (quat. *C*), 132.42 (quat. *C*), 132.60 (quat. *C*), 132.99 (quat. *C*), 134.89 (d, *J* = 1.8 Hz, quat. *C*), 135.00 (d, *J* = 1.6 Hz, quat. *C*), 136.98 (quat. *C*), 138.21 (quat. *C*), 146.54 (d, *J* = 4.5 Hz, quat. *C*), 146.80 (d, *J* = 3.6 Hz, quat. *C*). HR-MS (EI) *m*/*z* calculated for C₃₂H₂₀BrO₂P₂[M]^{*+}: 546.0384, found 546.0378. Satisfactory elemental analyses were not obtained but the NMR spectra indicated that it was >90% pure (see Appendix Figure S1 and S2 for annotated spectra).

Synthesis of (S)-3,3'-diphenyl-1,1'-binaphthalene-2,2'-dioxy)bromophosphine (1c)

Prepared by modification of a literature procedure for (*S*)-(1,1'-Binaphthalene-2,2'-dioxy)bromophosphine.⁸ To a suspension of the (*S*)-3,3'-dimesityl-1,1'binaphthalene-2,2'diol (0.51 g, 0.97 mmol) in toluene (10 mL) cooled to 0 °C, was added NEt₃ (0.27 mL, 1.9 mmol) and PBr₃ (0.10 mL, 1.0 mmol). The

reaction mixture was warmed to ambient temperature and stirred for 5 h. The reaction mixture was then filtered and the solvent and excess PBr₃ removed under reduced pressure (with further addition/evaporation of toluene to remove any traces of PBr₃) to give the product as a light orange solid (0.43 g, 0.68 mmol, 70%). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ 187.86. ¹H NMR (400 MHz, C₆D₆): δ

2.00 (3H, s, mes-CH₃), 2.12 (6H, s, mes-CH₃), 2.17 (6H, s, mes-CH₃), 2.33 (3H, s, mes-CH₃), 6.79-7.12 (7H, ar. CH), 7.42-7.65 (7H, ar. CH). ¹³C{¹H} NMR (101 MHz, C₆D₆): δ 20.62 (s, mes-CH₃), 20.65 (s, mes-CH₃), 21.12 (d, J = 9.1 Hz, mes-CH₃), 21.19 (s, mes-CH₃), 21.44 (s, mes-CH₃), 22.41 (s, mes-CH₃), 124.40 (d, J = 2.9 Hz, quat. C), 125.70 (quat. C), 125.90 (ar. CH), 126.11 (ar. CH), 126.28 (d, J = 6.4 Hz, quat. C), 126.69 (ar. CH), 126.85 (ar. CH), 127.47 (ar. CH), 127.67 (ar. CH), 128.50 (ar. CH), 128.57 (quat. C), 128.69 (ar. CH), 128.80 (ar. CH), 128.94 (ar. CH), 129.16 (ar. CH), 129.34 (ar. CH), 131.71 (d, J = 0.8 Hz, quat. C), 132.05 (ar. CH), 132.45 (ar. CH), 132.65 (d, J = 1.4 Hz, quat. C), 132.09 (d, J = 1.6 Hz, quat. C), 133.40 (quat. C), 133.92 (quat. C), 134.16 (d, J = 2.0 Hz, quat. C), 136.05 (quat. C), 137.20 (quat. C), 137.21 (d, J = 0.7 Hz, quat. C), 137.35 (quat. C), 137.63 (quat. C), 147.57 (d, J = 6.6 Hz, quat. C), 147.67 (d, J = 2.8 Hz, quat. C), 147.57 (d, J = 6.6 Hz, quat. C), 147.67 (d, J = 2.8 Hz, quat. C). HR-MS (EI) m/z calculated for C₃₈H₃₂BrO₂P₂[M]⁺: 630.1323, found 630.1313. Satisfactory elemental analyses were not obtained but the NMR spectra indicated that it was >90% pure (see Appendix Figure S3 and S4 for annotated spectra).

Synthesis of L_a

A mixture of **1a** (0.30 g, 0.76 mmol) and **2a** (0.21 g, 0.76 mmol) in toluene (5 mL) was heated to reflux for 3 d with stirring. The solvent was then removed under reduced pressure to give the product as an off-white solid which was suitable for use without further purification (0.36

 quat. *C*), 138.76 (dd, J = 4.4 Hz, J = 13.9 Hz, quat. *C*), 148.54 (d, J = 6.5 Hz, quat. *C*), 150.70 (d, J = 2.7 Hz, quat. *C*). **Anal.** Found: C, 76.90; H, 4.97. Calc. for $C_{33}H_{24}O_2P_2$: C, 77.04; H, 4.70. **HR-MS** (EI) m/z calculated for $C_{33}H_{24}O_2P_2$ [M]⁺: 514.1252, found 514.1250.

Synthesis of L_b

A solution of **1a** (0.30 g, 0.86 mmol) and **2b** (0.18 g, 0.86 mmol) in toluene (5 mL) was stirred at ambient temperature for 3 h. The solvent was then removed under reduced pressure to give the product as a

white solid which was suitable for use without further purification (0.24 g, 0.54 mmol, 64%). ³¹P{¹H} **NMR** (162 MHz, C₆D₆): δ -10.0 (d, $J_{PP} = 103.1$ Hz, $P^{i}Pr_{2}$), 210.9 (d, $J_{PP} = 103.4$ Hz, $P(OR)_{2}$). ¹H **NMR** (400 MHz, C₆D₆): δ 0.88 (12H, m, CH₃), 1.54 (2H, m, CH₂), 1.80 (2H, m, CH(CH₃)₂), 7.47 (12H, m, ar. CH). ¹³C{¹H} **NMR** (101 MHz, C₆D₆): δ 18.3 (d, $J_{CP} = 8.6$ Hz, CH₃), 19.0 (m, CH₃), 19.6 (m, CH₃), 19.9 (d, $J_{CP} = 17.1$ Hz, CH₃), 24.1 (m, $C(CH_3)_{2}$), 28.6 (dd, $J_{CP} = 33.5$ Hz, $J_{CP} = 47.5$ Hz, CH₂), 121.51 (ar. CH), 122.96 (ar. CH), 122.98 (ar. CH), 124.37 (d, J = 2.9 Hz, ar. CH), 124.83 (d, J = 2.6 Hz, ar. CH), 125.00 (d, J = 5.6 Hz, ar. CH), 125.38 (quat. C), 126.35 (d, J = 2.2 Hz, ar. CH), 127.07 (d, J = 9.2Hz, ar. CH), 128.25 (quat. C), 128.40 (d, J = 16.0 Hz, ar. CH), 129.02 (ar. CH), 129.49 (ar. CH), 130.8 (ar. CH), 131.30 (quat. C), 131.76 (quat. C), 133.24 (quat. C), 137.57 (quat. C), 148.66 (d, J = 6.8 Hz, quat. C), 151.08 (d, J = 2.9 Hz, quat. C). **Anal.** Found: C, 72.61; H, 6.44. Calc. for C₂₇H₂₈O₂P₂: C, 72.64, H 6.32. **HR-MS** (EI) *m*/z calculated for C₂₇H₂₈O₂P₂ [M]^{*+}: 446.1565, found 446.1567.

Synthesis of L_c

A solution of 1a (0.30 g, 0.86 mmol) and 2c (0.25 g, 0.86 mmol) in toluene (5 mL) was stirred at ambient temperature for 6 h. The solvent was then removed under reduced pressure to give the product as a white solid which was suitable for use without further purification

(0.23 g, 0.44 mmol, 51%). ³¹P{¹H} NMR (122 MHz, C₆D₆): δ -18.7 (d, $J_{PP} = 103.3$ Hz, PCy_2), 211.64 (d, $J_{PP} = 103.4$ Hz, $P(OR)_2$). ¹H NMR (400 MHz, C₆D₆): δ 1.11 (10H, m, PCy₂), 1.60 (10H, m, PCy₂), 1.75 (2H, m, P(CH)), 1.93 (2H, m, CH₂), 6.92 (4H, m, ar. CH), 7.50 (8H, m, ar. CH). ¹³C{¹H} NMR

(101 MHz, C₆D₆): δ 26.30 (d, J = 1.3 Hz, CH₂), 27.02 (d, J = 7.1 Hz, CH₂), 27.04 (d, J = 7.7 Hz, CH₂), 27.16 (d, J = 11.4 Hz, CH₂), 27.17 (d, J = 12.0 Hz, CH₂), 28.38 (dd, J = 33.8 Hz, J = 47.5 Hz, PCH₂P), 28.70 (d, J = 8.1 Hz, CH₂), 29.30 (d, J = 8.6 Hz, CH₂), 29.35 (d, J = 8.3 Hz, CH₂), 30.16 (dd, J = 2.6Hz, J = 15.0 Hz, CH₂), 30.32 (d, J = 15.4 Hz, CH₂), 33.93 (dd, J = 3.6 Hz, J = 15.6 Hz, CH), 34.07 (dd, J = 6.8 Hz, J = 16.0 Hz, CH), 121.43 (d, J = 1.4 Hz, ar. CH), 122.97 (d, J = 2.5 Hz, ar. CH), 124.32 (d, J = 3.0 Hz, quat. C), 124.71 (ar. CH), 124.73 (ar. CH), 124.94 (d, J = 5.5 Hz, quat. C), 126.26 (d, J =1.1 Hz, ar. CH), 126.95 (ar. CH), 127.03 (ar. CH), 127.92 (ar. CH), 128.21 (ar. CH), 128.37 (ar. CH), 129.37 (ar. CH), 130.70 (ar. CH), 131.23 (quat. C), 131.66 (quat. C), 133.16 (d, J = 1.5 Hz, quat. C), 133.21 (d, J = 1.0 Hz, quat. C), 148.67 (d, J = 6.8 Hz, quat. C), 151.04 (d, J = 3.0 Hz, quat. C). Anal. Found: C, 74.92; H, 6.99. Calc. for C₃₃H₃₆O₂P₂: C, 75.27; H, 6.89. HR-MS (EI) *m*/*z* calculated for C₃₃H₃₆O₂P₂ [M]⁺: 526.2191, found 526.2201.

Synthesis of L_d

A solution of **1a** (0.23 g, 0.65 mmol) in toluene (5 mL) was added to a solution of **2d** (0.15 g, 0.65 mmol) in toluene (5 mL). The resulting mixture was heated to 50 $^{\circ}$ C and left to stir overnight. The solvent was removed under reduced pressure to give the product as a white solid

which was suitable for use without further purification (0.27 g, 0.57 mmol, 88%). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ 10.7 (d, $J_{PP} = 117.8$ Hz, $P^{t}Bu_{2}$), 210.5 (d, $J_{PP} = 117.3$ Hz, $P(OR)_{2}$). ¹H NMR (400 MHz, C₆D₆): δ 1.01 (9H, d, $J_{HP} = 11.3$ Hz, C(CH₃)₃), 1.08 (9H, d, $J_{HP} = 11.1$ Hz, C(CH₃)₃), 2.00 (2H, m, CH₂), 6.89-6.95 (2H, m, ar. CH), 7.09-7.15 (2H, m, ar. CH), 7.44-7.68 (8H, m, ar. CH). ¹³C{¹H} NMR (101 MHz, C₆D₆): δ 28.4 (dd, $J_{CP} = 38.6$ Hz, $J_{CP} = 48.1$ Hz, CH_{2}), 29.1 (dd, $J_{PP} = 1.7$ Hz, $J_{PP} = 14.2$ Hz, C(CH₃)₃), 29.4 (dd, $J_{PP} = 3.4$ Hz, $J_{PP} = 14.3$ Hz, C(CH₃)₃), 31.0 (dd, $J_{PP} = 5.0$ Hz, $J_{PP} = 19.5$ Hz, quat. *C*, *C*(CH₃)₃), 31.3 (dd, $J_{PP} = 5.9$ Hz, $J_{PP} = 20.3$ Hz, quat. *C*, *C*(CH₃)₃), 121.4 (d, J = 1.6 Hz, ar. CH), 122.85 (d, J = 1.9 Hz, ar. CH), 124.23 (d, J = 3.0 Hz, quat. *C*), 124.71 (d, J = 4.1 Hz, ar. CH), 126.2 (d, J = 4.1 Hz, ar. CH), 124.98 (d, J = 5.6 Hz, quat. *C*), 126.15 (d, J = 4.1 Hz, ar. CH), 126.86 (ar. CH), 126.98 (ar. CH), 127.86 (ar. CH), 128.11 (ar. CH), 128.30 (ar. CH), 128.84 (quat. C), 129.25 (ar. CH), 130.62 (ar. CH), 131.07 (quat. C), 131.58 (quat. C), 133.06 (dd, J = 1.6 Hz, J = 2.7 Hz, quat. C), 148.61

(d, J = 6.4 Hz, quat. C), 151.01 (d, J = 2.6 Hz, quat. C). Anal. Found: C, 73.20; H, 6.82. Calc. for $C_{29}H_{32}O_2P_2$: C, 73.40; H 6.80. HR-MS (EI) m/z calculated for $C_{29}H_{32}O_2P_2$ [M]⁺: 474.1878, found 474.1880.

Synthesis of Le

A solution of **1b** (0.093 g, 0.17 mmol) in toluene (0.5 mL) was added to a solution of **2d** (0.040 g, 0.17 mmol) in toluene (0.5 mL) and stirred for 16 h. The solvent was then removed under reduced pressure to give the product as an off-white solid (0.052 g, 0.08 mmol, 47%).

³¹P{¹H} NMR (202 MHz, C₆D₆): δ 10.5 (d, *J*_{PP} = 152.6 Hz, *P*⁴Bu₂), 209.7 (d, *J*_{PP} = 152.5 Hz, *P*(OR)₂). ¹H NMR (400 MHz, C₆D₆): δ 0.79 (9H, d, *J*_{HP} = 2.5 Hz, C(CH₃)₃), 0.82 (9H, d, *J*_{HP} = 2.3 Hz, C(CH₃)₃), 1.15 (1H, m, CH₂), 1.78 (1H, app. d, *J*_{HP} = 14.1 Hz, CH₂), 6.91-7.99 (ar. CH). ¹³C{¹H} NMR (101 MHz, C₆D₆): δ 27.80 (dd, *J*_{CP} = 38.3 Hz, *J*_{CP} = 46.4 Hz, CH₂), 29.00 (app. d, *J* = 14.5 Hz, C(CH₃)₃), 29.08 (dd, *J*_{PP} = 3.8 Hz, *J*_{PP} = 14.6 Hz, C(CH₃)₃), 31.00 (dd, *J*_{PP} = 12.3 Hz, *J*_{PP} = 25.1 Hz, quat. *C*, *C*(CH₃)₃), 31.01 (app d, *J* = 24.4 Hz, quat. *C*, *C*(CH₃)₃), 125.10 (ar. CH), 125.29 (ar. CH), 125.65 (d, *J* = 2.8 Hz, quat. *C*), 126.13 (ar. CH), 126.26 (ar. CH), 126.34 (d, *J* = 5.8 Hz, quat. *C*), 126.90 (ar. CH), 127.07 (ar. CH), 127.33 (ar. CH), 127.34 (ar. CH), 127.95 (m, ar. CH), 128.05 (ar. CH), 130.17 (ar. CH), 130.28 (ar. CH), 130.42 (ar. CH), 130.92 (ar. CH), 131.25 (quat. *C*), 131.64 (quat. *C*), 132.78 (quat. *C*), 134.89 (quat. *C*), 135.16 (quat. *C*), 137.42 (quat. *C*). HR-MS (EI) *m*/z calculated for C₄₁H₄₀O₂P₂ [M]⁺: 626.2504, found 626.2497. Satisfactory elemental analyses were not obtained but the NMR spectra indicated that it was >90% pure (see Appendix Figure S5 and S6 for annotated spectra).

Synthesis of L_f

A solution of **1c** (0.087 g, 0.14 mmol) in toluene (0.5 mL) was added to a solution of **2d** (0.032 g, 0.14 mmol) in toluene (0.5 mL) and stirred for 8 h at ambient temperature. The solvent was removed under reduced pressure to give the product as an off-white solid (0.086 g, 0.12 mmol, 85%). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ 12.8 (d, J_{PP} = 219.6 Hz, $P^{t}Bu_{2}$), 208.9 (d, J_{PP} = 220.9 Hz, $P(OR)_2$). ¹**H NMR** (400 MHz, C₆D₆): δ 0.80 (9H, d, J_{HP} = 3.5 Hz, C(CH₃)₃), 0.82 (9H, d, J_{HP} = 3.9 Hz, $C(CH_3)_3$, 1.15 (1H, m, CH_2), 1.83 (1H, app. d, J = 14.5 Hz, CH_2), 2.18 (3H, s, Mes- CH_3), 2.21 (3H, s, Mes-CH₃), 2.25 (6H, s, Mes-CH₃), 2.26 (6H, s, Mes-CH₃), 6.81-7.18 (ar. CH), 7.49-7.66 (ar. CH) ¹³C{¹H} NMR (126 MHz, C₆D₆): δ 20.39 (s, Mes-CH₃), 20.49 (s, Mes-CH₃), 20.69 (s, Mes-CH₃), 20.82 (s, Mes-CH₃), 21.18 (d, J = 9.1 Hz, Mes-CH₃), 21.84 (s, Mes-CH₃), 28.29 (dd, J = 36.0 Hz, J = 47.4Hz, CH₂), 28.98 (dd, J = 1.5 Hz, J = 14.5 Hz, C(CH₃)₃), 29.27 (d, J = 15.0 Hz, C(CH₃)₃), 30.78 (dd, J = 10.3 Hz, J = 25.5 Hz, quat. $C(CH_3)_3$, 31.38 (dd, J = 10.3 Hz, J = 25.5 Hz, quat. $C(CH_3)_3$, 124.30 (d, J = 2.6, quat. C), 124.76 (ar. CH), 124.86 (ar. CH), 125.89 (ar. CH), 125.99 (ar. CH), 126.07 (d, J = 6.1 Hz, quat. C), 127.19 (d, J = 9.1 Hz, ar. CH), 127.79 (ar. CH), 127.94 (ar. CH), 128.05 (ar. CH), 128.16 (ar. CH), 128.49 (ar. CH), 128.56 (ar. CH), 128.59 (ar. CH), 130.80 (quat. C), 130.92 (ar. CH), 131.12 (ar. CH), 131.02 (quat. C), 132.05 (d, J = 9.5 Hz, quat. C), 132.78 (quat. C), 132.86 (quat. C), 133.09 (quat. C), 133.8 (d, J = 20.0 Hz, quat. C), 134.17 (quat. C), 134.23 (quat. C), 134.64 (quat. C), 135.30 (quat. C), 136.42 (quat. C), 136.56 (quat. C), 138.29 (quat. C), 148.30 (d, J = 6.1 Hz, quat. C), 149.74 (d, J = 2.0 Hz, quat. C). **HR-MS** (EI) m/z calculated for C₄₇H₅₂O₂P₂ [M]⁺⁺: 710.3443, found 710.3446. Satisfactory elemental analyses were not obtained but the NMR spectra indicated that it was >95% pure (see Appendix Figure S7 and S8 for annotated spectra).

Synthesis of L_g

Ph A solution of **1d** (0.051 g, 0.19 mmol) in toluene (0.5 mL) was added to a solution of PPPh₂ **2a** (0.051 g, 0.19 mmol) in toluene (0.5 mL) and heated to reflux for 5 d. The solvent was removed under reduced pressure to give the product as a viscous oil (0.075 g, 0.17 mmol, 90%). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ -23.14 (d, *J*_{PP} = 110.5 Hz, *P*Ph₂), 6.26 (d, *J*_{PP} = 110.5 Hz, *P*(CH)₂). ¹H NMR (400 MHz, C₆D₆): δ 1.68 (1H, m, phospholane-CH₂), 1.87 (1H, dd, *J* = 6.1 Hz, *J* = 13.1 Hz, CH₂), 1.95 (1H, dd, *J* = 3.8 Hz, *J* = 13.1 Hz, CH₂), 2.02 (2H, m, phospholane-CH₂), 2.30 (1H, m, phospholane-CH₂), 3.48 (2H, m, phospholane-CH), 6.91 -7.48 (20H, m, ar-CH). ¹³C{¹H} NMR (126 MHz, C₆D₆): δ 24.36 (dd, *J* = 23.1 Hz, *J* = 37.0 Hz, CH₂), 31.53 (d, *J* = 4.1 Hz, phospholane-CH₂), 37.28 (s, phospholane-CH₂), 46.97 (dd, *J* = 9.7 Hz, *J* = 18.5 Hz, phospholane-CH), 50.64 (dd, J = 5.9 Hz, J = 18.0 Hz, phospholane-*C*H), 125.30 (ar. *C*H), 125.70 (d, J = 2.2 Hz, ar. *C*H), 125.78 (d, J = 1.8 Hz, ar. *C*H), 127.74 (d, J = 3.8 Hz, ar. *C*H), 127.95 (br. s, ar. *C*H), 128.09 (d, J = 6.8 Hz, ar. *C*H), 128.17 (ar. *C*H), 128.21 (ar. *C*H), 128.22 (ar. *C*H), 128.26 (ar. *C*H), 128.29 (ar. *C*H), 128.31 (ar. *C*H), 128.94 (ar. *C*H), 132.07 (ar. *C*H), 132.21 (ar. *C*H), 132.54 (ar. *C*H), 132.69 (ar. *C*H), 132.83 (d, J = 2.3 Hz, ar. *C*H), 132.98 (d, J = 2.2 Hz, ar. *C*H), 137.49 (ar. *C*H), 138.81 (dd, J = 4.0 Hz, J = 14.4 Hz, quat. *C*), 139.07 (s, quat. *C*), 140.03 (dd, J = 7.2 Hz, J = 16.3 Hz, quat. *C*), 144.93 (d, J = 17.6 Hz, quat. *C*). **HR-MS** (EI) m/z calculated for C₂₉H₂₈P₂ [M]⁺⁺: 438.1666, found 438.1674. Satisfactory elemental analyses were not obtained but the NMR spectra indicated that it was >90% pure (see Appendix Figure S9 and S10 for annotated spectra).

Synthesis of L_h

A solution of 1d (0.038 g, 0.14 mmol) in toluene (0.5 mL) was added to a solution of Ph 2b (0.028 g, 0.14 mmol) in toluene (0.5 mL) and heated to 70 °C for 4 h. The solvent PⁱPr₂ Ρ́ was removed under reduced pressure to give the product as a viscous oil which was Ph suitable for use without further purification (0.048 g, 0.13 mmol, 93%). ³¹P{¹H} NMR (162 MHz, C_6D_6): δ -5.90 (d, J = 88.90 Hz, P^i Pr₂), 7.95 (d, J = 88.9 Hz, $P(CH)_2$). ¹H NMR (400 MHz, C_6D_6): δ 0.85 (12H, m, CH₃), 0.95 (1H, m, CH₂), 1.30 (1H, dd, J = 2.7 Hz, J = 13.3 Hz, CH₂), 1.36 (1H, m, CH(CH₃)₂), 1.45 (1H, m, CH(CH₃)₂), 1.69 (1H, m, phospholane-CH₂), 1.99 (2H, m, phospholane-CH₂), 2.28 (1H, m, phospholane-CH₂), 3.46 (1H, m, phospholane-CH), 3.55 (1H, m, phospholane-CH), 6.93-7.03 (2H, m, ar. CH), 7.08-7.20 (6H, m, ar. CH), 7.43-7.47 (2H, m, ar. CH). ¹³C{¹H} NMR (101 MHz, C_6D_6): δ 17.49 (dd, J = 30.3 Hz, J = 35.7 Hz, CH_2), 18.68 (d, J = 10.1 Hz, CH_3), 19.18 (dd, J = 4.6 Hz, J = 11.1 Hz, CH₃), 19.36 (dd, J = 3.7 Hz, J = 13.4 Hz, CH₃), 20.14 (d, J = 17.7 Hz, CH₃), 23.84 (dd, J = 7.5 Hz, J = 15.8 Hz, CH), 23.91 (dd, J = 3.9 Hz, J = 15.3 Hz, CH), 31.15 (d, J = 4.1 Hz, phospholane-CH₂), 37.25 (s, phospholane-CH₂), 47.13 (dd, J = 8.0 Hz, J = 18.5 Hz, phospholane-CH), 50.44 (dd, J = 6.3 Hz, J = 17.8 Hz, phospholane-CH), 125.70 (ar. CH), 125.72 (ar. CH), 127.66 (ar. CH), 127.70 (ar. CH), 128.30 (ar. CH), 128.31 (ar. CH), 128.33 (ar. CH), 128.50 (ar. CH), 128.36 (ar. CH), 128.42 (d, J = 1.7 Hz, ar. CH), 139.50 (quat. C), 145.28 (d, J = 17.3 Hz, quat. C). Anal. Found: C, 74.51; H, 8.77. Calc. for C₂₃H₃₂P₂: C, 74.57; H 8.71. **HR-MS** (EI) *m*/*z* calculated for C₂₃H₃₂P₂ [M]⁺: 370.1979, found 370.1971.

Synthesis of L_i

A solution of 1d (0.016 g, 0.060 mmol) in toluene (0.5 mL) was added to a solution Ph of 2c (0.016 g, 0.060 mmol) in toluene (0.5 mL) and heated to 60 °C for 16 h. The PCy₂ solvent was removed under reduced pressure to give the product as a viscous oil Ph which was suitable for use without further purification (0.020 g, 0.044 mmol, 74%). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ -13.08 (d, $J_{PP} = 91.4$ Hz, PCy_2), 8.31 (d, $J_{PP} = 91.8$ Hz, $P(CH)_2$) ¹**H NMR** (400 MHz, C₆D₆): δ 0.82-1.68 (22H, m, Cy-CH₂, Cy-CH and CH₂), 1.72 (1H, m, phospholane-CH₂), 2.01 (2H, m, phospholane-CH₂), 2.31 (1H, m, phospholane-CH₂), 6.93-7.21 (8H, m, ar. CH), 7.43-7.50 (2H, m, ar. CH). ¹³C{¹H} NMR (126 MHz, C₆D₆): δ 16.67 (dd, J = 28.6 Hz, J = 35.9 Hz, CH₂), 26.44 (s, Cy-CH₂), 26.50 (s, Cy-CH₂), 27.00 (d, J = 10.5 Hz, Cy-CH₂), 27.08 (d, J = 14.6 Hz, Cy-CH₂), 27.21 (d, J = 12.6 Hz, Cy-CH₂), 27.28 (d, J = 14.2 Hz, Cy-CH₂), 28.95 (d, J = 8.7 Hz, Cy-CH₂), 29.54 (dd, , J = 4.1 Hz, J = 9.6 Hz, Cy-CH₂), 29.73 (dd, , J = 3.4 Hz, J = 11.9 Hz, Cy-CH₂), 30.51 (d, J = 15.7 Hz, Cy-CH₂), 31.29 (d, J = 4.0 Hz, phospholane-CH₂), 33.81 (d, J = 15.2 Hz, Cy-CH), 33.86 (dd, J = 3.4 Hz, J = 15.2Hz, Cy-CH), 37.23 (s, phospholane-CH₂), 47.23 (dd, J = 8.3 Hz, J = 18.7 Hz, phospholane-CH), 50.54 (dd, J = 6.5 Hz, J = 17.9 Hz, phospholane-CH), 125.31 (ar. CH), 125.65 (ar. CH), 125.66 (ar. CH), 125.66 (ar. CH), 125.67 (ar. CH), 125.67 (ar. CH), 125.68 (127.58 (ar. CH), 128.72 (ar. CH), 127.96 (ar. CH), 128.27 (ar. CH), 128.30 (ar. CH), 128.35 (d, J = 1.7) Hz, ar. CH), 128.42 (d, J = 1.6 Hz, ar. CH), 139.50 (quat. C), 145.33 (d, J = 17.3 Hz, quat. C). Anal. Found: C, 76.89; H, 8.91. Calc. for C₂₉H₄₀P₂: C, 77.30; H, 8.95. HR-MS (EI) *m/z* calculated for C₂₉H₄₀P₂ [M]^{•+}: 450.2605, found 450.2608.

Synthesis of L_j

Ph A solution of 1d (0.059 g, 0.22 mmol) in toluene (0.5 mL) was added to a solution P_{Ph} of 2d (0.050 g, 0.22 mmol) in toluene (0.5 mL) and heated to 70 °C for 16 h. The solvent was removed under reduced pressure to give the product as a viscous oil which was suitable for use without further purification (0.080 g, 0.20 mmol, 91%). ³¹P{¹H} NMR (162 MHz, C_6D_6): δ 11.99 (d, $J_{PP} = 100.0$ Hz, $P(CH)_2$), 14.78 (d, $J_{PP} = 100.3$ Hz, P^tBu_2). ¹**H** NMR (400 MHz, C_6D_6): δ 0.88 (9H, d, $J_{HP} = 11.2$ Hz, $C(CH_3)_3$), 0.96 (9H, d, $J_{HP} = 11.0$ Hz, $C(CH_3)_3$), 1.02 (1H, app. d, J = 11.0 Hz, CH_2), 1.31 (1H, app. d, J = 13.8 Hz, CH_2), 1.73 (1H, m, phospholane- CH_2), 2.04 (2H, m, phospholane- CH_2), 2.33 (1H, m, phospholane- CH_2), 3.47 (1H, m, CH), 3.67 (1H, m, CH), 6.93-7.02 (2H, m, ar. CH), 7.08-7.19 (2H, m, ar. CH), 7.45-7.50 (2H, m, ar. CH). ¹³C{¹H} NMR (126 MHz, C_6D_6): δ 16.31 (app t., J = 34.7 Hz, CH_2), 29.33 (d, J = 13.8 Hz, $C(CH_3)$), 29.73 (d, J = 5.1 Hz, J = 13.4 Hz, $C(CH_3)$), 31.01 (d, J = 4.04, phospholane- CH_2), 31.32 (dd, J = 7.0 Hz, J = 24.4 Hz, quat. *C*, $C(CH_3)_3$), 31.63 (dd, J = 2.0 Hz, J = 23.3 Hz, quat. *C*, $C(CH_3)_3$), 37.08 (s, phospholane- CH_2), 47.48 (dd, J = 9.0 Hz, J = 18.4 Hz, phospholane-CH), 49.77 (dd, J = 6.2 Hz, J = 18.7 Hz, phospholane-CH), 125.59 (dd, J = 2.0 Hz, J = 3.7 Hz, ar. CH), 127.53 (d, J = 3.6 Hz, ar. CH), 128.21 (d, J = 0.8 Hz, ar. CH), 128.27 (s, ar. CH), 128.36 (dd, J = 2.0 Hz, J = 2.0 Hz, J = 8.2 Hz, ar. CH), 139.55 (quat. C), 145.37 (d, J = 17.5 Hz, quat. C). **Anal.** Found: C, 75.25; H, 9.17. Calc. for $C_{25}H_{36}P_2$: C, 75.35; H 9.11. **HR-MS** (EI) m/z calculated for $C_{25}H_{36}P_2$ [M]⁺⁺: 398.2292, found 398.2297.

Synthesis of [Rh(nbd)(L_d)]BF₄(3d)

A solution of L_d (0.037 g, 0.078 mmol) in dichloromethane (0.25 mL) was added dropwise to a stirred solution of [Rh(nbd)₂]BF₄ (0.029 g, 0.078 mmol) in dichloromethane (0.25 mL). The solution was then poured into rapidly stirred diethyl ether, the supernatant filtered and the solid dried under reduced

pressure to give the product as a dark orange solid (0.05g, 0.066 mmol, 85%). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ 11.28 (dd, $J_{PP} = 71.9$ Hz, $J_{PRh} = 140.0$ Hz, $P^{t}Bu_{2}$), 114.38 (dd, $J_{PP} = 72.1$ Hz, $J_{PRh} = 220.4$ Hz, $P(OR)_{2}$). ¹H NMR (500 MHz, CD₂Cl₂): δ 1.42 (9H, d, $J_{HP} = 15.5$ Hz, C(CH₃)₃), 1.50 (9H, d, $J_{HP} = 15.5$ Hz, C(CH₃)₃), 1.65 (1H, m, CH₂), 1.76 (1H, m, CH₂), 3.35 (1H, m, CH₂), 3.71 (1H, m, CH₂), 4.16 (1H, br. s, nbd alkyl CH), 4.28 (1H, br. s, nbd alkyl CH), 5.27 (1H, br, s, alkene CH), 5.65 (1H, br, s, alkene CH), 6.39 (1H, br, s, alkene CH), 6.56 (1H, br, s, alkene CH), 6.89-6.95 (m, 2H, BINOL), 7.24-7.54 (m, 8H, ar. CH), 7.97-8.20 (m, 4H, ar. CH). Anal. Calc. for C₃₆H₄₀BF₄O₂P₂Rh.0.2CH₂Cl₂: C 56.22,

H 5.27. Found: C 56.24, H 5.46. **HR-MS** (ESI) *m*/*z* calculated for C₃₆H₄₀O₂P₂Rh [M]⁺: 669.1559, found 669.1555.

Synthesis of [Rh(cod)(Lg)]BF₄ (3g)

 BF_4 A solution of L_g (0.048 g, 0.11 mmol) in dichloromethane (1 mL) was added dropwise to a solution of $[Rh(cod)_2]BF_4$ (0.042 g, 0.10 mmol) in dichloromethane (1 mL). The dichloromethane solution was then poured into rapidly stirred diethyl ether, the supernatant

removed and the solid dried under reduced pressure to give the product as an orange powder (0.052 g, 0.071 mmol, 65%). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ (ppm) -36.18 (dd, $J_{PP} = 76.33$ Hz, $J_{PRh} = 129.19$ Hz, PPh_2), -5.73 (dd, $J_{PP} = 76.51$ Hz, $J_{PRh} = 135.72$ Hz, $P(CH_2)_2$). ¹H NMR (400 MHz, CD₂Cl₂): δ 1.71-2.69 (10H, br. m, CH₂), 2.91 (1H, m, CH₂), 3.07 (1H, m, CH₂), 3.24-4.06 (4H, br. m, CH₂ and 2 x CH), 4.56 (1H, br. s, alkene-CH), 4.84 (1H, br. s, alkene-CH), 5.02 (1H, br. s, alkene-CH), 5.62 (1H, br. s, alkene-CH), 6.14-7.19 (20H, ar. H). Anal. Calc. for C₃₇H₄₀BF₄P₂Rh: C 60.35, H 5.48. Found: C 60.37, H 5.45. HR-MS (ESI) *m/z* calculated for C₃₇H₄₀P₂Rh [M]⁺: 649.1655, found 649.1654.

Synthesis of [Rh(nbd)(L_h)]BF₄ (3h)

BF₄ A solution of L_h (0.029 g, 0.079 mmol) in dichloromethane (1 mL) was added dropwise to a solution of [Rh(nbd)₂]BF₄ (0.029 g, 0.078 mmol) in dichloromethane (1 mL) with rapid stirring. The dichloromethane solution was then poured into rapidly stirred diethyl

ether, sonicated, filtered and dried under reduced pressure to give the product as an orange powder (0.036 g, 0.055 mmol, 70%). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ -9.10 (dd, $J_{PP} = 68.1$ Hz, $J_{PRh} = 133.2$ Hz), -6.79 (dd, $J_{PP} = 68.1$ Hz, $J_{PRh} = 144.0$ Hz). ¹H NMR (400 MHz, CD₂Cl₂): δ 0.51 (6H, m, CH(CH₃)₂), 1.17 (6H, m, CH(CH₃)₂), 1.40 (1H, m, phospholane-CH), 1.61 (2H, m, phospholane-CH₂), 2.01 (1H, m, phospholane-CH), 2.07 (1H, m, CH₂), 2.23 (1H, m, CH₂), 2.44 (1H, m, CH₂), 2.71 (1H, m, CH₂), 3.04 (2H, m, CH₂), 3.86 (1H, br. s, nbd alkyl CH), 4.19 (1H, br. s, nbd alkyl CH), 4.43 (1H, br. s, alkene CH), 5.43 (1H, br. s, alkene CH), 5.69 (1H, br. s, alkene CH), 5.82 (1H, br. s, alkene CH),

7.25-7.57 (10H, m, ar. C*H*). **Anal.** Calc. for C₃₀H₄₀BF₄P₂Rh: C 55.25, H 6.18. Found: C 55.44, H 6.26. **HR-MS** (ESI) *m/z* calculated for C₃₀H₄₀P₂Rh [M]⁺: 565.1655, found 565.1649.

Synthesis of [Rh(cod)(L_i)]BF₄ (3i)

A solution of L_i (0.042 g, 0.093 mmol) in dichloromethane (1 mL) was added dropwise to a solution of [Rh(cod)₂]BF₄ (0.038 g, 0.093 mmol) in dichloromethane (1 mL) with rapid stirring. The dichloromethane solution was then poured into rapidly stirred diethyl ether, the

supernatant removed and the solid dried under reduced pressure to give the product as an orange powder (0.054 g, 0.072 mmol, 78%). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ -23.57 (dd, $J_{PP} = 67.5$ Hz, $J_{PRh} = 124.6$ Hz, PCy_2), -9.94 ($J_{PP} = 67.6$ Hz, $J_{PRh} = 138.4$ Hz, $P(CH_2)_2$). ¹H NMR (400 MHz, CD₂Cl₂): δ 0.93 (4H, m, CH₂), 1.21-1.55 (9H, br. m, CH, 4 x CH₂), 1.63 (1H, m, CH₂), 1.72-1.99 (8H, br. m, CH, CH₂), 2.04 (2H, m, CH₂), 2.14 (2H, m, CH₂), 2.29 (4H, br. m, CH₂), 2.39-2.82 (4H, br. m, CH₂), 3.05 (2H, m, CH₂), 3.82 (3H, br. m, alkene-CH, 2 x CH), 5.17 (1H, br. s, alkene-CH), 5.28 (1H, br. s, alkene-CH), 5.43 (1H, br. s, alkene-CH), 7.32-7.51 (10H, m, ar. CH). Anal. Calc. for C₃₇H₅₂BF₄P₂Rh.0.2CH₂Cl₂: C 58.37, H 6.90. Found: C 58.39, H 7.08. HR-MS (ESI) *m/z* calculated for C₃₇H₅₂P₂Rh [M]⁺: 661.2594, found 661.2590.

Synthesis of [Rh(cod)(L_j)]BF₄ (3j)

A solution of L_j (0.11 g, 0.28 mmol) in dichloromethane (1 mL) was added dropwise to a solution of [Rh(cod)₂]BF₄ (0.11 g, 0.28 mmol) in dichloromethane (1 mL) with rapid stirring. The dichloromethane solution was then poured into rapidly stirred diethyl ether, sonicated,

filtered and dried under reduced pressure to give the product as an orange powder (0.11 g, 0.16 mmol, 56%). Crystals suitable for X-ray diffraction were grown by vapour diffusion of Et₂O into a solution of **3j** in dichloromethane. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ -8.91 (dd, $J_{PP} = 54.6$ Hz, $J_{PRh} = 138.7$ Hz, $P^{t}Bu_{2}$), -2.11 (dd, $J_{PP} = 54.7$ Hz, $J_{PRh} = 124.4$ Hz, $P(CH)_{2}$). ¹H NMR (400 MHz, CD₂Cl₂): δ 0.70 (9H, d, $J_{HP} = 14.7$ Hz, $C(CH_{3})_{3}$), 1.39 (9H, d, $J_{HP} = 14.7$ Hz, $C(CH_{3})_{3}$), 3.71 (1H, br. s, alkene-CH), 5.18 (1H, br. s, alkene-CH), 5.38 (1H, br. s, alkene-CH), 5.47 (1H, br. s, alkene-CH), 7.26-7.53 (10H, m, ar. CH).

Anal. Calc. for C₃₃H₄₈BF₄P₂Rh: C 56.92, H 6.95. Found: C 57.05, H 6.71. **HR-MS** (ESI) *m/z* calculated for C₃₃H₄₈P₂Rh [M]⁺: 609.2281, found 609.2279.

Synthesis of [PtCl₂(L_d)] (4d)

A solution of L_d (0.030 g, 0.063 mmol) in dichloromethane (0.5 mL) was added to a solution of [PtCl₂(cod)] (0.023g, 0.063 mmol) in dichloromethane (0.5 mL). The solvent was removed under reduced pressure to give a solid which was washed with hexane and dried under

reduced pressure to give the product as a white solid (0.031 g, 0.042 mmol, 67%). Crystals suitable for X-ray Crystallography were grown by layering hexane on a solution of the product in dichloromethane. ³¹P{¹H} NMR (122 MHz): δ (ppm) -3.7 (d, ²*J*_{PP} = 58.2 Hz, ¹*J*_{PPt} = 3106.7 Hz), 53.6 (d, ²*J*_{PP} = 58.6 Hz, ¹*J*_{PPt} = 4510.8 Hz). ¹H NMR (400 MHz, CD₂Cl₂): δ 1.59 (d, *J* = 16.67 Hz, C(CH₃)₃), 1.65 (d, *J* = 16.63 Hz, C(CH₃)₃), 2.25 (br. m, CH₂), 2.68 (br. m, CH₂), 7.27-8.10 (ar. CH). Anal. Calc. for C₂₉H₃₂Cl₂O₂P₂Pt.0.5CH₂Cl₂: C 45.67, H 4.22. Found: C 45.49, H 4.41. HR-MS (ESI) *m*/*z* calculated for C₂₉H₃₂ClO₂P₂Pt [M]⁺: 704.1214, found 704.1231.

General procedure for asymmetric hydrogenation

Substrate and catalyst (1 mol%) were weighed into autoclave cells which were then placed in to a stainless steel 10 cell Baskerville autoclave, which was purged with N_2 3 times. Dichloromethane (5 mL) was added via syringe to each cell, and then the mixture was stirred for 5 min to ensure the solutions were homogenized. The autoclave was then purged 3 times with H₂ and then pressurised with 5 bar H₂. After stirring the mixture for 1 h at ambient temperature, the autoclave was depressurised and samples for G.C. analysis were prepared by dissolving 0.1 mL of the reaction mixture with dichloromethane in a G.C. vial.

One-pot procedure

$$\begin{array}{c} \begin{array}{c} Ph \\ \hline \\ P-Cl \\ \hline \\ Ph \end{array} \begin{array}{c} 1. \ Me_{3}Si \\ \hline \\ 2. \ evacuate, \ replace \ with \ CH_{2}Cl_{2} \\ \hline \\ \\ Ph \end{array} \begin{array}{c} \\ P \\ \hline \\ Ph \end{array} \begin{array}{c} \\ P \\ \hline \\ \\ Ph \end{array} \begin{array}{c} \\ P \\ Ph \end{array} \begin{array}{c} \\ \\ P \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ P \\ Ph \end{array} \begin{array}{c} \\ \\ P \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ P \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ P \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ Ph \\ Ph \\ Ph \end{array} \end{array} \begin{array}{c} \\ \\ Ph \\ Ph \end{array} \end{array}$$
 \end{array} \end{array}

Into a Youngs tube with a stirrer bar was placed a stock solution of the chlorophospholane in toluene (2.5 mL, 8.0 μ M, 0.020 mmol) and a stock solution of the phosphinosilane in toluene (2.6 mL, 7.7 μ M, 0.020 mmol). The resulting solution was heated to 70 °C for 48 h. The solvent was removed under reduced pressure to give the crude oil, to which a stock solution of [Rh(nbd)₂]BF₄ in dichloromethane (2.8 mL, 7.3 x 10⁻³ mM, 0.020 mmol) was added. The resulting solution was left to stir at ambient temperature for 2 h. The solvent was removed under reduced pressure to give an orange solid, which was redissolved in 2 mL of dichloromethane and added to an autoclave cell in a stainless steel 10 cell Baskerville autoclave charged with the substrate (0.20 mmol) under a N₂ atmosphere. A further portion of dichloromethane (3 mL) was added via syringe to the autoclave cell and the mixture was stirred for 5 min to ensure the solution was homogenized. The autoclave was then purged 3 times with H₂ and then pressurised with 5 bar H₂. After stirring the mixture for 1 h at ambient temperature, the autoclave was depressurised and samples for G.C. analysis were prepared by dissolving 0.1 mL of the reaction mixture with dichloromethane in a G.C. vial.

G.C. conditions for enantiomer resolution

MAC : Varian CP-chirasil-DEX CD (25 m) column, 120 °C for 1 min then 3 °C / min to 175 °C for 11 min. Retention times : 18.64 min (R), 18.78 min (S).

MAA : Varian CP-chirasil-DEX CD (25 m) column, 90 °C for 1 min then 5 °C / min to 140 °C for 10 min. Retention times : 7.81 min (*S*), 7.97 min (*R*).

DMI : SUPELCO γ -DEX225 (30 m) column, 85 °C for 20 min then 2 °C / min to 95 °C for 10 min. Retention times: 26.00 min (*S*), 26.99 min (*R*).

Crystal Structure determination

X-ray diffraction on **3j** and **4d** were carried out at 100K on a Bruker APEX II diffractometer using graphite monochromised Mo-K_a radiation ($\lambda = 0.71073$ Å). Data collections were performed using a CCD area detector from a single crystal mounted on a glass fibre. Absorption corrections were based on equivalent reflections using SADABS.⁹ Structure **3j** was solved using SHELXS while **4d** was solved using SIR2004. The structures were refined by full matrix least squares on F^2 data, with all of the non-hydrogen atoms refined anisotropically. The hydrogen atoms were located geometrically and refined using a riding model in SHELXL¹⁰ within Olex2.¹¹ Crystal structure and refinement data are given in Table S1.

Crystal	3ј	4d
Empirical formula	$C_{33}H_{48}BF_4P_2Rh$	$C_{30}H_{34}O_2P_2Cl_4Pt$
Formula weight	696.37	825.40
Temperature/K	100(2)	100(2)
Crystal system	monoclinic	orthorhombic
Space group	<i>P</i> 2 ₁	P212121
a/Å	10.6347(3)	9.8749(6)
b/Å	29.6678(7)	10.7553(6)
$c/\text{\AA}$	10.7567(3)	29.0217(18)
α/°	90	90
β/°	105.968(1)	90
$\gamma/^{\circ}$	90	90
Volume/Å ³	3262.9(2)	3082.3(3)
Z	4	4
$\rho_{calc}g/cm^3$	1.418	1.779
μ/mm^{-1}	0.666	5.030
F(000)	1448.0	1624.0
Crystal size/mm ³	$0.278 \times 0.276 \times 0.224$	0.3 imes 0.22 imes 0.21
Radiation	MoKa ($\lambda = 0.71073$)	MoKα (λ = 0.71073)
2Θ range for data collection/	° 2.746 to 55.216	4.038 to 55.308
Index ranges	$-13 \le h \le 13, -38 \le k \le 38, -14 \le l \le 14$	$-12 \le h \le 12, -14 \le k \le 14, -37 \le l \le 37$
Reflections collected	114262	108079
Independent reflections	15088 [$R_{int} = 0.0382$, $R_{sigma} = 0.0242$]	7145 [$R_{int} = 0.0488$, $R_{sigma} = 0.0240$]
Data/restraints/parameters	15088/1/752	7145/0/358
Goodness-of-fit on F ²	1.041	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0218, wR_2 = 0.0494$	$R_1 = 0.0159, wR_2 = 0.0367$
Final R indexes [all data]	$R_1 = 0.0234, wR_2 = 0.0501$	$R_1 = 0.0173, wR_2 = 0.0371$
Largest diff. peak/hole / e Å-3	3 0.71/-0.32	0.97/-0.73
Flack parameter	-0.018(13)	0.007(2)

 Table S1. Crystal data and structure refinement details.

References

1 M. J. Baker and P. G. Pringle, J. Chem. Soc. Commun., 1991, 1292–1293.

2 K. B. Simonsen, K. V. Gothelf and K. A. Jørgensen, J. Org. Chem., 1998, 63, 7536–7538.

3 C.-Y. Lee and C.-H. Cheon, J. Org. Chem., 2013, 78, 7086–7092.

4 M. E. Fox, M. Jackson, I. C. Lennon, J. Klosin and K. A. Abboud, *J. Org. Chem.*, 2008, **73**, 775–784.

J. Campora, C. M. Maya, I. Matas, B. Claasen, P. Palma and E. Alvarez, *Inorg. Chim. Acta*, 2006, **359**, 3191–3196.

D. A. Robson, V. C. Gibson, R. G. Davies and M. North, *Macromolecules*, 1999, **32**, 6371–6373.

A. S. Ionkin, Y. Wang, W. J. Marshall and V. A. Petrov, *J. Organomet. Chem.*, 2007, 692, 4809–4827.

P. Haranath, U. Anasuyamma, C. Devendranath Reddy and C. Suresh Reddy, *Heterocycl. Commun.*, 2005, 11, 335–342.

9 G. M. Sheldrick, SADABS V2008/1, University of Göttingen, Germany.

10 G. M. Sheldrick, Acta Cryst. A64, 2008, 112-122.

11 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

Appendix

Figure S1. ³¹P{¹H} NMR spectrum of **1b** in C_6D_6 . Impurity *: 3,3'-disubstitutedBINOLP(O)H.

Figure S2. ¹H NMR spectrum of **1b** in C_6D_6 . Impurity #: solvent, impurity *: grease, impurity X: unknown impurity.

Figure S3. ³¹P{¹H} NMR spectrum of **1c** in C₆D₆. Impurity *: 3,3'-disubstitutedBINOLP(O)H; impurity #: unknown impurity.

Figure S4. ¹H NMR spectrum of **1c** in C_6D_6 . Impurity X: ar. *CH* proton integrations deviate from expected value due to 3,3'-disubstitutedBINOLP(O)H impurity.

Figure S5. ³¹P{¹H} NMR spectrum of L_e in C₆D₆. Impurity #: BINOLPBr starting material, impurity *: (BINOL)POP(BINOL)

Figure S6. ¹H NMR spectrum of L_e in C₆D₆. Impurity #: solvent, impurity *: grease, impurity X: ar. *CH* proton integrations deviates from expected value due to BINOLPBr starting material and (BINOL)POP(BINOL) impurity.

Figure S7. ³¹P{¹H} NMR spectrum of L_f in C₆D₆. Impurity #: BINOLPBr starting material, impurity *: (BINOL)POP(BINOL), impurity X: unknown impurity.

Figure S8. ¹H NMR spectrum of L_f in C₆D₆. Impurity #: solvent, impurity *: unknown impurity, impurity X: ar. *CH* proton integrations deviates from expected value due to BINOLPBr starting material and (BINOL)POP(BINOL) impurity.

3.5 э.о 7.5 7.0 2.0 0.0 8.5 6.5 6.0 4.5 4.0 f1 (ppm) 2.5 1.5 1.0 0.5 -0.5 8.0 5.5 5.0 3.0 Figure S10. ¹H NMR spectrum of L_g in C₆D₆. Impurity #: solvent, impurity *: grease, impurity X:

unknown impurity.