Electronic Supplementary Information

Low temperature *in situ* Raman spectroscopy of electro-generated arylbis(arylthio)sulfonium ion

Kouichi Matsumoto,^{a*} Yu Miyamoto,^a Kazuaki Shimada,^a Yusuke Morisawa,^a Hendrik Zipse,^b Seiji Suga,^c Jun-ichi Yoshida,^d Shigenori Kashimura,^a and Tomonari Wakabayashi^{a*}

^a Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan

^b Department of Chemistry, LMU München, Butenandtstrasse 5-13, D-81377 München, Germany

^c Graduate School of Natural Science and Technology, Okayama University, Tsuhsima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan

^d Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

1. Materials.

 Bu_4NBF_4 and trifluoromethanesulfonic acid (TfOH) were purchased from TCI. Dichloromethane was washed with water, distilled from P_2O_5 , redistilled from dried K_2CO_3 to remove a trace amount of acid, and stored over molecular sieves 4A. ArSSAr (Ar = *p*-FC₆H₄) was prepared according to the procedure in the literature,¹ and identified by comparison of its spectral data with that of an authentic sample.² All the reactions were carried out under the dry N₂ atmosphere unless otherwise noted.

2. Experimental

2.1. Typical procedure.

Anodic oxidation of ArSSAr (Ar = p-FC₆H₄) was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode and a platinum plate cathode (40 mm x 20 mm). In the anodic chamber was placed a solution of Bu₄NBF₄ (791 mg, 2.40 mmol) in CH₂Cl₂ (10.0 mL) and ArSSAr (Ar = p-FC₆H₄, 318 mg, 1.25 mmol). In the cathodic chamber were placed the same solution, Bu₄NBF₄ (793 mg, 2.41 mmol)/CH₂Cl₂ (10.0 mL), and trifluoromethanesulfonic acid (TfOH) (74 µL, c.a. 126 mg, c.a. 0.840 mmol) for the effective reduction in the chathodic chamber. The constant electrolysis current (8.0 mA) was conducted to accumulate ArS(ArSSAr)⁺ in the solution at 195 K using a magnetic stirrer. The electrolyzed solution was subjected to spectroscopic monitoring. The electrochemical cell was kept at 195 K throughout the experiment by bathing it into a coolant mixture of dry-ice/acetone.

As the electrochemical reaction proceeds, the solution in the anodic camber turned from a yellow transparent solution into a dark brownish solution, because accumulated cations might be oxidized further into unknown by-products. To minimize the loss of transparency for both the excitation laser beam and Raman scattering light signals, we chose the excitation at a relatively long wavelength of 785 nm.

2.2. Raman spectroscopy

A laser beam from a fiber-coupled output of cw laser, Toptica XTRA, 250 mW at 785 nm, was conducted through the solution in the anodic chamber of the electrochemical cell. Scattered light was collected in the direction perpendicular to the axis of the laser beam by using a combination of quartz lenses focusing the light on the surface of the entrance cross section of the bundle of forty optical fibers with a 100 μ m diameter for each. The optical components were contained in a vacuum-tight glass tube sealed with rubber *o*-rings and partly dipped into the reactant solution. The electrochemical cell was independently purged with N₂

gas to avoid humidity in air. For the measurement, the vacuum seal of the optical component was crucial in avoiding frost, which scatters both the excitation and signal lights.

The collected light was conducted through the optical fibers to a spectrometer for dispersion, Acton 320 PI (1200 G/mm blazed at 500 nm or 600 G/mm blazed at 1000 nm), and detected by using a liquid-nitrogen cooled CCD array detector, PyLoN:256-OE 1024 x 256 pixels of 26 x 26 μ m². To minimize stray light, a sharp-edge long-pass filter, Semrock RazorEdge 785R (o.d. <10⁻⁶ at 785 nm), was placed in front of the entrance slit of the spectrometer, where the image of the exit cross section of the fiber bundle with vertically aligned forty optical fibers was focused. Spectra were accumulated for 6 min 40 sec (a 4-sec exposure time by 100 times accumulation) for each and redundantly stored one by one for 4 hours (400 sec by 60 spectra) during the electrolysis. Spectral resolution was ~0.2 nm, which corresponds to ~3 cm⁻¹ at 815 nm where a Raman band of 470 cm⁻¹ was observed.

In Fig. S1, Raman spectra of precursory materials at ambient temperature are compared to associate the observed bands with their carriers, i.e., the precursor, ArSSAr (Ar = p-FC₆H₄), the electrolyte, Bu₄NBF₄, and the solvent, CH₂Cl₂. Trace a depicts all the Raman bands of ArSSAr. Trace d represents the bands of the solvent, CH₂Cl₂. In the solution of these two reagents, namely trace c, all the Raman spectral features are seen simply as a superposition of the individual spectra, indicating negligible interaction between ArSSAr and CH₂Cl₂. When the electrolyte is added, the situation is not very much changed, though a lot of bands due to ions from the electrolyte, namely NBu₄⁺ and BF₄⁻, are superposed.

Fig. S1. Raman spectra at ambient temperature of materials used in the present work. In Trace b for the mixture, Raman bands annotated with A belong to ArSSAr (Ar = p-FC₆H₄), bands with B belong to the ions from Bu₄NBF₄, and bands with C belong to CH₂Cl₂.

Note here that, in the spectral region at 300-700 cm⁻¹ in-between the two strong bands of the solvent, only a series of bands due to precursory ArSSAr molecules as annotated with A are discernible. This is an advantage for the study of spectral changes from the reactant molecules to the product molecular cations.

2.3. Molecular orbital calculations

Gaussian 09, revision C.01, quantum chemical package³ was used for molecular orbital calculations of Raman spectra for chemical species of interest, including the precursory ArSSAr (Ar = p-FC₆H₄), the target arylbis(arylthio)sulfonium ion, ArS(ArSSAr)⁺, and monomeric neutral radical, ArS, for considerations on the spectral assignment. Using the tightly optimized geometry, Raman frequencies as well as their intensities were calculated at the B3LYP/6-311++G(2d,p) level of theory. For the monomer radical, ArS, UB3LYP/6-311++G(2d,p) was adopted for its spin-doublet ground state. The optimized geometries are illustrated in Fig. S2.

Fig. S2. Geometry-optimized structures for (a) monomer radical, ArS (Ar = p-FC₆H₄) (*doublet*), (b) disulfide, ArSSAr (*singlet*), and (c) trimer cation, ArS(ArSSAr)⁺ (*singlet*).

Vibrational modes thus obtained are listed in Tables T1-T3, namely for monomer radical ArS (T1), disulfide ArSSAr (T2), and trimer cation ArS(ArSSAr)⁺ (T3). In Table T1, among all the 3N-6 = 30 vibrational modes in ArS, 26 modes are typified as a-z from low frequencies except for four C-H stretching modes having distinctly high frequencies. In Table T2 for disulfides, ArSSAr, the same type of vibrational modes, namely a-z, appears twice in the close vicinity to each other, as a quasi-degenerate couple of the same intra-monomeric vibrational mode with basically the same frequency but coupled differently in a symmetric phase or in an anti-symmetric phase. The total degrees of freedom for nuclear motions increase twice from 3N = 36 for ArS to 3N = 72 for ArSSAr. Since a total of 6 degrees of freedom are reserved for the translational and rotational degrees of freedom for the molecular center of mass, the difference in the total vibrational degrees of freedom, i.e., 66 (ArSSAr) -30 (ArS) \times 2 = 6, remains as the number of new vibrational modes in ArSSAr, which are converted from the intermolecular motions between the two parts, ArS and SAr. In a weakly bound molecular complex, these intermolecular vibrations have low frequencies, typically <100 cm⁻¹. When a covalent bond of S-S is formed in-between, one of the intermolecular vibranal frequencies comes to a higher frequency region in 300-500 cm⁻¹. These additional intermolecular vibrational modes in ArSSAr are indicated in a background colour in red without noting any type a-z in Table T2. Among others, this S-S stretching mode at 451 cm⁻¹ can exhibit a conspicuous Raman activity.

In the same manner, upon shifting from dimer to trimer, in addition to the 26 three-fold degenerate bands of modes, a-z, a total 12 inter-molecular vibrational modes are discernible at low frequency regions for ArS(ArSSAr)⁺ in Table T3. Among the total 102 vibrational modes in ArS(ArSSAr)⁺, 32 modes show vibrational frequencies in 300-850 cm⁻¹ and two thirds of them represent Raman activities. Since most of these modes are triply degenerate and since part of them cannot be strongly Raman active, only several bands remain for necessary considerations for the carrier of the observed Raman bands. Two S-S stretching modes in the bent S₃ moiety, namely symmetric and anti-symmetric, constitute the most important Raman bands, which are predicted at 458 cm⁻¹ and 434 cm⁻¹, respectively (see Table T3). Dragged and/or repelled by motions of the ring deformation in the three *p*-FC₆H₄ groups, sulfur atoms in the central S₃ unit can have large displacements to enhance its Raman activity. Such modes are also important for the assignment of the Raman spectra, as exemplified in the intrinsically degenerate three modes at 378, 364, and 363 cm⁻¹, namely type d (see Table T3). Judging from its remarkable intensity and relative positions over several bands, the observed band I at 427 cm⁻¹ is plausibly attributed to such a mode of vibration. One of the other out-of-plane ring-deformation modes can couple to represent a substantial Raman activity as predicted at 298 cm⁻¹ as one of the type c modes (see Table T3).

Fig. S3 compares calculated Raman spectra for monomer radical, ArS, disulfide, ArSSAr, and trimer cation, ArS(ArSSAr)⁺. The two-fold and three-fold degeneracies are seen by peak positions, a-z, in the dimer and trimer, respectively. The peaks of the same type are superposed constituting a band of peaks. This degeneracy due to independent vibrations in each of the three *p*-FC₆H₄-S groups is remarkable for higher frequency vibrational modes, >500 cm⁻¹. For lower frequency vibrational modes in <500 cm⁻¹, reflecting the nature of delocalized large amplitude motions in such a low-symmetry structures of C_1 point group symmetry for ArS(ArSSAr)⁺, the degeneracy is lifted and easily couple with the vibrations of S-S-S bonds to show a conspicuous enhancements of a group of Raman bands in 295-470 cm⁻¹ (red triangles).

Fig. S3. Comparison of calculated Raman spectra for monomer radical, ArS, disulfide, ArSSAr, and trimer cation, ArS(ArSSAr)⁺, at UB3LYP/ or B3LYP/6-311++G(2d,p). Each

Raman mode signal is drawn by a line width of 6 cm⁻¹.

References

- 1 M. Hirano, S. Yakabe, H. Monobe and T. Morimoto, J. Chem. Research (S), 1998, 472.
- 2 D. P. Becker, C. I. Villamil, T. E. Barta, L. J. Bedell, T. L. Boehm, G. A. DeCrescenzo, J. N. Freskos, D. P. Getman, S. Hockerman, R. Heintz, S. C. Howard, M. H. Li, J. J. McDonald, C. P. Carron, C. L. Funckes-Shippy, P. P. Mehta, G. E. Munie and C. A. Swearingen, *J. Med. Chem.*, 2005, 48, 6713.
- 3 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

ArS (Ar = p-FC₆H₄) Monomer Radical [neutral, doublet] at UB3LYP/6-311++G(2d,p).

Table T1.

ArSSAr (Ar = p -FC ₆ H ₄) Disulfide [neutra	ll, singlet] at B3LYP/6-311++G(2d,p).
--	---------------------------------------

Mode	Frequency	IR Intensity	Raman Activity	Scaled Freq.	Assign					
No.	cm ⁻¹	10 ⁻⁴⁰ esu ² cm ²	Ų/AMU	x0.98	bond/group	motion	motion direction		activity	type
1	17.9	0.0	5.1	18	S-S	rotation Z	inter molecular	ring overlap	Raman	
2	22.1	0.1	3.0	22	C-S	rotation anti-sym	inter molecular	dihedral angle		
3	25.3 67.2	0.0	5.3	25	C-S	rotation sym	inter molecular	dihedral angle	Raman	
5	76.8	0.3	3.9 4 1	75	S-S	rotation Y	inter molecular			
6	138.9	0.1	3.7	136	S-CCCC-F	single bend	out of plane	sym		а
7	194.4	1.2	2.3	191	S-CCCC-F			anti-sym		а
8	249.2	1.5	0.0 4 1	244	C-C-S	head-waiving skew	in-plane	anti-sym		b
10	321.0	0.4	8.1	315	S-CCCC-F/S-S			sym	Raman	c
11	346.4	10.0	1.9	339	S-CCCC-F/S-S	αοιρηιη κιςκ	out-ot-plane	anti-sym	IR	с
12	383.5	10.1	3.9	376	S-CCCC-F/S-S	ring squaring	in-plane	sym	IR	d
13 14	395.6 421.2	8.3 3	0.2	388 413	S-CCCC-F/S-S		/out-of-plane	anti-sym	IR	a
15	423.2	0.5	4.5	415	C-C-C	 tail-waving skew 	in-plane	sym		f
16	427.5	0.1	1.0	419	C-C-C	skew	out-of-plane	sým		е
17	429.3	0.2	0.0	421	C-C-C	- Sicew	out-or-plane	anti-sym		е
18 10	460.1 529.5	3.0	100.0	451 510	S-S C-C-C	stretch	inter molecular	sym	Raman	0
20	529.5	32.7	0.5	519	C-C-C	butterfly	out-of-plane	anti-svm	IR	a
21	632.0	4.3	13.8	619	C-S	otrotob	in plana	sym	Raman	l i i
22	633.1	11.2	3.7	620	C-S	Suelon		anti-sym	IR	i
23	645.6	0.1	1.3	633	C-C-C	ring squeeze	in-plane	anti-sym	Bomon	h
24	730.1	0.0	1.1	715	C-C-C C-C-C			sym	Raman	;
26	732.1	0.2	0.3	717	C-C-C	ring chairing	out-of-plane	anti-sym		j
27	824.6	0.1	0.2	808	С-С-Н	paddling	out-of-plane	anti-sym		k
28	825.6	1.0	0.5	809	C-C-H	padding		sym		k
29	004.0 835.1	21.1	42.0	010 818	C-5/C-F	ring-squaring	in-plane	sym anti-sym	IR/Raman	
31	854.9	6.3	3.2	838	С-С-Н	la a baad		sym	IR	m
32	855.3	93.5	0.2	838	C-C-H	zigzag bend	out-of-plane	anti-sym	IR	m
33	964.9	0.2	0.2	946	С-С-Н	butterflving	out-of-plane	sym		n
34 35	967.2 875.1	0.1 0.2	0.1 0.1	948	С-С-Н С-С-Н			anti-sym		n i
36	975.3	0.2	0.1	956	С-С-Н	crawling	out-of-plane	sym		0
37	1033.1	6.9	0.2	1012	C-C	ring triangularing	in-nlane	anti-sym	IR	р
38	1033.4	2.3	2.7	1013	C-C		in-plane	sym		р
39	1089.4	1.8	195.2	1068	C-C/C-S	stretch/ring breathing	in-plane	sym	Raman	P Q
41	1113.6	6.7	0.2	10/2	C-C		·····	anti-sym		ingin r
42	1114.1	3.9	4.1	1092	C-C	anti-sym ring deform	in-plane	sym		r
43	1176.5	62.3	3.6	1153	C-C	sym-ring deform	in-plane	anti-sym	IR	S
44	1178.6	21.7 168.0	25.4	1155	C-C			sym	IR/Raman	s
40	1244.9	136.2	24.8	1219	C-F	stretch	in-plane	svm	IR/Raman	t
47	1305.6	0.6	0.9	1279	C-C/C-S	2-fold ring twiet	in-plane	anti-sym		u
48	1306.0	0.0	5.0	1280	C-C/C-S			sym	Raman	u
49	1319.5	6.9 2.6	0.7	1293		1-fold ring twist	in-plane	anti-sym	IR	V
50 51	1425.8	2.0 4.5	0.9	1293	C-C/C-F			anti-svm		w
52	1427.1	1.6	3.1	1399	C-C	ring deform	in-plane	sym		w
53	1520.0	72.0	15.7	1490	C-C/C-F/C-S	rina deform	in-plane	sym	IR/Raman	X
54	1520.6	95.4	6.7	1490	C-C/C-F/C-S			anti-sym	IR	X
56	1619.1	2.9	0.1 30.0	1567	C-C	2-fold ring twist	in-plane	svm	IR/Raman	y v
57	1623.1	53.2	84.4	1591	C-S/C-F		in along	sym	IR/Raman	z
58	1623.5	84.5	68.0	1591	C-S/C-F		in-piane	anti-sym	IR/Raman	z
59	<mark>3186.6</mark>	1.7	31.2	3123	С-Н	stretch	in-plane	sym	Raman	
60	3186.7	1.3	12.4	3123	C-H	stretch	in-plane	anti-sym	Raman	
62	3187.8	1.6	19.7	3124	C-H	stretch	in-plane	anti-sym	Raman	
63	3200.2	2.4	9.7	3136	Č-H	stretch	in-plane	anti-sym	Raman	
64	3200.3	0.3	118.7	3136	С-Н	sym-stretch breathing	in-plane	sym	Raman	
65	3201.5	3.5	68.1	3138	С-Н	stretch	in-plane	anti-sym	Raman	
66	3201.6	1.7	394.7	3138	C-H	sym-stretch breathing	in-plane	sym	Raman	

*Colours distinguish prominent Raman modes (yellow) or in-plane (green) or out-of-plane (orange) vibrational modes. *On colours in red are the intermolecular vibrational modes including an S-S stretching mode, all associated with the dimer.

*Phase denotes the distinction of the relative motion in the two ArS moieties in the disulfide ArSSAr.

*Type depicts each of the 26 vibrational modes of a-z from low frequencies as deffined for the monomer radical ArS.

*Each type in the a-z modes is doubly degenerated in the disulfide ArSSAr.

Table T2.

$ArS(ArSSAr)^+$ (Ar = p-FC₆H₄) Trimer Cation [mono-cation, singlet] at B3LYP/6-311++G(2d,p).

	Mode	Frequency	IR Intensity	Raman Activity	Scaled Freq.	Assign					
	No.	cm ⁻¹	10 ⁻⁴⁰	Ų/AMU	x0.98	bond/group	motion	direction	phase	activity	type
	1	7.4	0.1	6.1	7		inter molecular	libration	S ₃ translation	Raman	
	2 3	25.3	0.1	1.6 3.9	17 25		inter molecular	libration	S ₃ translation S ₃ translation	Raman	
	4 5	33.1 36.8	0.2	5.0 2.4	32 36	C-S	rotation	all center		Raman	
	ÿ	39.0 57.7	0.2 0.2	3.8 6.6	38 57	<u>C-S</u>	inter molecular	sides	S ₃ rotation	Raman	
	8 9	63.2 102.7	0.0 1.2	7.5 11.0	62 101		inter molecular inter molecular	swing swing	S ₃ rotation S ₃ bend	Raman Raman	
	10 11	<u>117.0</u> 131.4	0.3 0.5	12.2 19.5	115 129	S-CCCC-F	inter molecular	swing	S ₃ bend centre-side1	Raman Raman	а
	12 13	145.8 182.2	0.2	36.8 16.0	143 179	S-CCCC-F S-CCCC-F	single bend	out-of-plane	centre-side2 all	Raman Raman	a
Ì	14 15	241.1 262.0	4.5 2.8	53.5 1.0	236 257	C-C-S C-C-S	head-waiving skew	in-plane	centre side2	Raman	b
	16 17	265.0	0.5	23.2	260	C-C-S S-CCCC-E/S-S			side1	Raman	b
	18	322.4	1.4	10.5	316	S-CCCC-F/S-S	dolphin kick	out-of-plane	S ₃ bend S. translation	Raman	c
	19 20 21	370.2	59.2	95.2	363	S-CCCC-F/S-S		in-plane	side2/S ₃ anti-sym str	IR/Raman	d
	22	386.1	6.6	151.5	378	S-CCCC-F/S-S	ning squaring	/out-of-plane	centre/S ₃ anti-sym str	IR/Raman	d
	23	419.9	0.7	15.9	412	C-C-C			center in-plane/all	Raman Raman	e,f
	25 26	424.7 425.9	0.1 3.3	6.5 2.3	416 417	C-C-C C-C-C	tail-waving skew /skew	in-plane /out-of-plane	side2 out-of-plane side1 in-plane	Raman	e,f
	27 28	426.7 429.4	2.6 2.1	0.8 26.7	418 421	C-C-C C-C-C			side2 in-plane side1 out-of-plane	Raman	e,f e,f
	29 30	443.0 467.7	13.1 1.3	64.6 146.3	434 458	S-S S-S	stretch	inter molecular	S ₃ anti-sym str S ₃ sym str (breathing)	IR/Raman Raman	
ĺ	31 32	524.5 533.4	31.6 11.4	0.4 3.2	514 523	C-C-C C-C-C	butterfly	out-of-plane	centre side1	IR IR	g g
	33 34	537.5 631.9	8.6 1.7	3.6 33.4	527 619	C-C-C C-S	stretch	in-plane	side2 centre	IR Raman	9
ľ	35 36	640.5 641.8	0.7 0.3	7.5 4.8	628 629	C-C-C C-C-C	rina saueeze	in-plane	centre side2	Raman	h h
	37	642.0 643.3	0.3	5.4	629 630	C-C-C	• .		side1	Raman Raman	h
ļ	39 40	645.2 723.2	1.9 0.3	17.6 2 3	632 709	C-S	stretch	in-plane	side2	Raman	L.
	41	732.8	1.2	6.3	718	C-C-C	ring chairing	out-of-plane	side1	Raman	ļ
ł	43	825.3 820 0	0.1	0.9	809 912	С-С-Н	paddling	out of plana	centre	i taman	k
	44	830.5	0.2	0.1	814	С-С-Н	padding	out-or-plane	side1		k
	40	841.1	14.3	20.5	824	C-S/C-F	ring-squaring	in-plane	side1	IR/Raman	
ł	40 49	859.8	46.9	5.0	843 040	С-С-Н			centre	IR/Raman	m
	50 51	865.8	46.3	2.0	848	С-С-Н	zigzag benu	out-or-plane	side1	IR	m
	52	972.9	2.3	0.0	953	C-C-H	butterflying	out-of-plane	side2		n
ł	54 55	979.7 979.7	0.6	0.0	960 960	C-C-H			centre		0 0
	56 57	984.7 984.9	0.1 0.1	0.1 0.0	965 965	С-С-Н С-С-Н	crawling	out-ot-plane	side2 side1		0
	58 59	1025.7	1.3 0.5	28.7	1005	C-C	ring triangularing	in-plane	side2	Raman Raman	p
	60 61	1028.4 1069.0	0.2 34.0	26.1 338.9	1008 1048	C-C/C-S			centre	Raman	P Q
	62 63	1078.8 1081.4	96.7 75.9	216.1 336.0	1057 1060	C-C/C-S C-C/C-S	stretch/ring breathing	in-plane	anti-sym sedes sym sides	IR/Raman IR/Raman	P Q
	64 65	1123.2 1123.9	3.4 4.3	1.1 1.4	1101	C-C	anti-sym ring deform	in-plane	side1 side2		r
ł	66 67	1130.1 1181.0	5.9 88.8	3.8 12.8	1107 1157	с-с с-с			center anti-sym sides	IR IR/Raman	r S
	68 69	1182.1 1185.4	127.2 11.4	13.3 26.8	1158 1162	C-C C-C	sym-ring deform	in-plane	sym sides sym all	IR/Raman Raman	s s
	70 71	1273.9 1274.7	225.7 292.6	8.0 24.6	1248 1249	C-F C-F	stretch	in-plane	anti-sym sides sym sides	IR/Raman IR/Raman	t
	72 73	1278.1 1315.9	<u>118.8</u> 0.2	24.9 2.8	1253 1290	C-F C-C/C-S			centre side1	IR/Raman	t u
	74 75	1316.9 1323.6	0.0 7.9	2.5 5.8	1291 1297	C-C/C-S C-C/C-S	2-fold ring twist	in-plane	side2 side1+centre	IR/Raman	u u
ĺ	76 77	1324.3 1324.9	8.7 0.9	6.4 4.0	1298 1298	C-C/C-F C-C/C-F	1-fold ring twist	in-plane	side2 all	IR/Raman	v v
ł	78 79	1327.7 1436.8	8.0 8.0	3.4 3.8	1301 1408	C-C/C-F C-C			centre side1	IR IR	w
	80 81	1437.0 1438.2	8.4 7.6	5.3 7.4	1408 1409	C-C C-C	ring deform	in-plane	side2 centre	IR/Raman IR/Raman	w
ĺ	82 83	1518.3 1518.8	54.7 58.9	28.5 32.9	1488 1488	C-C/C-F/C-S C-C/C-F/C-S	ring deform	in-plane	anti-sym sides sym sides	IR/Raman IR/Raman	x x
}	84 85	1521.8 1605.2	84.3 5.1	25.3 2.7	1491 1573	C-C/C-F/C-S C-C	-		centre anti-sym sides	IR/Raman IR	x y
	86 87	1605.5 1613.1	6.9 18.5	1.9 12.2	1573 1581	C-C C-C	2-fold ring twist	in-plane	sym sides centre	IR IR/Raman	y v
	88 89	1618.8 1620.0	314.9 338.3	336.5 146.8	1586 1588	C-S/C-F C-S/C-F	ring squaring	in-plane	anti-sym sides centre	IR/Raman IR/Raman	z z
	90	1620.8	35.0	482.3	1588	C-S/C-F	stratch	in-plane	sym all	IR/Raman	z
	91	3193.6	0.2	32.4	3130	С-Н	stretch	in-plane	side2	Raman	
	93 94	3194.0	0.2	16.3	3131	С-Н	stretch	in-plane	centre	Raman	
	95 96	3194.9	0.4	55.0 45.9	3131	С-Н	stretch	in-plane	side1 side2	Raman	
	97 98	3207.7	2.0 2.4	69.4 105.7	3144 3144	C-H C-H	stretch	in-plane in-plane	side1 side2	Raman Raman	
	99 100	3208.5 3208.5	4.0 0.6	192.3 155.2	3144 3144	С-Н С-Н	stretch	in-plane	side1	Raman Raman	
	101	3209.0	0.7	172.9	3145	C-H	stretch	in-plane	sidé2	Raman	

 102
 3209.1
 1.2
 259.8
 3145
 IC-H
 stretch
 in-plane
 centre
 Ram

 *Colours distinguish prominent Raman modes (yellow) or in-plane (green) or out-of-plane (orange) vibrational modes.
 *On
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</

Each type in the a-z modes is triply degenerated in the trimer cation ArS(ArSSAr)

Table T3.