Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

A general method for *N*-glycosylation of nucleobases promoted by

(p-Tol)₂SO/Tf₂O with thioglycoside as donor

Guang-jian Liu, Xiao-tai Zhang and Guo-wen $\operatorname{Xing}^{\ast}$

Department of Chemistry, Beijing Normal University, Beijing 100875, China. Email: <u>gwxing@bnu.edu.cn</u>

Contents

1.	General information	S1
2.	Characterization data for glycosyl donors	S1–S3
3.	Preparation of acceptors	S 4
4.	General procedure for N-glycosylations of nucleobases	85
5.	NMR data for coupling products	S6-S17
6.	References	S18
7.	NMR spectra for compounds	S19–S53

1. General information

All the starting materials were purchased as reagent grade and used without further purification. Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel F_{254} glass plates and visualized under UV light (254nm) or by staining with acidic ceric ammonium molybdate or EtOH-H₂SO₄ (3%). All the *N*-glycosylation reactions were performed in flame-dried glass vessel under an inert argon atmosphere. Purification of products was performed by flash column chromatography on silica gel (200-300 mesh). ¹H NMR(400MHz) and ¹³C NMR(100MHz) spectra were recorded on a Bruker Avanced III spectrometer. Chemical shifts for ¹H were reported in δ -values (ppm) with tetramethylsilane as an internal standard. The δ values for ¹³C were calibrated with deuterated solvents (CDCl₃ δ = 77.16 ppm). Mass spectra were recorded using electrospray ionization (ESI).

2. Characterization data for glycosyl donors

p-Tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-galactopyranoside (1a)

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.1 Hz, 2H, ArH), 7.13 (d, *J* = 7.9 Hz, 2H, ArH), 5.41 (d, *J* = 2.5 Hz, 1H, H-4), 5.22 (t, *J* = 10.0 Hz, 1H, H-2), 5.04 (dd, *J* = 9.9, 3.3 Hz, 1H, H-3), 4.65 (d, *J* = 10.0 Hz, 1H, H-1), 4.19 (dd, *J* = 11.3, 6.9 Hz, 1H, H-6), 4.11 (dd, *J* = 11.3, 6.3 Hz, 1H, H-6), 3.91 (t, *J* = 6.6 Hz, 1H, H-5), 2.35 (s, 3H, STol CH₃), 2.12 (s, 3H, Ac), 2.10 (s, 3H, Ac), 2.04 (s, 3H, Ac), 1.97 (s, 3H, Ac).

The spectroscopic data coincide with the previous report^[1]

p-Tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyranoside (1b)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.1 Hz, 2H, ArH), 7.12 (d, J = 7.9 Hz, 2H, ArH), 5.21 (t, J = 9.4 Hz, 1H, H-3), 5.02 (t, J = 9.8 Hz, 1H, H-4), 4.93 (t, J = 9.7 Hz, 1H, H-2), 4.63 (d, J = 10.1 Hz, 1H, H-1), 4.20 (m, 2H, H-6), 3.70 (ddd, J = 10.1, 4.8, 2.7 Hz, 1H, H-5), 2.35 (s, 3H, STol CH₃), 2.09 (s, 3H, Ac), 2.08 (s, 3H, Ac), 2.01 (s, 3H, Ac), 1.98 (s, 3H, Ac).

The spectroscopic data coincide with the previous report^[2]

p-Tolyl 2,3,5-tri-*O*-acetyl-1-thio-β-D-ribofuranoside (1c)

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.1 Hz, 2H, ArH), 7.14 (d, J = 7.9 Hz, 2H, ArH), 5.27 – 5.17 (m, 3H), 4.27 – 4.21 (m, 2H), 4.10 – 4.04 (m, 1H), 2.34 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H). The spectroscopic data coincide with the previous report^[3]

p-Tolyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-D-galactopyranoside (1d)

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.01 (m, 2H), 8.00 – 7.97 (m, 2H), 7.93 – 7.89 (m, 2H), 7.77 – 7.73 (m, 2H), 7.64 – 7.50 (m, 3H), 7.49-7.38 (m, 9H), 7.23 (t, *J* = 7.8 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 5.99 (d, *J* = 3.2 Hz, 1H), 5.74 (t, *J* = 9.9 Hz, 1H), 5.59 (dd, *J* = 9.9, 3.3 Hz, 1H), 4.98 (d, *J* = 9.9 Hz, 1H), 4.65 (dd, *J* = 11.3, 6.8 Hz, 1H), 4.43 (dd, *J* = 11.3, 5.8 Hz, 1H), 4.37 (t, *J* = 6.4 Hz, 1H), 2.37 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 166.18, 165.65, 165.52, 165.30, 138.78, 134.54, 133.67, 133.45, 133.39, 130.16, 129.98, 129.96, 129.90, 129.75, 129.62, 129.50, 129.08, 128.89, 128.66, 128.57, 128.40, 127.54, 86.27, 75.22, 73.17, 68.51, 68.07, 62.63, 21.47.

A similar experimental procedure was applied as described in the literature. [*Carbohydr. Res.* 384 (2014) 1–8]

p-Tolyl 2,3,4,6-tetra-*O*-benzoyl-1-thio-β-D-glucopyranoside (1e)

¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 2H, ArH), 7.98 (d, *J* = 7.4 Hz, 2H, ArH), 7.89 (d, *J* = 7.4 Hz, 2H, ArH), 7.79 (d, *J* = 7.4 Hz, 2H, ArH), 7.60 (t, *J* = 7.4 Hz, 1H, ArH), 7.57 – 7.31 (m, 11H, ArH), 7.30 – 7.23 (m, 2H, ArH), 6.94 (d, *J* = 7.9 Hz, 2H, ArH), 5.89 (t, *J* = 9.5 Hz, 1H, H-3), 5.59 (t, *J* = 9.8 Hz, 1H, H-4), 5.45 (t, *J* = 9.7 Hz, 1H, H-2), 4.98 (d, *J* = 10.0 Hz, 1H, H-1), 4.68 (dd, *J* = 12.1, 2.5 Hz, 1H, H-6'), 4.47 (dd, *J* = 12.1, 5.8 Hz, 1H, H-6), 4.21 – 4.13 (m, 1H, H-5), 2.28 (s, 3H, PhCH₃). The spectroscopic data coincide with the previous report^[4]

p-Tolyl 2, 3, 5-tri-*O*-benzoyl-1-thio-β-D-ribofuranoside (1f)

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.90 (d, *J* = 7.9 Hz, 2H), 7.59 – 7.49 (m, 3H), 7.48 – 7.30 (m, 8H), 7.05 (d, *J* = 7.8 Hz, 2H), 5.71 (t, *J* = 4.7 Hz, 1H), 5.63 (t, *J* = 5.2 Hz, 1H), 5.54 (d, *J* = 5.2 Hz, 1H), 4.67 – 4.59 (m, 2H), 4.48 (dd, *J* = 12.4, 4.5 Hz, 1H), 2.22 (s, 3H).

The spectroscopic data coincide with the previous report^[3]

p-Tolyl 2,3,4,6-tetra-*O*-benzyl-1-thio-β-D-galactopyranoside (1g)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.1 Hz, 2H, SPh), 7.40 – 7.23 (m, 20H,Bn), 6.98 (d, J = 8.0

Hz, 2H, SPh), 4.95 (d, J = 11.5 Hz, 1H, H-1), 4.79 (d, J = 10.2 Hz, 1H, Bn),4.76 – 4.67 (m, 3H, Bn), 4.59 (dd, J = 10.6, 4.1 Hz, 2H, Bn), 4.43 (q, J = 11.7 Hz, 2H, Bn), 3.97 (d, J = 2.5 Hz, 1H, H-4), 3.89 (t, J = 9.4 Hz, 1H, H-2), 3.65 (d, J = 6.2 Hz, 2H), 3.59 (dd, J = 9.2, 2.7 Hz, 2H), 2.28 (s, 3H, Me). The spectroscopic data coincide with the previous report^[5]

p-Tolyl 2,3,4,6-tetra-*O*-benzyl-1-thio-β-D-glucopyranoside (1h)

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.1 Hz, 2H, ArH), 7.42 – 7.37 (m, 2H, ArH), 7.36 – 7.23 (m, 16H, ArH), 7.21 – 7.17 (m, 2H, ArH), 7.02 (d, J = 8.0 Hz, 2H, ArH), 4.89 (dd, J = 10.6, 3.6 Hz, 2H, Bn), 4.83 (dd, J = 10.8, 8.6 Hz, 2H, Bn), 4.72 (d, J = 10.3 Hz, 1H, Bn), 4.63 – 4.56 (m, 3H, Bn, H-1), 4.53 (d, J = 11.9 Hz, 1H, Bn), 3.78 (dd, J = 10.9, 1.9 Hz, 1H,H-6), 3.75 – 3.66 (m, 2H, H-4, H-6), 3.63 (t, J = 9.3 Hz, 1H, H-3), 3.48 (ddd, J = 9.5, 4.4, 2.0 Hz, 2H, H-2. H-5), 2.30 (s, 3H, PhCH₃). The spectroscopic data coincide with the previous report^[4]

p-Tolyl 3,5-di-*O*-benzoyl-1-thio-2-deoxy-β-D-ribofuranoside (1i)

¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.10 (m, 2H), 8.04 – 8.00 (m, 2H), 7.62 – 7.53 (m, 2H), 7.50 – 7.40 (m, 6H), 7.11 (d, *J* = 7.9 Hz, 2H), 5.79 (dd, *J* = 7.7, 2.5 Hz, 1H), 5.50 (ddd, *J* = 7.5, 3.8, 2.5 Hz, 1H), 4.78 (q, *J* = 4.0 Hz, 1H), 4.62 (dd, *J* = 4.0, 2.2 Hz, 2H), 2.94 (dt, *J* = 15.0, 7.6 Hz, 1H), 2.36 (dt, *J* = 14.7, 2.5 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.35, 166.28, 137.63, 133.51, 133.28, 132.18, 131.63, 130.02, 129.92, 129.86, 129.78, 129.70, 128.63, 128.56, 88.40, 81.26, 75.00, 64.28, 39.75, 21.24. ESI-MS for C₂₆H₂₄O₅SNa [M+Na]⁺: 471.1, found: 471.3.

3. Preparation of acceptors

(1) General procedure for silylation of pyrimidines

A suspension of nucleobase (5 mmol), $(NH_4)_2SO_4(20 \text{ mg})$ in hexamethyldisilazane (HMDS) (7 mmol, 1.5 mL) was refluxed until the reaction mixture became clear. The reaction mixture was then concentrated in vacuo and the crude was kept under high vacuum overnight to remove traces of solvent.

(2) Preparation of Boc-protected purines.

The Boc-protected purines **2e** and **2f** were prepared according to the published procedures. [*J. Org. Chem.*, 65 (2000) 7697–7699]

4. General procedure for N-glycosylations of nucleobases

(1) General procedure for N-glycosylations of pyrimidines

To a mixture of thioglycoside donor (1.0 equiv, 0.069 mmol), $(p-\text{Tol})_2\text{SO}$ (2 – 6 equiv), and activated 3Å powdered sieves in flame-dried glass vessel was added anhydrous dichloromethane (CH₂Cl₂, 2.5 mL), which was freshly distilled over calcium hydride. The resulting mixture was stirred at preactivation temperature (-70°C – -40°C) for 20 min, followed by the addition of trifluoromethanesulfonic anhydride(13.6 µL, 1.2 equiv). After activation for 30 min (for donor 1e, the activation time was 1 h), a solution of silylated nucleobase (3.0 equiv) in anhydrous CH₃CN (0.7 ml) was added, and the reaction mixture was maintained at this temperature for 2 h and then raise 20°C higher for another 2 h. The reaction mixture was quenched with saturated NaHCO₃ solution (1 ml), diluted with CH₂Cl₂, filtered through Celite, washed with saturated brine, dried and concentrated to leave a residue which was purified by column chromatography on silica gel to afford the pure nucleosides 3-20 and 29-37.

(2) General procedure for N-glycosylations of purines

To a mixture of thioglycoside donor (1.0 equiv, 0.069 mmol), $(p-\text{Tol})_2\text{SO}$ (2.0 equiv), and activated 3Å powdered sieves in flame-dried glass vessel was added anhydrous dichloromethane (CH₂Cl₂, 2.5 mL), which was freshly distilled over calcium hydride. The resulting mixture was stirred at preactivation temperature (-50°C – -40°C) for 20 min, followed by the addition of trifluoromethanesulfonic anhydride(13.6 μ L, 1.2 equiv). After activation for 30 min (for donor 1e, the activation time was 1 h), a solution of acceptor (3.0 equiv) in anhydrous CH₃CN (0.7 ml) was added, and the reaction mixture was allowed warming to rt gradually. After which, the reaction mixture was quenched with Et₃N (0.1 ml), diluted with CH₂Cl₂, filtered through Celite, washed with saturated brine, dried and concentrated to leave a residue which was purified by column chromatography on silica gel to afford the pure nucleosides 21 - 28.

5. NMR data for coupling products

Compounds	References	¹ H NMR	Compounds	References	¹ H NMR
3	[6]	*	22	[8]	*
4	[7]	*	23	[8]	*
5	[8]	*	25	[8]	*
6	[6]	*	26	[8]	\star
7	[9]	*	29	[16]	*
8	[8]	\star	30	[16]	\star
9	[10]	\star	31	[16]	\star
10	[11]	*	32	[13]	*
11	[12]	\star	33	[13]	\star
15	[8]	*	34	[16]	\star
16	[13]	\star	35	[10]	\star
18	[14]	\star	36	[17]	\star
19	[14]	*	37	[17]	*
20	[14]	*	S1	[8]	*
21	[15]	*			

(1) Reference for known compounds

(2) New compounds

Compounds	¹ H NMR	¹³ C NMR	HRMS
12	*	*	*
13	\star	*	\star
14	\star	*	*
17	*	*	*
24	*	*	\star
27	*	*	*
28	*	*	*
S2	*	*	\star

1-(2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl)-uracil (3)

 $(R_f = 0.40, petroleum: ethyl acetate = 1:3)$ ¹H NMR (400 MHz, CDCl₃) δ 9.16 (s, broad, 1H, NH), 7.40 (d, J = 8.2 Hz, 1H, H-6), 5.90 – 5.83 (m, 2H, H-1'and H-5), 5.51 (d, J = 2.7 Hz, 1H), 5.31 (t, J = 9.6 Hz, 1H), 5.24 (dd, J = 10.2, 3.2 Hz, 1H), 4.10-4.18 (m, 3H), 2.20 (s, 3H, -OAc), 2.06 (s, 3H, -OAc), 2.02 (s, 3H, -OAc), 2.01 (s, 3H, -OAc). 1-(2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl)-thymine (4)

 $(R_f = 0.21, petroleum: ethyl acetate = 2:3)$ ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H, NH), 7.16 (d, J = 1.2 Hz, 1H, H-6), 5.85 (d, J = 9.2 Hz, 1H, H-1'), 5.51 (d, J = 3.2 Hz, 1H, H-4'), 5.32 (t, J = 9.7 Hz, 1H, H-2'), 5.22 (dd, J = 10.2, 3.3 Hz, 1H, H-3'), 4.22 – 4.05 (m, 3H, H-5' and H-6'), 2.22 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.01 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.98 (d, J = 1.0 Hz, 3H, CH₃).

N^4 -benzoyl-1-(2',3',4',6'-tetra-O-acetyl- β -D-galactopyranosyl)-cytosine (5)

($R_f = 0.40$, petroleum: ethyl acetate = 1:4) ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 2H), 7.84 (d, J = 7.6 Hz, 1H), 7.58 (dt, J = 15.3, 7.4 Hz, 4H), 6.11 (d, J = 8.8 Hz, 1H, H-1'), 5.54 (d, J = 2.5 Hz, 1H, H-4'), 5.32 (dd, J = 12.7, 6.3 Hz, 1H, H-2'), 5.26 (dd, J = 10.2, 3.2 Hz, 1H, H-3'), 4.23 – 4.09 (m, 3H, H-5' and H-6'), 2.22 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.01 (s, 6H, OAc).

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-uracil (6)

($R_f = 0.34$, petroleum: ethyl acetate = 1:3) ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, broad, 1H, NH), 7.35 (d, J = 8.2 Hz, 1H, H-6), 5.90 (d, J = 9.5 Hz, 1H, H-1'), 5.84 (dd, J = 8.2, 2.0 Hz, 1H, H-5), 5.41 (t, J = 9.5 Hz, 1H, H-2'), 5.17 (dt, J = 13.5, 9.6 Hz, 2H, H-3' and H-4'), 4.28 (dd, J = 12.6, 4.9 Hz, 1H, H-6'), 4.13 (dd, J = 12.6, 2.0 Hz, 1H, H-6'), 3.96 (ddd, J = 10.2, 4.9, 2.1 Hz, 1H, H-5'), 2.10 (s, 3H, Ac), 2.06 (s, 3H, Ac), 2.03 (s, 3H, Ac), 2.01 (s, 3H, Ac).

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranoside)-thymine (7)

 $(R_f = 0.49, \text{ petroleum: ethyl acetate} = 1:3)^1$ H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H, NH), 7.14 (d, J = 1.2 Hz, 1H, H-6), 5.87 (d, J = 9.5 Hz, 1H, H-1'), 5.38 (t, J = 9.5 Hz, 1H, H-3'), 5.24 – 5.11 (m, 2H, H-2', H-4'), 4.28 (dd, J = 12.6, 5.1 Hz, 1H, H-6'), 4.12 (dd, J = 12.6, 2.0 Hz, 1H, H-6'), 3.93 (ddd, J = 10.2, 5.1, 2.1 Hz, 1H, H-5'), 2.10 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.02 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.96 (d, J = 1.1 Hz, 3H, CH₃).

 N^4 -benzoyl-1-(2',3',4',6'-tetra-*O*-acetyl- β -D-glucopyranosly)-cytosine (8)

($R_f = 0.30$, petroleum: ethyl acetate = 1:3) ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.90 (d, J = 6.6 Hz, 2H), 7.81 (d, J = 7.0 Hz, 1H), 7.66 – 7.50 (m, 4H), 6.14 (d, J = 9.3 Hz, 1H), 5.44 (t, J = 9.4 Hz, 1H), 5.25 – 5.13 (m, 2H), 4.30 (dd, J = 12.6, 4.6 Hz, 1H), 4.14 (d, J = 12.5 Hz, 1H), 4.02-3.94 (m, 1H), 2.10 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H).

1-(2',3',5'-Tri-O-acetyl-β-D-ribofuranosyl)-uracil (9)

($R_f = 0.28$, petroleum: ethyl acetate = 1:3) ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H, NH), 7.39 (d, J = 8.2 Hz, 1H, H-6), 6.04 (d, J = 4.9 Hz, 1H, H-1'), 5.79 (dd, J = 8.2, 1.8 Hz, 1H, H-5), 5.37 – 5.31 (m, 2H, H-2' and H-3'), 4.40 – 4.32 (m, 3H, H-4' and H-5'), 2.15 (s, 3H, Ac), 2.13 (s, 3H, Ac), 2.11 (s, 3H, Ac).

1-(2',3',5'-Tri-O-acetyl-β-D-ribofuranosyl)-thymine (10)

 $(R_f = 0.41, \text{ petroleum: ethyl acetate} = 2:5)$ ¹H NMR (400 MHz, CDCl₃) δ 8.96 (br s, 1H, N-H), 7.18 (d, J = 1.2 Hz, 1H, H-6), 6.12 – 6.06 (m, 1H, H-1'), 5.38 – 5.31 (m, 2H, H-2' and H-3'), 4.41 – 4.31 (m, 3H, H-4' and H-5'), 2.16 (s, 3H, -OAc), 2.13 (s, 3H, -OAc), 2.10 (s, 3H, -OAc), 1.95 (d, J = 1.1 Hz, 3H, -CH₃).

N^4 -benzoyl-1-(2',3',5'-tri-O-acetyl- β -D-ribofuranosyl)- cytosine (11)

 $(R_f = 0.22, petroleum: ethyl acetate = 2:7)^1$ H NMR (400 MHz, DMSO) δ 11.35 (s, 1H, ex, NH), 8.19 (d, J = 7.5 Hz, 1H, H-6), 8.01 (d, J = 7.3 Hz, 2H, Ph), 7.63 (t, J = 7.4 Hz, 1H, Ph), 7.52 (t, J = 7.7 Hz, 2H, Ph), 7.40 (bs, 1H, H-5), 5.94 (d, J = 3.8 Hz, 1H, H-1'), 5.54 (dd, J = 6.1, 3.9 Hz, 1H, H-2'), 5.40

(apt, *J* = 6.3 Hz, 1H, H-3'), 4.41 – 4.30 (m, 2H), 4.25 (dd, *J* = 11.6, 5.3 Hz, 1H), 2.08 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H).

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-galactopyranosyl)-uracil (12)

($R_f = 0.20$, petroleum: ethyl acetate = 1:1) ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H, NH), 8.08 – 8.03 (m, 2H), 8.00 (dd, J = 8.3, 1.3 Hz, 2H), 7.91 – 7.87 (m, 2H), 7.77 (dd, J = 8.3, 1.2 Hz, 2H), 7.70-7.65(m, 1H), 7.61 – 7.40 (m, 8H), 7.36 (t, J = 7.8 Hz, 2H), 7.29 – 7.23 (m, 2H), 6.21 (d, J = 9.3 Hz, 1H), 6.10 (d, J = 2.7 Hz, 1H), 5.95 – 5.87 (m, 2H), 5.82 (dd, J = 10.1, 3.3 Hz, 1H), 4.64 (dd, J = 10.9, 6.7 Hz, 1H), 4.61 – 4.56 (m, 1H), 4.45 (dd, J = 10.9, 5.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.09, 165.62, 165.42, 165.35, 162.62, 150.39, 139.25, 133.98, 133.93, 133.58, 133.48, 130.03, 129.94, 129.90, 129.85, 129.28, 129.02, 128.97, 128.65, 128.57, 128.47, 128.14, 104.06, 81.04, 74.62, 71.79, 68.37, 68.20, 62.16; HRMS (ESI) calcd for C₃₈H₃₀N₂O₁₁Na [M+Na]⁺: 713.1742, found: 713.1741

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-galactopyranosyl)-thymine (13)

(R_f = 0.51, petroleum: ethyl acetate = 1:1) ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.10 – 8.04 (m, 2H), 8.03 – 7.98 (m, 2H), 7.91 – 7.86 (m, 2H), 7.79 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.71 – 7.65 (m, 1H), 7.55 (ddd, *J* = 7.6, 4.8, 3.3 Hz, 3H), 7.51 – 7.31 (m, 7H), 7.26 (t, *J* = 7.8 Hz, 2H), 6.25 (d, *J* = 9.3 Hz, 1H), 6.10 (d, *J* = 3.2 Hz, 1H), 5.93 (t, *J* = 9.7 Hz, 1H), 5.82 (dd, *J* = 10.1, 3.3 Hz, 1H), 4.67 – 4.57 (m, 2H), 4.51 – 4.43 (m, 1H), 2.03 (d, *J* = 0.9 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 166.12, 165.61, 165.41, 165.37, 163.18, 150.43, 134.75, 134.02, 133.94, 133.61, 133.53, 130.05, 129.95, 129.91, 129.88, 129.30, 129.10, 128.98, 128.68, 128.60, 128.49, 128.22, 112.41, 81.00, 74.53, 71.91, 68.36, 68.23, 62.24, 12.97;HRMS (ESI) calcd for C₃₉H₃₂N₂O₁₁Na [M+Na]⁺: 727.1898, found: 727.1897.

N^4 -benzoyl-1-(2',3',4',5'-tetra-O-benzoyl- β -D-galactopyranosyl)-cytosine (14)

(R_f = 0.40, petroleum: ethyl acetate = 2:3) ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.85 (m, 9H), 7.81 – 7.52 (m, 7H), 7.52 – 7.39 (m, 6H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.22 (m, 2H), 6.53 (d, *J* = 9.1 Hz, 1H), 6.13 (d, *J* = 3.2 Hz, 1H), 5.96 (t, *J* = 9.7 Hz, 1H), 5.84 (dd, *J* = 10.1, 3.3 Hz, 1H), 4.68 – 4.60 (m, 2H), 4.48 (q, *J* = 9.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.06, 165.73, 165.43, 165.32, 162.62, 144.39, 133.98, 133.81, 133.53, 133.45, 133.40, 130.11, 129.93, 129.86, 129.29, 129.12, 129.03, 128.98, 128.67, 128.60, 128.56, 128.44, 127.79, 81.86, 74.86, 71.94, 69.05, 68.44, 62.19; HRMS (ESI) calcd for C₄₅H₃₅N₃O₁₁Na [M+Na]⁺:816.2164, found: 816.2165.

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosyl)-uracil (15)

(R_f = 0.30, petroleum: ethyl acetate = 1:1) ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.04 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.93 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.90 – 7.87 (m, 2H), 7.82 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.56 – 7.33 (m, 10H), 7.32 – 7.26 (m, 2H), 6.25 (d, *J* = 9.5 Hz, 1H), 6.09 (t, *J* = 9.6 Hz, 1H), 5.83 (dd, *J* = 8.2, 2.2 Hz, 1H), 5.78 (t, *J* = 9.8 Hz, 1H), 5.66 (t, *J* = 9.5 Hz, 1H), 4.67 (dd, *J* = 12.4, 2.7 Hz, 1H), 4.50 (dd, *J* = 12.5, 5.0 Hz, 1H), 4.40 (ddd, *J* = 10.0, 5.0, 2.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.15, 165.61, 165.40, 165.29, 161.99, 150.10, 139.13, 134.05, 133.86, 133.61, 133.48, 130.15, 130.05, 129.94, 129.87, 129.52, 128.71, 128.67, 128.63, 128.52, 128.00, 103.96, 80.89, 75.63, 73.00, 70.31, 68.99, 62.72.

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosyl)-thymine (16)

 $(R_f = 0.41, petroleum: ethyl acetate = 1:1)$ ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.06 – 8.00 (m, 2H), 7.94 – 7.89 (m, 2H), 7.89 – 7.85 (m, 2H), 7.84 – 7.79 (m, 2H), 7.57 (dd, J = 10.6, 4.3 Hz, 1H), 7.51 (q, J = 7.4 Hz, 2H), 7.44 (dd, J = 10.9, 4.4 Hz, 3H), 7.36 (q, J = 8.0 Hz, 4H), 7.31 – 7.25 (m, 3H), 6.24 (d, J = 9.4 Hz, 1H), 6.07 (t, J = 9.6 Hz, 1H), 5.77 (t, J = 9.8 Hz, 1H), 5.67 (t, J = 9.5 Hz, 1H), 4.67 (dd, J = 12.4, 2.7 Hz, 1H), 4.48 (dd, J = 12.4, 5.1 Hz, 1H), 4.38 (ddd, J = 10.0, 5.0, 2.7 Hz, 1H), 1.94 (d, J = 0.9 Hz, 3H).

N^4 -benzoyl-1-(2',3',4',6'-tetra-O-benzoyl- β -D-glucopyranosyl)-cytosine (17)

 $(R_f = 0.42, petroleum: ethyl acetate = 2:3)$ ¹H NMR (400 MHz, DMSO) δ 11.24 (s, 1H), 8.69 (d, J = 6.3 Hz, 1H), 8.00 (dd, J = 29.9, 7.5 Hz, 4H), 7.82 (dd, J = 22.7, 7.5 Hz, 4H), 7.76 – 7.36 (m, 18H), 6.67 (d, J = 9.1 Hz, 1H), 6.27 (t, J = 9.4 Hz, 1H), 6.09 (t, J = 9.3 Hz, 1H), 5.96 (t, J = 9.7 Hz, 1H), 4.87 (d, J = 9.7 Hz, 1H), 4.53 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 167.39, 165.42, 165.10, 164.80, 164.72, 163.54, 154.25, 146.35, 133.99, 133.84, 133.79, 133.47, 132.94, 132.82, 129.52, 129.27, 128.95, 128.80, 128.55, 128.43, 128.13, 97.24, 80.47, 73.34, 71.60, 68.43, 62.48; HRMS (ESI) calcd for C₄₅H₃₅N₃O₁₁Na [M+Na]⁺:816.2164, found: 816.2164

1-(2',3',5'-Tri-O-benzoyl-β-D-ribofuranosyl)-uracil (18)

($R_f = 0.52$, petroleum: ethyl acetate = 2:3) ¹H NMR (400 MHz, CDCl₃) δ 8.47 (bs, 1H, NH), 8.10 (dd, J = 5.2, 3.3 Hz, 2H), 7.98 (dd, J = 8.3, 1.2 Hz, 2H), 7.94 (dd, J = 8.3, 1.2 Hz, 2H), 7.65 – 7.53 (m, 3H), 7.49 (t, J = 7.7 Hz, 2H), 7.44 – 7.34 (m, 5H), 6.32 (d, J = 5.6 Hz, 1H, H-1'), 5.89 (dd, J = 5.9, 4.5 Hz, 1H, H-3'), 5.75 (t, J = 5.8 Hz, 1H, H-2'), 5.61 (dd, J = 8.1, 2.1 Hz, 1H, H-5), 4.84 (dd, J = 12.0, 2.7 Hz, 1H, H-5'), 4.74 – 4.70 (m, 1H, H-4'), 4.67 (dd, J = 12.1, 3.8 Hz, 1H, H-5').

1-(2',3',5'-Tri-*O*-benzoyl-β-D-ribofuranosyl)-thymine (19)

 $(R_f = 0.58, petroleum: ethyl acetate = 4:5)$ ¹H NMR (400 MHz, CDCl₃) δ 8.63 (bs, 1H, NH), 8.17 – 8.11 (m, 2H), 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.95 (dd, J = 8.3, 1.2 Hz, 2H), 7.66 – 7.47 (m, 5H), 7.42-7.35 (m, 4H), 7.16 (d, J = 1.2 Hz, 1H, H-6), 6.43 (d, J = 6.4 Hz, 1H, H-1'), 5.92 (dd, J = 6.0, 3.7 Hz, 1H, H-3'), 5.76 (t, J = 6.2 Hz, 1H, H-2'), 4.89 (dd, J = 12.1, 2.6 Hz, 1H, H-5'), 4.70 (dd, J = 6.3, 3.4 Hz, 1H), 4.65 (dd, J = 12.1, 3.5 Hz, 1H), 1.60 (d, J = 1.0 Hz, 3H).

N^4 -benzoyl-1-(2',3',5'-tri-O-benzoyl- β -D-ribofuranosyl)-cytosine (20)

($R_f = 0.28$, petroleum: ethyl acetate = 2:3) ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.09 (m, 2H), 8.06 – 7.89 (m, 7H), 7.65-7.45 (m, 9H), 7.41 - 7.35 (m, 4H), 6.47 (d, J = 4.6 Hz, 1H, H-1'), 5.92 (t, J = 5.5 Hz, 1H), 5.88 – 5.82 (m, 1H), 4.87 (dd, J = 12.2, 2.7 Hz, 1H), 4.80 (dd, J = 8.3, 3.3 Hz, 1H), 4.74 (dd, J = 12.2, 3.9 Hz, 1H).

2',3',5'-Tri-O-benzoyl-β-D-ribofuranosyl-2,6-dichloropurine (21)

(R_f = 0.39, petroleum: ethyl acetate = 2:1) ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H, H-8), 8.08 – 8.00 (m, 4H, -OBz), 7.93 (d, *J* = 7.3 Hz, 2H, -OBz), 7.63 – 7.53 (m, 3H, -OBz), 7.45 (dd, *J* = 15.1, 7.5 Hz, 4H, -OBz), 7.37 (t, *J* = 7.8 Hz, 2H, -OBz), 6.49 (d, *J* = 5.4 Hz, 1H, H-1'), 6.19 (t, *J* = 5.6 Hz, 1H, H-3'), 6.16 – 6.12 (m, 1H, H-2'), 4.93 (dd, *J* = 12.1, 3.2 Hz, 1H, H-5'), 4.88 (dd, *J* = 7.5, 3.9 Hz, 1H, H-4'), 4.73 (dd, *J* = 12.1, 4.0 Hz, 1H, H-5'). ¹³C NMR (101 MHz, CDCl₃) δ 166.16, 165.41, 165.25 (3 Bz), 153.57, 152.73, 152.42, (C-6, C-2, C-4), 143.98(C-8), 134.12, 134.01, 133.76, 131.46, 130.02, 129.98, 129.73, 129.15, 128.85, 128.75, 128.72, 128.65, 128.19, (3Bz, C-5) 87.12(C-1'), 81.61(C-4'), 74.41(C-3'), 71.66(C-2'), 63.60(C-5').

2-*tert*-Butoxycarbonylamino-6-chloro-9-(2',3',5'-tri-*O*-benzoyl-β-D-ribofuranosyl)purine (22)

 $(R_f = 0.44, petroleum: ethyl acetate = 2:1)$ ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 8.04 – 7.98 (m, 4H), 7.96 – 7.91 (m, 2H), 7.62 – 7.52 (m, 4H), 7.44 – 7.34 (m, 6H), 6.61 (t, *J* = 5.9 Hz, 1H), 6.32 – 6.26 (m, 2H), 4.97 (dd, *J* = 11.9, 3.8 Hz, 1H), 4.92 – 4.87 (m, 1H), 4.79 (dd, *J* = 11.9, 5.4 Hz, 1H), 1.48 (s, 9H).

N,*N*-Di-*tert*-butoxycarbonyl-9-(2',3',5'-tri-*O*-benzoyl-β-D-ribofuranosyl)adenine (23)

 $(R_f = 0.52, petroleum: ethyl acetate = 1:1)$ ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.25 (s, 1H), 8.11 (d, J = 7.3 Hz, 2H), 8.02 (d, J = 7.3 Hz, 2H), 7.92 (d, J = 7.3 Hz, 2H), 7.63 – 7.52 (m, 3H), 7.49 – 7.33 (m, 6H), 6.51 (d, J = 5.3 Hz, 1H), 6.41 (t, J = 5.5 Hz, 1H), 6.27 (t, J = 5.2 Hz, 1H), 4.92 (dd, J = 12.1, 3.2 Hz, 1H), 4.86 (dd, J = 7.9, 4.1 Hz, 1H), 4.73 (dd, J = 12.1, 4.2 Hz, 1H), 1.44 (s, 18H).

N-tert-Butoxycarbonyl-9-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)adenine (S1)

¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.10 (d, *J* = 6.8 Hz, 4H), 8.01 (d, *J* = 7.2 Hz, 2H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.62 - 7.52 (m, 3H), 7.48 - 7.33 (m, 6H), 6.47 (d, *J* = 5.2 Hz, 1H), 6.38 (t, *J* = 5.5 Hz, 1H), 6.25 (t, *J* = 5.3 Hz, 1H), 4.93 (dd, *J* = 12.2, 3.2 Hz, 1H), 4.84 (dd, *J* = 7.9, 4.1 Hz, 1H), 4.70 (dd, *J* = 12.2, 4.2 Hz, 1H), 1.55 (s, 9H).

2',3',4',6'-Tetra-O-benzoyl-β-D- glucopyranosyl -2,6-dichloropurine (24)

(R_f = 0.32, petroleum: ethyl acetate = 2:1) ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H, H-8), 8.02 (d, J = 7.4 Hz, 2H), 7.94 (d, J = 7.4 Hz, 2H), 7.82 (d, J = 7.4 Hz, 2H), 7.74 (d, J = 7.4 Hz, 2H), 7.60 - 7.50 (m, 2H), 7.48 - 7.34 (m, 6H), 7.32 - 7.26 m, 4H), 6.28 (d, J = 9.3 Hz, 1H, H-1'), 6.19 (t, J = 9.6 Hz, 1H), 6.05 (t, J = 9.5 Hz, 1H), 5.92 (t, J = 9.4 Hz, 1H), 4.70 (dd, J = 14.5, 4.8 Hz, 1H), 4.54 (d, J = 9.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.09, 165.62, 165.21, 164.96, (4 Bz), 153.67, 153.10, 152.37(C-2, C-4, C-6), 143.45(C-8), 134.13, 133.90, 133.69, 133.50, 130.72(C-5), 130.02, 129.97, 129.89, 129.86, 129.34, 128.67, 128.61, 128.53, 128.43, 128.39, 127.44, 81.39(C-1'), 76.01, 72.83, 71.21, 68.80, 62.53; HRMS (ESI) calcd for C₃₉H₂₉N₄O₉Cl₂ [M+H]⁺:767.1312, found: 767.1307.

2-*tert*-Butoxycarbonylamino-6-chloro-9-(2',3',4',6'-tetra-*O*-benzoyl-β-D-glucopyranosyl)puri ne (25)

¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.05 – 7.99 (m, 2H), 7.97 – 7.93 (m, 2H), 7.85 – 7.79 (m, 2H), 7.78 – 7.71 (m, 2H), 7.58 – 7.36 (m, 9H), 7.31 – 7.22 (m, 4H), 6.27 (d, *J* = 9.3 Hz, 1H, H-1'), 6.18 (t, *J* = 9.6 Hz, 1H), 6.02 (t, *J* = 9.5 Hz, 1H), 5.89 (t, *J* = 9.5 Hz, 1H), 4.68 (q, *J* = 4.4 Hz, 1H), 4.57 – 4.48 (m, 2H), 1.58 (s, 9H, Boc).

N,*N*-Di-*tert*-butoxycarbonyl-9-(2',3',4',6'-tetra-*O*-benzoyl-β-D-glucopyranosyl)adenine (26)

¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.42 (s, 1H), 8.04 – 7.99 (m, 2H), 7.97 – 7.93 (m, 2H), 7.84 – 7.80 (m, 2H), 7.71 – 7.67 (m, 2H), 7.58 – 7.51 (m, 2H), 7.47 – 7.36 (m, 6H), 7.32 – 7.22 (m, 4H), 6.34 (d, J = 8.9 Hz, 1H), 6.19 – 6.10 (m, 2H), 5.93 (t, J = 9.5 Hz, 1H), 4.70 (dd, J = 12.9, 3.3 Hz, 1H), 4.56 – 4.48 (m, 2H), 1.33 (s, 18H).

N-tert-Butoxycarbonyl-9-(2',3',4',6'-tetra-O-benzoyl-β-D-glucopyranosyl)adenine (S2)

¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.31 (s, 1H), 8.02 (d, J = 7.2 Hz, 2H), 7.96 – 7.91 (m, 2H), 7.84 – 7.79 (m, 2H), 7.70 (d, J = 7.3 Hz, 2H), 7.59 – 7.50 (m, 2H), 7.47 – 7.35 (m, 6H), 7.31 – 7.23 (m, 4H), 6.31 (d, J = 9.2 Hz, 1H), 6.16 (t, J = 9.6 Hz, 1H), 6.08 (t, J = 9.4 Hz, 1H), 5.92 (t, J = 9.6 Hz, 1H), 4.69 (d, J = 9.8 Hz, 1H), 4.56 – 4.47 (m, 2H), 1.53 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.14, 165.67, 165.27, 165.02, 153.10, 151.22, 149.92, 149.50, 140.21, 133.97, 133.85, 133.62, 133.46, 130.05, 129.92, 129.89, 129.47, 128.67, 128.59, 128.55, 128.52, 127.70, 121.14, 82.70, 81.08, 75.86, 73.11, 71.33, 69.02, 62.66, 28.21. HRMS (ESI) calcd for C₄₄H₄₀N₅O₁₁ [M+H]⁺:814.2724, found: 814.2717.

(R_f = 0.51, petroleum: acetone = 2:1) ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H, H-8), 8.17 (d, *J* = 7.4 Hz, 2H), 7.98 (d, *J* = 7.4 Hz, 2H), 7.77 (dd, *J* = 18.5, 7.5 Hz, 4H), 7.68 (d, *J* = 7.4 Hz, 1H), 7.55 (dd, *J* = 14.4, 7.2 Hz, 3H), 7.49 – 7.38 (m, 4H), 7.34 – 7.23 (m, 4H), 6.40 (t, *J* = 9.7 Hz, 1H, H-2'), 6.26 – 6.15 (m, 2H, H-1' and H-4'), 5.92 (dd, *J* = 10.1, 3.1 Hz, 1H, H-3'), 4.76 – 4.62 (m, 2H, H-5' and H-6'), 4.52 (dd, *J* = 11.4, 5.4 Hz, 1H, H-6'). ¹³C NMR (101 MHz, CDCl₃) δ 166.09, 165.45, 165.43, 165.05(4 Bz), 153.67, 153.11, 152.40(C-2, C-4 and C-6), 143.82(C-8), 134.12, 134.09, 133.72, 133.57, 130.96(C-5), 130.12, 129.91, 129.88, 129.18, 129.04, 128.81, 128.64, 128.60, 128.53, 128.45, 127.62, 82.25(C-1'), 75.03(C-5'), 71.72(C-3'), 68.87(C-2'), 68.06(C-4'), 62.12(C-6'). HRMS (ESI) calcd for C₃₉H₂₉N₄O₉Cl₂ [M+H]⁺:767.1312, found: 767.1305.

N,*N*-Di-*tert*-butoxycarbonyl-9-(2',3',4',6'-tetra-*O*-benzoyl-β-D-galactopyranosyl)adenine (28)

¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H, H-2), 8.49 (s, 1H, H-8), 8.22 – 8.16 (m, 2H), 8.02 – 7.97 (m, 2H), 7.83 – 7.77 (m, 2H), 7.69 (dd, *J* = 7.2, 4.7 Hz, 3H), 7.56 (dd, *J* = 16.1, 7.9 Hz, 3H), 7.48 – 7.38 (m, 4H), 7.29 – 7.22 (m, 4H), 6.49 (t, *J* = 9.7 Hz, 1H, H-2'), 6.31 (d, *J* = 9.4 Hz, 1H, H-1'), 6.19 (d, *J* = 3.0

Hz, 1H, H-4'), 5.90 (dd, J = 10.1, 3.2 Hz, 1H, H-3'), 4.72-4.62 (m, 2H, H-5' and H-6'), 4.51 (dd, J = 11.1, 5.7 Hz, 1H , H-6'), 1.35 (s, 18H, Boc). ¹³C NMR (101 MHz, CDCl₃) δ 166.10, 165.45, 165.42, 164.98(4Bz), 153.26(C-4), 152.56(C-2), 150.82(C-6), 150.17(Boc), 142.51(C-8), 134.06, 133.86, 133.65, 133.52, 130.12, 129.93, 129.91, 129.79, 129.25, 128.99, 128.96, 128.76, 128.58, 128.49, 128.46, 127.85(C-5), 83.85(Boc), 81.68(C-1'), 74.70(C-5'), 72.05(C-3'), 68.87(C-2'), 68.12(C-4'), 62.04(C-6'), 27.76(Boc). HRMS (ESI) calcd for C₄₉H₄₈N₅O₁₃ [M+H]⁺:914.3249, found: 914.3247.

1-(2',3',4',6'-Tetra-O-benzyl-D-galactopyranosyl)-uracil (29)

For the α -isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H, NH), 7.59 (d, J = 8.2 Hz, 1H, H-6), 7.39 – 7.24 (m, 18H, benzyl), 7.02 (dd, J = 6.6, 2.9 Hz, 2H, benzyl), 6.04 (d, J = 1.8 Hz, 1H, H-1'), 5.60 (dd, J = 8.2, 2.1 Hz, 1H, H-5), 4.65 – 4.47 (m, 7H), 4.32 (d, J = 11.7 Hz, 1H), 4.16 (dt, J = 11.9, 4.6 Hz, 2H), 4.05 (dd, J = 6.4, 2.8 Hz, 1H), 3.83 – 3.77 (m, 2H), 3.68 (dd, J = 3.9, 1.9 Hz, 1H).

For the β-isomer:¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H, NH), 7.41 – 7.22 (m, 18H, benzyl), 7.17 (dd, J = 6.5, 3.1 Hz, 2H, benzyl), 6.94 (d, J = 8.2 Hz, 1H, H-6), 5.58 (d, J = 8.9 Hz, 1H, H-1'), 5.34 (dd, J = 8.1, 2.1 Hz, 1H, H-5), 4.95 (d, J = 11.3 Hz, 1H, CH₂-Ph), 4.84 – 4.72 (m, 3H, CH₂-Ph), 4.57 (dd, J = 16.6, 11.6 Hz, 2H, CH₂-Ph), 4.44 (q, J = 11.9 Hz, 2H, CH₂-Ph), 3.99 (d, J = 2.0 Hz, 1H, H-4'), 3.87 (t, J = 9.2 Hz, 1H, H-3'), 3.78 – 3.70 (m, 2H, H-2', H-5'), 3.58 – 3.47 (m, 2H, H-6'a, H-6'b).

1-(2',3',4',6'-Tetra-O-benzyl-β-D-galactopyranosyl)-thymine (30)

 $(R_f = 0.31, petroleum: ethyl acetate = 1:1)$ ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H, NH), 7.42 – 7.13 (m, 20H, benzyl), 6.65 (d, J = 1.2 Hz, 1H, H-6), 5.58 (d, J = 8.9 Hz, 1H, H-1'), 4.97 (d, J = 11.4 Hz, 1H, CH₂Ph), 4.83 – 4.72 (m, 3H, CH₂Ph), 4.58 (dd, J = 20.0, 11.7 Hz, 2H, CH₂Ph), 4.45 (q, J = 11.9 Hz, 2H, CH₂Ph), 4.00 (d, J = 1.9 Hz, 1H), 3.85 (t, J = 9.1 Hz, 1H), 3.79 – 3.70 (m, 2H), 3.53 (ddd, J = 15.0, 9.2, 6.6 Hz, 2H, H-6'a, H-6'b), 1.63 (d, J = 1.1 Hz, 3H, CH₃thymine).

N^4 -benzoyl-1-(2',3',4',6'-tetra-O-benzyl- β -D-galactopyranosyl)-cytosine (31)

 $(R_f = 0.49, petroleum: ethyl acetate = 1:2)$ ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.42 – 7.10 (m, 22H), 5.88 (d, *J* = 8.2 Hz, 1H, H-1'), 4.98 (d, *J* = 11.3 Hz, 1H, CH₂Ph), 4.84 – 4.72 (m, 3H, CH₂Ph), 4.61 (d, *J* = 11.3 Hz, 1H, CH₂Ph), 4.55 – 4.38 (m, 3H, CH₂Ph), 4.01 (d, *J* = 2.0 Hz, 1H), 3.91 (t, *J* = 9.2 Hz, 1H), 3.84 – 3.74 (m, 2H), 3.61 – 3.48 (m, 2H).

1-(2',3',4',6'-Tetra-O-benzyl-D-glucopyranosyl)-uracil (32)

For the α-isomer:¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.39 – 7.27 (m, 16H), 7.19 (dd, *J* = 7.0, 2.4 Hz, 2H), 7.14 (dd, *J* = 6.6, 2.7 Hz, 2H), 6.03 (d, *J* = 3.2 Hz, 1H), 5.62 (dd, *J* = 8.2, 2.2 Hz, 1H), 4.59 – 4.40 (m, 7H), 4.35 – 4.28 (m, 2H), 4.05 (t, *J* = 3.0 Hz, 1H), 3.83 (t, *J* = 3.1 Hz, 1H), 3.73 (dd, *J* = 10.6, 2.7 Hz, 1H), 3.70 – 3.62 (m, 2H).

For the β-isomer:¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 1.5 Hz, 1H), 7.38 – 7.26 (m, 16H), 7.17 (td, J = 8.1, 3.1 Hz, 4H), 6.89 (d, J = 8.2 Hz, 1H), 5.61 (d, J = 9.1 Hz, 1H), 5.37 (dd, J = 8.1, 2.2 Hz, 1H), 4.93 (s, 2H), 4.82 (dd, J = 22.9, 11.3 Hz, 2H), 4.60 (d, J = 10.8 Hz, 1H), 4.56 – 4.45 (m, 3H), 3.86 (t, J = 9.0 Hz, 1H), 3.75 – 3.58 (m, 4H), 3.47 (t, J = 9.0 Hz, 1H)

1-(2',3',4',6'-Tetra-O-benzyl-D-glucopyranosyl)-thymine (33)

For the α-isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.45 (d, *J* = 1.1 Hz, 1H), 7.39 – 7.27 (m, 16H), 7.20 (dd, *J* = 7.0, 2.4 Hz, 2H), 7.12 (dd, *J* = 7.3, 2.0 Hz, 2H), 6.04 (d, *J* = 3.2 Hz, 1H), 4.59 – 4.49 (m, 5H), 4.44 (t, *J* = 11.1 Hz, 2H), 4.36 – 4.27 (m, 2H), 4.03 (t, *J* = 3.0 Hz, 1H), 3.83 (t, *J* = 3.1 Hz, 1H), 3.74 (dd, *J* = 10.5, 3.0 Hz, 1H), 3.69 – 3.63 (m, 2H), 1.81 (d, *J* = 0.9 Hz, 3H).

For the β-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.38 – 7.20 (m, 16H), 7.17 (dd, J = 5.7, 3.7 Hz, 4H), 6.65 (d, J = 1.1 Hz, 1H), 5.59 (d, J = 9.2 Hz, 1H), 4.94 (s, 2H), 4.81 (dd, J = 21.7, 11.4 Hz, 2H), 4.59 (d, J = 10.7 Hz, 1H), 4.55-4.45 (m, 3H), 3.86 (t, J = 9.0 Hz, 1H), 3.77 – 3.68 (m, 2H), 3.65 (dd, J = 11.0, 1.7 Hz, 1H), 3.62 – 3.56 (m, 1H), 3.46 (t, J = 9.0 Hz, 1H), 1.67 (d, J = 0.9 Hz, 3H).

 N^4 -benzoyl-1-(2',3',4',6'-tetra-O-benzyl- β -D-glucopyranosyl)-cytosine (34)

¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.38 – 7.27 (m, 14H), 7.23 – 7.10 (m, 8H), 5.91 (d, J = 7.7 Hz, 1H, H-1'), 4.97 – 4.89 (m, 2H, CH₂Ph), 4.95-4.80 (m, 1H, CH₂Ph), 4.74 (d, J = 11.8 Hz, 1H, CH₂Ph), 4.61 (d, J = 10.7 Hz, 1H, CH₂Ph), 4.54 (d, J = 12.2 Hz, 1H, CH₂Ph), 4.47 (dd, J = 12.0, 3.2 Hz, 2H, CH₂Ph), 3.91 (t, J = 8.9 Hz, 1H, H-4'), 3.82 – 3.72 (m, 2H, H-3' and H-2'), 3.70 – 3.62 (m, 2H), 3.52 (t, J = 8.7 Hz, 1H).

1-(3',5'-Di-O-benzoyl-2'-deoxy-β-D-ribofuranosyl)-thymine (35)

 $(R_f = 0.50, petroleum: ethyl acetate = 1:2)$ ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.06 (t, J = 8.2 Hz, 4H), 7.62 (t, J = 7.4 Hz, 2H), 7.48 (t, J = 7.0 Hz, 4H), 7.26 (s, 1H, H-6), 6.47 (dd, J = 8.6, 5.6 Hz, 1H, H-1'), 5.66 (d, J = 6.4 Hz, 1H, H-3'), 4.80 (dd, J = 12.2, 2.8 Hz, 1H, H-5'), 4.69 (dd, J = 12.2, 3.3 Hz, 1H, H-5'), 4.54 (d, J = 2.2 Hz, 1H, H-4'), 2.72 (dd, J = 14.2, 5.2 Hz, 1H, H-2'), 2.41 – 2.29 (m, 1H, H-2'), 1.62 (s, 3H, -CH₃).

1-(3',5'-Di-O-benzoyl-2'-deoxy-β-D-ribofuranosyl)-uracil (36)

 $(R_f = 0.43, petroleum: ethyl acetate = 1:2)$ ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.05 (m, 3H), 8.02 (dd, J = 8.4, 1.3 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.54 – 7.45 (m, 5H), 6.40 (dd, J = 8.4, 5.6 Hz, 1H), 5.63 (dt, J = 6.5, 2.1 Hz, 1H), 5.59 (dd, J = 8.2, 2.3 Hz, 1H), 4.77 – 4.68 (m, 2H), 4.56 (dd, J = 6.0, 3.4 Hz, 1H), 2.76 (ddd, J = 14.4, 5.7, 2.0 Hz, 1H), 2.33 (ddd, J = 14.6, 8.3, 6.7 Hz, 1H).

N^4 -benzoyl-1-(3',5'-Di-O-benzoyl-2'-deoxy- β -D-ribofuranosyl)-cytosine (37)

 $(R_f = 0.32, petroleum: ethyl acetate = 1:2)$ ¹H NMR (400 MHz, CDCl₃) δ 8.14 - 8.05 (m, 3H), 8.03 - 7.97 (m, 2H), 7.89 (d, J = 7.5 Hz, 2H), 7.65 - 7.42 (m, 10H), 6.41 (dd, J = 7.9, 5.6 Hz, 1H, H-1'), 5.64 (dt, J = 6.4, 1.9 Hz, 1H), 4.76 (qd, J = 12.2, 3.5 Hz, 2H), 4.67 (dd, J = 5.8, 3.3 Hz, 1H), 3.16 - 3.06 (m, 1H, H-2'), 2.31 (ddd, J = 14.5, 7.8, 6.6 Hz, 1H, H-2').

References

- 1. C. Chao, M. Chen, S. Lin and K. T. Mong, Carbohydr. Res., 2008, 343, 957-964.
- 2. F. Zhang, W. Zhang, Y. Zhang, D. P. Curran and G. Liu, J. Org. Chem., 2009, 74, 2594-2597.
- 3. M. Kurosu and K. Li, J. Org. Chem., 2008, 73, 9767-9770.
- R. R. France, N. V. Rees, J. D. Wadhawan, A. J. Fairbanks and R. G. Compton, *Org. Biomol. Chem.*, 2004, 2, 2188-2194.
- 5. S. Hsieh, M. Jan, L. N. Patkar, C. Chen and C. Lin, Carbohydr. Res., 2005, 340, 49-57.
- K. W. C. G. Roland Haeckel and M. W. A. F. Joseph Eisenbarth, *Journal of Labelled Cornpourids* and Radiopharmaceuticals, 1996, 1061-1070.
- B. Gerland, A. Goudot, C. Ligeour, G. Pourceau, A. Meyer, S. Vidal, T. Gehin, O. Vidal, E. Souteyrand, J. Vasseur, Y. Chevolot and F. Morvan, *Bioconjugate Chem.*, 2014, 25, 379-392.
- 8. Q. Zhang, J. Sun, Y. Zhu, F. Zhang and B. Yu, Angew. Chem. In. Ed., 2011, 50, 4933-4936.
- 9. J. Huchting and C. Meier, Eur. J. Org. Chem., 2014, 2014, 3423-3429.
- 10. I. Nowak and M. J. Robins, Org. Lett., 2005, 7, 4903-4905.
- 11. K. C. A. S. Danishefsky, J. Org. Chem., 1990, 55, 4211-4214.
- 12. J. W. Rigoli, M. E. Østergaard, K. M. Canady, D. C. Guenther and P. J. Hrdlicka, *Tetrahedron Lett.*, 2009, **50**, 1751-1753.
- 13. J. Liao, J. Sun and B. Yu, Tetrahedron Lett., 2008, 49, 5036-5038.
- 14. T. M. T. M. Naoyuki SHIMOMURA, Bull. Chem. Soc. Jpn, 1994, 67, 3100-3106.
- 15. B. Fraser-Reid, P. Ganney, C. V. S. Ramamurty, A. M. Gómez and J. C. López, *Chem. Commun*, 2013, **49**, 3251-3253.
- 16. J. J. C. H. Stephen Hanessian, Tetrahedron, 1996, 52, 10827-11083.
- 17. A. K. Prasad, V. Kumar, J. Maity, W. Zhiwei, V. T. Ravikumar, Y. S. Sanghvi and V. S. Parmar, *Synth. Commun.*, 2005, **35**, 935-945.

-0.00

$\begin{array}{c} -0.00 \\$

-0.00

0. 5

0.0

-11.24 8.68 8.68 8.68 8.68 8.68 -8.03 -7.78 -7.76 -7.78 -7.888 -7.888 -7.888 -7.88 -7.88 -7.88 -7.88 -7.88 -7.

$\begin{array}{c} 8.50\\ 8.51\\ 8.18\\ 7.97\\ 7.75\\ 7.77\\ 7.75\\ 7.77\\ 7.75\\ 6.40\\ 6.20$

-0.00

8.45 8.45 8.45 8.45 8.47 7.18 7.17

-0.00

 $\begin{array}{c} 7,7,7,9,4\\ 7,7,5,6,7\\ 7,7,5,6,7\\ 7,7,5,6,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,5,7\\ 7,7,7$

$\begin{array}{c} -8.77\\ -8.08\\ 8.08\\ 8.04\\ 8.04\\ 8.04\\ 8.04\\ 8.04\\ 8.04\\ 6.47\\ 6.4$

$\begin{array}{c} 8.13\\ 8.08\\ 8.00\\ 8.01\\ 8.01\\ 7.52\\ 8.01\\ 7.52\\ 7.52\\ 8.02\\ 7.56\\ 6.03\\ 7.56\\ 6.03\\ 7.56\\$

