Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Experimental

General Experimental Methods

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. Solutions or liquids were introduced to the round bottom flask using oven dried Hamilton syringes through rubber septa. Reactions performed using magnetic stirring were performed using Teflon-coated stirrer bars. Removal of solvents was achieved using a rotary evaporator at water aspirator pressure or under high vacuum (0.01 mm Hg).

Dichloromethane was distilled over calcium hydride.

Chemicals were purchased from Sigma-Aldrich Chemical Company. Phosphorodiamidite **11** and phosphoramidite **12** were synthesised in-house. Solvents for extractions and chromatography were of technical grade. Purification was carried out *via* flash chromatography using the Biotage purification system. Analytical TLC was performed with Merck Silica gel 60 F_{254} plates. Visualisation was accomplished by UV-light (λ = 254 nm) and/or staining with an anisaldehyde or ninhydrin solution, followed by heating. ¹H, ¹³C, ³¹P and 2D (H-COSY, HMQC) NMR spectra were recorded on Brüker advance DPX 400. TMS (0 ppm, ¹H NMR) and CDCl₃ (77 ppm, ¹³C NMR) were used as internal references. The chemical shifts (δ) are reported in p.p.m (parts per million). High resolution mass spectrometry (HRMS) was recorded on a VG Quattro Triple Quadropole Mass Spectrometer (ES). The names of the compounds have been named according to standard IUPAC.

Experimental Data

Synthesis of 11: To a stirred solution of PCl₃ (1.37 g, 10.00 mmol, 1 eq) in dried $[C_4mpyrr][NTf_2]$ (8.44 g, 20.00 mmol, 2 eq) under an inert atmosphere of N₂, Hünig's Base (1.29 g, 10.00 mmol, 1 eq) was added. After vigorous stirring for 5 min, 2-cyanoethanol (0.71 g, 10.00 mmol, 1 eq) was added and the reaction mixture stirred for a further 30 min. Diisopropylamine (4.05 g, 40.00 mmol, 4 eq) was then added and the reaction mixture stirred for a further 120 min after which the reaction was complete as shown by ³¹P NMR. The desired product was distilled from the crude reaction mixture at 71 °C at 0.01 mmHg to give a colourless liquid (0.93 g, 31%). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.17 (app. t, 24H,

NCH(CH₃)₂), 2.61 (t, J= 6.4 Hz, 2H, OCH₂CH₂CN), 3.49-3.58 (m, 4H, NCH(CH₃)₂), 3.77 (dt, J= 7.3, J= 6.4 Hz, 2H, OCH₂CH₂CN,). ¹³C NMR (125 MHz, CDCl₃) δ ppm 20.6 (d, J= 8.9 Hz, OCH₂CH₂CN), 23.8 (d, J= 5.8 Hz, NCH(CH₃)₂), 24.6 (d, J= 8.2 Hz, NCH(CH₃)₂), 44.6 (d, J= 12.4 Hz, NCH(CH₃)₂), 59.3 (d, J= 24.9 Hz, OCH₂CH₂CN), 118.0 (CN). ³¹P NMR (162 MHz, CDCl₃) δ ppm 123.7. HRMS (ES, M+H⁺) calculated for C₁₅H₃₃N₃OP 302.2361, found 302.2363.

Synthesis of 12: To a stirred solution of PCl₃ (1.37 g, 20.00 mmol, 1 eq) in [C₄dmim][NTf₂] (8.44 g, 20.00 mmol, 2 eq) under an inert atmosphere of N₂, Hünig's base (2.58 g, 20.00 mmol, 2 eq) was added. After 5 min, 2-cyanoethanol (1.42 g, 20.00 mmol, 2 eq) was added and the solution stirred for a further 30 min. Diisopropylamine (2.02 g, 20.00 mmol, 2 eq) was added and the solution stirred for a further 40 min. The solution was extracted with diethyl ether (3 x 30 ml) and concentrated to give a colourless oil (1.57 g, 58 %). ¹H NMR (400 MHz, CDCl₃) δ 1.20 (app. t, 12H, NCH(*CH*₃)₂), 2.66 (t, *J*= 6.2 Hz, 4H, OCH₂CH₂CN) 3.60-3.65 (m, 2H, NCH(*CH*₃)₂), 3.78-3.94 (m, 4H, OCH₂CH₂CN). ¹³C NMR (125 MHz, CDCl₃) δ 20.4 (d, *J*= 6.9 Hz, OCH₂CH₂CN), 24.6 (d, *J* = 7.2 Hz, NCH(*CH*₃)₂), 43.3 (d, *J*= 12.4 Hz, NCH(*CH*₃)₂), 58.5 (d, *J*= 15.8Hz, OCH₂CH₂CN), 117.6 (*C*N). ³¹P NMR (162 MHz, CDCl₃) δ 149.0. HRMS (ES, M+H⁺) calculated for C₁₂H₂₁N₃O₂P 272.1528, found 272.1570.

Synthesis of 14: To a 10 ml round bottom flask equipped with a magnetic stirrer, 2cyanoethyl-*N*,*N*,*N'*,*N'*-tetraisopropylphosphoramide 11 (0.30 g, 0.96 mmol, 1 eq) was added under an atmosphere of N₂. To the reaction vessel was added benzoyl chloride (0.15 g, 0.96 mmol, 1 eq) drop wise at room temperature. The crude mixture was purified on a Biotage system using 9:1 hexane: EtOAc to afford the product as a bright yellow solid (0.31 g, 92 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.18 (d, *J*= 6.8 Hz, 12H, NCH(CH₃)₂), 1.31 (d, *J*= 6.8 Hz, 12H, NCH(CH₃)₂), 3.56 (septet, *J*= 6.7 Hz, 4H, NCH(CH₃)₂), 7.45 (t, *J*= 8.2 Hz, 2H, aromatic), 7.56 (t, *J*= 7.3 Hz, 1H, aromatic), 8.58 (d, *J*= 7.0 Hz, 2H, aromatic). ¹³C NMR (125 MHz, CDCl₃) δ ppm 22.7 (d, *J*= 1.25 Hz, NCH(CH₃)₂), 23.3 (d, *J*= 1.25 Hz, NCH(CH₃)₂), 46.5 (d, *J*= 5.0 Hz, NCH(CH₃)₂), 128.3, 130.5, 133.5 (aromatic), 137.8 (d, *J*= 67.5 Hz, C=O-*C*), 207.6 (d, *J*= 168.8 Hz, P-*C*=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 14.4. HRMS (ES, M+H⁺) calculated for C₁₉H₃₄N₂OP 353.2358, found 353.2368.

Synthesis of 13e: To a stirred solution of 4-pentynoic acid (0.10 g, 1.02 mmol, 1 eq) under an atmosphere of N₂, oxalyl chloride (0.65 g, 5.10 mmol, 5 eq) was added. The reaction was

stirred overnight where completion of the reaction was determined by ¹H NMR. The oxalyl chloride was removed under high vacuum to yield the titled compound as a pale yellow liquid in quantitative yield without the need for further purification. ¹H NMR (400 MHz, CDCl₃) δ ppm 2.04 (t, *J*= 2.6 Hz, 1H), 2.57 (td, *J*= 7.1 Hz, 2.7 Hz, 2H), 3.14 (t, *J*= 7.1 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm 172.1 (*C*=OCH₂CH₂C \equiv CH), 80.5 (C=OCH₂CH₂C \equiv CH), 70.3 (C=OCH₂CH₂C \equiv CH), 45.6 (C=OCH₂CH₂C \equiv CH), 14.6 (C=OCH₂CH₂C \equiv CH).

Synthesis of 13f: To a stirred solution of 5-hexynoic acid (0.10 g, 0.89 mmol, 1 eq) under an atmosphere of N₂, oxalyl chloride (0.57 g, 4.46 mmol, 5 eq) was added. The reaction was stirred overnight where completion of the reaction was determined by ¹H NMR. The excess oxalyl chloride was removed under reduced pressure to yield the titled compound as a pale yellow liquid in quantitative yield without the need for further purification. ¹H NMR (400 MHz, CDCl₃) δ ppm 1.91 (quintet, J= 7.3 Hz, 2H), 2.02 (t, J= 2.7 Hz, 1H), 2.31 (td, J= 6.8 Hz, 2.7 Hz, 2H), 3.08 (t, J= 7.3 Hz, 2H). ¹³C-NMR (125MHz, CDCl₃) δ ppm 172.5 $(C = OCH_2CH_2CH_2C \equiv CH),$ $(C=OCH_2CH_2CH_2C \equiv CH),$ 81.1 72.0 $(C=OCH_2CH_2CH_2C \equiv CH),$ $(C=OCH_2CH_2CH_2C \equiv CH),$ 45.9 23.7 $C=OCH_2CH_2CH_2C \equiv CH$, 17.2 $C=OCH_2CH_2CH_2C \equiv CH$).

Synthesis of 16a: To a 10 ml round bottom flask equipped with a magnetic stirrer, bis-(2cyanoethyl)-*N*, *N*-diisopropylphosphoramidite 12 (0.30 g, 1.10 mmol, 1 eq) was added under an atmosphere of N₂. The reaction vessel was cooled to -78°C and benzoyl chloride (1.10 mmol, 0.16 g, 1 eq) was added drop-wise. The vessel was allowed to warm to room temperature and the crude mixture was purified on a Biotage system using 4:6 hexane: EtOAc to afford the product as a viscous bright yellow oil (0.32 g, 90 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.28 (d, *J*= 6.7 Hz, 6H, NCH(*CH*₃)₂), 1.31 (d, *J*= 6.7 Hz, 6H, NCH(*CH*₃)₂), 2.82-2.91 (m, 2H, OCH₂*CH*₂*CN*), 3.39-3.50 (m, 2H, NC*H*(*CH*₃)₂), 4.26-4.40 (m, 2H, OCH₂CH₂CN), 7.49 (t, *J*= 7.3 Hz, 2H, aromatic), 7.61 (t, *J*= 7.4 Hz, 1H, aromatic), 8.33 (d, *J*= 7.2 Hz, 2H, aromatic). ¹³C NMR (125 MHz, CDCl₃) δ ppm 20.1 (d, *J*= 7.3 Hz, OCH₂*CH*₂*CN*), 22.2 (d, *J*= 2.7 Hz, NCH(*CH*₃)₂), 22.9 (d, *J*= 1.8 Hz, NCH(*CH*₃)₂), 46.7 (d, *J*= 5.5 Hz, NCH(CH₃)₂), 59.9 (d, *J*= 8.2 Hz, OCH₂CH₂CN), 116.8 (CN), 128.7, 129.8, 134.4 (aromatic), 136.1 (d, *J*= 73.8 Hz, C=O-C), 202.1 (d, *J*= 196.9 Hz, P-*C*=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 9.69. HRMS (ES, M+H⁺) calculated for C₁₆H₂₄N₂O₃P 323.1535, found 323.1587. Synthesis of 16b: To a 10 ml round bottom flask equipped with a magnetic stirrer, bis-(2cyanoethyl)-*N*, *N*-diisopropylphosphoramidite 12 (0.10 g, 0.37 mmol, 1 eq) was added under an atmosphere of N₂. The reaction vessel was cooled to -78°C and acetyl chloride (0.37 mmol, 0.03 g, 1 eq) was added drop-wise. The vessel was allowed to warm to room temperature and the crude mixture was purified on a Biotage system using 3:7 hexane: EtOAc to afford the product as a pale yellow oil (0.17 g, 87 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.27 (d, *J*= 7.0 Hz, 6H, NCH(CH₃)₂), 1.30 (d, *J*= 7.0 Hz, 6H, NCH(CH₃)₂), 2.51 (d, 3H, *J*= 4.8 Hz, P(O)CH₃), 2.70-2.94 (m, 2H, OCH₂CH₂CN), 3.35-3.46 (m, 2H, NCH(CH₃)₂), 4.14-4.17 (m, 1H, OCH₂CH₂CN), 4.19-4.27 (m, 1H, OCH₂CH₂CN). ¹³C NMR (125 MHz, CDCl₃) δ ppm 20.1 (d, *J*= 7.3 Hz, OCH₂CH₂CN), 22.3 (d, *J*= 12.7 Hz, NCH(CH₃)₂), 23.3 (d, *J*= 2.7 Hz, NCH(CH₃)₂), 29.5 (d, *J*= 75.1 Hz, P(O)CH₃), 46.2 (d, *J*= 5.5 Hz, NCH(CH₃)₂), 59.3 (d, *J*= 8.2 Hz, OCH₂CH₂CN), 116.6 (CN), 211.9 (d, *J*= 192.3 Hz, P-C=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 7.88 HRMS (ES, M+H⁺) calculated for C₁₁H₂₂N₂O₃P 261.1368, found 261.1360.

Synthesis of 16c: To a 10 ml round bottom flask equipped with a magnetic stirrer, bis-(2cyanoethyl)-*N*, *N*-diisopropylphosphoramidite 12 (0.10 g, 0.37 mmol, 1 eq) was added under an atmosphere of N₂. The reaction vessel was cooled to -78°C and hydrocinnamoylchloride (0.06 g, 0.37 mmol, 1 eq) was added drop-wise. The vessel was allowed to warm to room temperature and the crude mixture was purified on a Biotage system using 3:7 hexane: EtOAc to afford the product as a colourless oil (0.25 g, 80 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.19 (d, *J*= 6.8 Hz, 6H, NCH(*CH*₃)₂), 1.26 (d, *J*= 6.8 Hz, 6H, NCH(*CH*₃)₂), 2.69-2.88 (m, 2H, OCH₂CH₂CN), 2.94 (t, *J*= 7.4 Hz, 2H, CH₂CH₂Ph), 3.21-3.26 (m, 2H, P(O)-CH₂CH₂Ph), 3.30-3.42 (m, 2H, NCH(CH₃)₂), 4.09-4.17 (m, 1H, OCH₂CH₂CN), 4.22-4.28 (m, 1H, OCH₂CH₂CN). ¹³C NMR (125 MHz, CDCl₃) δ ppm 20.1 (d, *J*= 7.2 Hz, OCH₂CH₂CN), 22.2 (d, *J*= 1.8 Hz, NCH(*C*H₃)₂), 23.4 (d, *J*= 1.8 Hz, NCH(*C*H₃)₂), 28.6 (d, *J*= 5.5 Hz, CH₂CH₂Ph), 43.8 (d, *J*= 64.7 Hz, P(O)-CH₂CH₂Ph), 46.4 (d, *J*= 5.5 Hz, NCH(CH₃)₂), 59.2 (d, *J*= 8.2 Hz, OCH₂CH₂CN), 116.6 (CN) 126.3, 128.4, 128.5 (aromatic), 213.1 (d, *J*= 193.8 Hz, P-C=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 7.81. HRMS (ES, M+H⁺) calculated for C₁₈H₂₈N₂O₃P 350.1759, found 350.1761.

Synthesis of **16d**: To a 10 ml round bottom flask equipped with a magnetic stirrer, bis-(2cyanoethyl)-N, N-diisopropylphosphoramidite **12** (0.10 g, 0.37 mmol, 1 eq) was added under an atmosphere of N₂. The reaction vessel was cooled to -78°C and butyryl chloride (0.04 g, 0.37 mmol, 1 eq) was added drop-wise. The vessel was allowed to warm to room temperature and the crude mixture was purified on a Biotage system using 3:7 hexane: EtOAc to afford the product as a colourless oil (0.09 g, 82 %).¹H NMR (400 MHz, CDCl₃) δ ppm 0.94 (t, *J*= 7.4 Hz, 3H, P(O)CH₂CH₂CH₃), 1.26 (d, *J*=6.8 Hz, 6H, NCH(CH₃)₂), 1.29 (d, *J*=6.8 Hz, 6H, NCH(CH₃)₂), 1.56-1.73 (m, 2H, P(O)CH₂CH₂CH₃), 2.68-2.95 (m, 4H, OCH₂CH₂CN, P(O)CH₂CH₂CH₃), 3.35-3.43 (m, 2H, NCH(CH₃)₂), 4.11-4.16 (m, 1H, OCH₂CH₂CN), 4.26-4.33 (m, 1H, OCH₂CH₂CN). ¹³C NMR (125 MHz, CDCl₃) δ ppm 13.6 (P(O)CH₂CH₂CH₃), 16.2 (d, *J*= 6.3 Hz, P(O)CH₂CH₂CH₃), 20.1 (d, *J*= 8.2 Hz, OCH₂CH₂CN), 22.3 (d, *J*= 1.6 Hz, NCH(CH₃)₂), 23.4 (d, *J*= 1.6 Hz, NCH(CH₃)₂), 44.1 (d, *J*= 61.4 Hz, P(O)CH₂CH₂CH₃), 46.3 (d, *J*= 5.5 Hz, NCH(CH₃)₂), 59.2 (d, *J*= 8.3 Hz, OCH₂CH₂CN), 116.6 (CN), 214.1 (d, *J*= 194.6 Hz, P-C=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 8.03. HRMS (ES, M+Na⁺) calculated for C₁₃H₂₅N₂O₃PNa 311.1501, found. 311.1490

Synthesis of 16e: To a 10 ml round bottom flask equipped with a magnetic stirrer 4-pentyonic acid chloride (0.04g, 0.37 mmol, 1 eq) was added under an atmosphere of N_2 and the reaction vessel was cooled to -78°C. To this was added bis-(2-cyanoethyl)-N, Ndiisopropylphosphoramidite 12 (0.10 g, 0.37 mmol, 1 eq) and the vessel was allowed to warm to room temperature. The crude mixture was purified on a Biotage system using 3:7 hexane: EtOAc to afford the product as a brown oil (0.08 g, 71 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.22 (d, J=6.7 Hz, 6H, NCH(CH₃)₂), 1.32 (d, J= 6.7 Hz, 6H, NCH(CH₃)₂), 2.09 (t, J= 2.8 Hz, 1H, P(O)CH₂CH₂CCH), 2.53-2.57 (m, 2H, P(O)CH₂CH₂CCH), 2.64-2.70 (m, 2H, OCH₂CH₂CN) 3.17 (dt, J= 7.4, 1.5 Hz, 2H, P(O)CH₂CH₂CCH), 3.32-3.51 (m, 2H, NCH(CH₃)₂), 4.06-4.15 (m, 1H, OCH₂CH₂CN), 4.25-4.32 (m, 1H, OCH₂CH₂CN). ¹³C NMR (125 MHz, CDCl₃) δ ppm 15.8 (P(O)CH₂CH₂CCH), 20.3 (d, J= 7.2 Hz, OCH₂CH₂CN), 22.4 $(d, J= 1.8 \text{ Hz}, \text{NCH}(CH_3)_2), 23.6 (d, J= 1.8 \text{ Hz}, \text{NCH}(CH_3)_2), 34.7 (d, J= 61.9 \text{ Hz}, MCH_2)$ P(O)CH₂CH₂CCH), 46.2 (d, J= 5.5 Hz, NCH(CH₃)₂), 59.1 (d, J= 8.2 Hz, OCH₂CH₂CN), 72.9 (P(O)CH₂CH₂CCH), 84.3 (P(O)CH₂CH₂CCH) 116.9 (CN), 214.2 (d, *J*= 195.5 Hz, P-C=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 7.72. HRMS (ES, M+H⁺) calculated for C₁₄H₂₄N₂O₃P, 299.1446 found, 299.1440.

Synthesis of 16f: To a 10 ml round bottom flask equipped with a magnetic stirrer 5-hexanoyic acid chloride (0.04 g, 0.37 mmol, 1 eq) was added under an atmosphere of N₂ and the reaction vessel was cooled to -78° C. To this was added bis-(2-cyanoethyl)-*N*, *N*-diisopropylphosphoramidite 12 (0.10 g, 0.37 mmol, 1 eq) and the vessel was allowed to warm to room temperature. The crude mixture was purified on a Biotage system using 3:7 hexane: EtOAc to afford the product as a brown oil (0.08 g, 74 %).¹H NMR (400 MHz, CDCl₃) δ

ppm 1.25 (d, J= 6.9 Hz, 6H, NCH(CH₃)₂), 1.30 (d, J= 6.9 Hz, 6H, NCH(CH₃)₂), 1.84 (quintet, J=7.0 Hz, 2H, P(O)CH₂CH₂CCH), 1.99 (t, J=2.7 Hz, 1H, P(O)CH₂CH₂CH₂CCH), 2.24-2.34 (m, 2H, P(O)CH₂CH₂CH₂CCH), 2.68-2.75 (m, 2H, OCH₂CH₂CN), 3.06 (dt, J= 7.2, 1.3 Hz, 2H, P(O)CH₂CH₂CH₂CCH), 3.36-3.54 (m, 2H, NCH(CH₃)₂), 4.09-4.18 (m, 1H, OCH₂CH₂CN), 4.28-4.35 (m, 1H, OCH₂CH₂CN). ¹³C NMR (125 MHz, CDCl₃) δ ppm 15.8 (P(O)CH₂CH₂CH₂CCH), 17.4 (P(O)CH₂CH₂CH₂CCH), 20.3 (d, J=7.3 Hz, OCH₂CH₂CN), 22.4 (d, J=1.8 Hz, NCH(CH₃)₂), 23.6 (d, J=1.8 Hz, NCH(CH₃)₂), 36.7 (d, J= 61.3 Hz, P(O)CH₂CH₂CH₂CCH), 46.9 (d, J= 5.5 Hz, NCH(CH₃)₂), 59.7 (d, J= 8.4 Hz, $OCH_2CH_2CN),$ 73.6 $(P(O)CH_2CH_2CH_2CCH),$ 82.9 (P(O)CH₂CH₂CH₂CCH), 116.6 (CN), 213.7 (d, *J*= 195.3 Hz, P-*C*=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 7.72. HRMS (ES, M+H⁺) calculated for C₁₅H₂₆N₂O₃P 313.1602 found, 313.1610

Synthesis of 18: To a 10 ml round bottom flask equipped with a magnetic stirrer, Ndibenzyloxyphosphanyl-N-isopropyl-propan-2-amine 17 (0.20 g, 0.56 mmol, 1 eq) was added under an atmosphere of N₂. The reaction vessel was cooled to -78°C and acetyl chloride (0.04 g, 0.56 mmol, 1 eq) was added drop-wise. The vessel was allowed to warm to room temperature and the crude mixture was purified on a Biotage system using 100 % hexane and increasing to 1:1 hexane: EtOAc to afford the product as a colourless oil (0.12 g, 73 %). ¹H **NMR** (400 MHz, CDCl₃) δ ppm 1.25 (d, J= 2.8 Hz, 6H, NCH(CH₃)₂), 1.27 (d, J= 2.8 Hz, 6H, NCH(CH₃)₂), 2.46 (d, J= 4.0 Hz, 3H, P(O)CH₃), 3.38-3.39 (m, 2H, NCH(CH₃)₂), 5.00 (dd, J= 11.8 Hz, J=7.3 Hz, 1H, OCH₂Ph), 5.16 (dd, J= 11.8 Hz, J=7.3 Hz, 1H, OCH₂Ph), ¹³C NMR (125 MHz, CDCl₃) δ ppm 22.2 (d, J= 1.8 Hz, 7.32-7.43 (m, 5H, OCH₂Ph). NCH $(CH_3)_2$), 23.5 (d, J= 1.8 Hz, NCH $(CH_3)_2$), 30.0 (d, J= 70.1 Hz, P(O)CH3), 46.3 (d, J=5.5 Hz, NCH(CH₃)₂), 66.0 (d, J= 8.2 Hz, OCH₂Ph), 127.8 (OCH₂Ph), 128.3 (OCH₂Ph), 128.6 (OCH₂Ph), 136.4 (d, J= 9.1 Hz, OCH₂Ph), 213.0 (d, J= 119.1 Hz, C=O). ³¹P NMR (162 MHz, CDCl₃) δ ppm 6.85 **HRMS** (ES, M+H⁺) calculated for C₁₅H₂₅NO₃P 298.1438 found, 298.1435.

Synthesis of **20**: To a stirred solution of *N*,*N*-diisopropyl-*O*cyanoethoxy(acetyl)phosphonicdiamide **16b** (0.19 g, 0.73 mmol, 1 eq) in DCM (1 ml) under an N₂ atmosphere, triethyl phosphite (0.25 ml, 1.46 mmol, 2 eq) and pyridinium perchlorate (0.26 g, 1.46 mmol, 2eq) were added. The reaction was followed by TLC and ³¹P NMR analysis where completion of the reaction was determined by the disappearance of the acyl phosphonamidate. 5 ml of DCM was then added and the reaction mixture filtered to remove the pyridinium perchlorate. The sample was concentrated and placed under high vacuum to in order to remove the *H*- phosphonate (H-P(O)(OEt)₂). The crude mixture was purified on a Biotage system using a gradient of 100 % DCM to 9:1 DCM: MeOH to afford the product as a colourless oil (0.20 g, 71 %). ¹**H NMR** (400 MHz, CDCl₃) δ ppm 1.30 (m, 12H, NCH(CH₃)₂), 1.36 (td, *J*= 7.1 Hz, *J*= 2.2 Hz, 6H, OCH₂CH₃), 1.66 (t, *J*= 16.0 Hz, 3H, Me), 2.84-2.77 (m, 1H, OCH₂CH₂CN), 2.97-2.89 (m, 1H, OCH₂CH₂CN), 3.67-3.56 (m, 2H, NCH(CH₃)₂), 4.30-4.18 (m, 5H, OCH₂CH₃, OCH₂CH₂CN), 4.51-4.47 (m, 1H, OCH₂CH₂CN). ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 16.5 (app. t, OCH₂CH₃), 19.6 (d, *J*= 2.7 Hz, Me), 20.0 (d, *J*= 7.3 Hz, OCH₂CH₂CN), 22.5 (NCH(CH₃)₂), 23.9 (NCH(CH₃)₂), 46.9 (d, *J*= 4.6 Hz, NCH(CH₃)₂), 59.6 (d, *J*= 7.3 Hz, OCH₂CH₂CN), 63.7 (dd, *J*= 58.5 Hz, *J*= 9.2 Hz, OCH₂CH₃), 74.1 (dd, *J*= 181.4 Hz, *J*= 175.4 Hz, P-C-P), 117.2 (CN). ³¹**P NMR** (162 MHz, CDCl₃) δ ppm 21.4-21.1 (m) 25.1 (d, *J*= 33.9 Hz), 28.2 (d, *J*= 30.3 Hz). **HRMS** (ES, M+H⁺) calculated for C₁₅H₃₃N₂O₆P₂ 399.1799, found 399.1801

of 21: То solution of 1-[benzyloxy-Synthesis а stirred (diisopropylamino)phosphoryl]ethanone 18 (0.11 mg, 0.37 mmol) in DCM (1 ml) under N₂, triethyl phosphite (0.13 ml, 0.74 mmol) and pyridinium perchlorate (0.13 g, 0.74 mmol) were added. The reaction was followed by TLC and ³¹P NMR analysis where completion of the reaction was determined by the disappearance of the acyl phosphonamidate. 5 ml of DCM were then added and the reaction mixture filtered to remove the pyridinium perchlorate. The sample was concentrated and placed under high vacuum to in order to remove the H- phosphonate (H-P(O)(OEt)₂). The crude mixture was purified on a Biotage system using 100 % DCM and slowly increasing to 95:5 DCM: MeOH to afford the product as a white powder (0.09 g, 70 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 1.23-1.33(m, 18H, NCH(CH₃)₂, OCH₂CH₃), 1.70 (t, J=16.0 Hz, 3H, Me), 3.56-3.67 (m, 2H, NCH(CH₃)₂), 4.41-4.25 (m, 4H, OCH₂CH₃), 5.03 (dd, J= 11.7 Hz, J= 6.8 Hz, 1H, OCH₂Ph), 5.24 (dd, J= 11.7 Hz, J= 6.8 Hz, 1H, OCH₂Ph), 7.49-7.29 (m, 5H, OCH₂Ph)). ¹³C NMR (125 MHz, CDCl₃) δ ppm 16.4 (br. s, OCH₂CH₃), 16.5 (br. s, OCH₂CH₃), 19.6 (br.s, Me), 22.7 (br. s, $NCH(CH_3)_2$, 23.6 (br. s, $NCH(CH_3)_2$), 44.9 (d, J=4.4 Hz, $NCH(CH_3)_2$), 63.6 (dd, J=46.0Hz, J= 9.1 Hz) OCH₂CH₃), 66.2 (d, J= 8.2 Hz, OCH₂Ph), 73.6 (dd, J= 182.5 Hz, J= 175.6 Hz, P-C-P), 127.7, 128.2, 128.6, 136.3 (Ph). ³¹P NMR (162 MHz, CDCl₃) δ ppm 21.7 (d, J= 31.5 Hz), 21.8 (d, J= 31.5 Hz), 24.6 (J= 31.5 Hz), 27.4 (J= 30.0 Hz). HRMS (ES, M+H⁺) calculated for C₁₉H₃₅NO₆P₂ 436.1862, found 436.1867.

Synthesis of 1: 1-[benzyloxy-(diisopropylamino)phosphoryl]-1-diethoxyphosphoryl-ethanol

(0.04 g, 0.09 mmol) was dissolved in trimethylsilyl bromide (1 ml) and stirred at room temperature overnight. The mixture was evaporated *in vacuo* and the residue was dissolved in MeOH (1 ml) and stirred for 60 min at room temperature. The mixture was again evaporated *in vacuo* and the residue was dissolved in H₂O (1 ml) and stirred for 60 min at room temperature. The resultant mixture was washed with EtOAc, the water layer was separated and freeze dried to afford 1 quantitatively as a white powder. ¹H NMR (400 MHz, D₂O) δ ppm 1.22 (br. s, 6H, NCH(CH₃)₂), 1.23 (br.s, 6H, NCH(CH₃)₂), 1.53 (t, *J*= 12.0 Hz, 3H, Me), 3.41-3.47 (m, 2H, NCH(CH₃)₂). ¹³C NMR (125 MHz, D₂O) δ ppm 15.2 (d, *J*= 20.6 Hz), 19.0 (br. s), 24.1 (d, *J*= 20.6 Hz).

Synthesis of 26: To a 25 ml RBF under an atmosphere of N₂ triethyl phosphite (0.50 g, 3.01 mmol, 1 eq) was added. The flask was cooled to -78°C and acetyl chloride (0.24 g, 3.01 mmol, 1 eq) was added. The reaction was allowed to warm slowly to room temperature and ³¹P NMR analysis confirmed complete conversion to the desired product. The reaction mixture was concentrated under high vacuum to remove the EtCl by-product. The crude material (0.51 g, 2.85 mmol, 1 eq) was re-dissolved in anhydrous DCM (5 ml) under an atmosphere of N_2 . Pyridinium perchlorate (1.02 g, 5.70 mmol, 2 eq) and Ndibenzyloxyphosphanyl-N-methyl-methanamine 22 (1.65 g, 5.70 mmol, 2 eq) were added. The reaction was followed by TLC and ³¹P NMR analysis where completion of the reaction was determined by the disappearance of the acyl phosphonamidate. The sample was filtered to remove the pyridinium perchlorate and placed under high vacuum to in order to remove the H- phosphonate (H-P(O)(OEt)₂). The crude mixture was purified on a Biotage system using 100 % DCM and slowly increasing to 2% MeOH in DCM to afford the product as a colourless oil (0.89 g, 82 %) as an inseparable mixture. ¹H NMR (400 MHz, CDCl₃) δ ppm 1.22-1.35 (m, 6H OCH₂CH₃), 1.94-2.08 (m, 3H, Me), 2.74, (d, J=8.0 Hz, 3H, NCH₃), 2.78(d, J= 8.0 Hz, 3H, NCH₃), 4.10-4.28 (m, 4H, OCH₂CH₃), 4.98-5.01 (m, 1H, OCH₂Ph), 5.10.5.15 (m, 1H, OCH₂Ph), 7.35-7.43 (m, 5H, OCH₂Ph). ¹³C NMR (125 MHz, CDCl₃) δ ppm 16.4-16.6 (m, OCH₂CH₃), 20.6-20.9 (m, Me), 37.5 (d, J= 3.8 Hz, NCH₃), 37.6 (d, J= 3.8 Hz, NCH₃), 63.0-64.2 (m, OCH₂CH₃, OCH₂Ph), 78.4 (m, P-C-P), 127.2-128.5 (m, Ph), 136.2 (Ph). ³¹P NMR (162 MHz, CDCl₃) δ ppm 18.8 (dd, J= 27.5 Hz, 4.9 Hz), 19.0 (d, J= 34.0 Hz), 23.1 (d, J= 34.0 Hz), 24.0 (d, J= 27.5 Hz). HRMS (ES, M+H⁺) calculated for C₁₅H₂₈NO₆P₂ 380.1392, found 380.1389.

Synthesis of 27: To a 25 ml RBF was added 26 (0.34 g, 0.90 mmol, 1 eq) under an

atmosphere of N₂. Trimethylsilyl bromide (2 ml) was added and the reaction left to stir overnight. The resultant mixture was evaporated *in vacuo* and the residue was dissolved in MeOH (5 ml) and stirred for 60 min at room temperature. The mixture was again evaporated *in vacuo* and the residue was dissolved in H₂O (5 ml) and stirred for 60 min at room temperature. The MeOH was removed under vacuum and the resultant water layer was freeze dried. The resultant residue was then purified on a Biotage system using reverse phase C-18 column chromatography using 100 % H₂O to afford the pure product as a crystalline solid (0.11 g, 53 %). ¹H NMR (400 MHz, D₂O) δ ppm 1.42 (t, *J*= 16.0 Hz, Me), 2.53 (6H, NC*H*₃). ¹³C NMR (125 MHz, D₂O) δ ppm 19.2, 34.4, 70.3 (t, *J*= 191.4 Hz). ³¹P NMR (162 MHz, D₂O) δ ppm 16.2 (br.s), 19.8 (br.s).

Proposed mechanism for the formation alkylvinyloxyphosphonic diamide when phosphoramidite **12** is reacted with acetyl chloride **13b** at room temperature

