Electronic Supplementary Information

A general method for N-glycosylation of nucleobases promoted by ($p-\mathrm{Tol})_{2} \mathrm{SO} / \mathrm{Tf}_{2} \mathrm{O}$ with thioglycoside as donor
 Guang-jian Liu, Xiao-tai Zhang and Guo-wen Xing*
 Department of Chemistry, Beijing Normal University, Beijing 100875, China.
 Email: gwxing@bnu.edu.cn

Contents

1. General information S1
2. Characterization data for glycosyl donors S1-S3
3. Preparation of acceptors S4
4. General procedure for N-glycosylations of nucleobases $\mathbf{S 5}$
5. NMR data for coupling products S6-S17
6. References S18
7. NMR spectra for compounds S19-S53

1. General information

All the starting materials were purchased as reagent grade and used without further purification. Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel F_{254} glass plates and visualized under UV light (254 nm) or by staining with acidic ceric ammonium molybdate or $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{SO}_{4}(3 \%)$. All the N -glycosylation reactions were performed in flame-dried glass vessel under an inert argon atmosphere. Purification of products was performed by flash column chromatography on silica gel (200-300 mesh). ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ spectra were recorded on a Bruker Avanced III spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ were reported in δ-values (ppm) with tetramethylsilane as an internal standard. The δ values for ${ }^{13} \mathrm{C}$ were calibrated with deuterated solvents $\left(\mathrm{CDCl}_{3} \delta=77.16 \mathrm{ppm}\right)$. Mass spectra were recorded using electrospray ionization (ESI).

2. Characterization data for glycosyl donors

p-Tolyl 2,3,4,6-tetra-O-acetyl-1-thio- β-D-galactopyranoside (1a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.41(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.22(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.04(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.65(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.19$ (dd, $J=11.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.11$ (dd, $J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.91$ (t, $J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{STol} \mathrm{CH}_{3}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.97(\mathrm{~s}, 3 \mathrm{H}$, Ac).
The spectroscopic data coincide with the previous report ${ }^{[1]}$
p-Tolyl 2,3,4,6-tetra-O-acetyl-1-thio- β-D-glucopyranoside (1b)

${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.21(\mathrm{t}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.02(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.93(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.63(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-1), 4.20 (m, 2H, H-6), 3.70 (ddd, $J=10.1,4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{STol} \mathrm{CH}_{3}$), 2.09 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{Ac}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$.
The spectroscopic data coincide with the previous report ${ }^{[2]}$
p-Tolyl 2,3,5-tri-O-acetyl-1-thio- β-D-ribofuranoside (1c)

${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.14(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.27-5.17$ (m, 3H), $4.27-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$. The spectroscopic data coincide with the previous report ${ }^{[3]}$
p-Tolyl 2,3,4,6-tetra-O-benzoyl-1-thio- β-D-galactopyranoside (1d)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-8.01(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.77-$ 7.73 (m, 2H), 7.64-7.50 (m, 3H), 7.49-7.38 (m, 9H), $7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, J=7.9 Hz, 2H), $5.99(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{dd}, J=11.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=11.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.18,165.65,165.52,165.30,138.78,134.54,133.67,133.45$, $133.39,130.16,129.98,129.96,129.90,129.75,129.62,129.50,129.08,128.89,128.66,128.57$, $128.40,127.54,86.27,75.22,73.17,68.51,68.07,62.63,21.47$.

A similar experimental procedure was applied as described in the literature. [Carbohydr. Res. 384 (2014) 1-8]

p-Tolyl 2,3,4,6-tetra-O-benzoyl-1-thio- β-D-glucopyranoside (1e)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.89(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.57-7.31(\mathrm{~m}, 11 \mathrm{H}$, ArH), $7.30-7.23$ (m, 2H, ArH), $6.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.89$ (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.59(\mathrm{t}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.45(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.68(\mathrm{dd}, J=12.1,2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 4.47 (dd, $J=12.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.21-4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.28$ (s, 3H, PhCH_{3}). The spectroscopic data coincide with the previous report ${ }^{[4]}$
p-Tolyl 2, 3, 5-tri-O-benzoyl-1-thio- β-D-ribofuranoside (1f)

${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NRR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2H), $7.59-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=12.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}$, 3 H).
The spectroscopic data coincide with the previous report ${ }^{[3]}$

p-Tolyl 2,3,4,6-tetra-O-benzyl-1-thio- β-D-galactopyranoside (1g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SPh}), 7.40-7.23(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Bn}), 6.98(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{SPh}), 4.95(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.76-4.67(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Bn})$, 4.59 (dd, $J=10.6,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}), 4.43(\mathrm{q}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}), 3.97$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.89$ (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.65(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.28$ (s, 3H, Me).
The spectroscopic data coincide with the previous report ${ }^{[5]}$

p-Tolyl 2,3,4,6-tetra-O-benzyl-1-thio- β-D-glucopyranoside (1h)

${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.23(\mathrm{~m}$, $16 \mathrm{H}, \mathrm{ArH}$), $7.21-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.89(\mathrm{dd}, J=10.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Bn}), 4.83(\mathrm{dd}, J=10.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}), 4.72(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.63-4.56(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Bn}, \mathrm{H}-1)$, 4.53 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.78$ (dd, $J=10.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.75-3.66$ (m, 2H, H-4, H-6), 3.63 (t, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.48 (ddd, $J=9.5,4.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 . \mathrm{H}-5), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right)$.
The spectroscopic data coincide with the previous report ${ }^{[4]}$

p-Tolyl 3,5-di-O-benzoyl-1-thio-2-deoxy- $\boldsymbol{\beta}$-D-ribofuranoside (1i)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.40(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{dd}, J=7.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{ddd}, J=7.5,3.8,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=4.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{dt}, J=15.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dt}, J$ $=14.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.35,166.28,137.63,133.51$, $133.28,132.18,131.63,130.02,129.92,129.86,129.78,129.70,128.63,128.56,88.40,81.26,75.00$, 64.28, 39.75, 21.24. ESI-MS for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 471.1$, found: 471.3.

3. Preparation of acceptors

(1) General procedure for silylation of pyrimidines

A suspension of nucleobase $(5 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(20 \mathrm{mg})$ in hexamethyldisilazane (HMDS) ($7 \mathrm{mmol}, 1.5 \mathrm{~mL}$) was refluxed until the reaction mixture became clear. The reaction mixture was then concentrated in vacuo and the crude was kept under high vacuum overnight to remove traces of solvent.

(2) Preparation of Boc-protected purines.

The Boc-protected purines $\mathbf{2 e}$ and $\mathbf{2 f}$ were prepared according to the published procedures. [J. Org. Chem., 65 (2000) 7697-7699]

4. General procedure for N-glycosylations of nucleobases

(1) General procedure for N -glycosylations of pyrimidines

To a mixture of thioglycoside donor (1.0 equiv, 0.069 mmol), ($p-\mathrm{Tol})_{2} \mathrm{SO}(2-6$ equiv), and activated $3 \AA$ powdered sieves in flame-dried glass vessel was added anhydrous dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~mL}\right)$, which was freshly distilled over calcium hydride. The resulting mixture was stirred at preactivation temperature $\left(-70^{\circ} \mathrm{C}--40^{\circ} \mathrm{C}\right)$ for 20 min , followed by the addition of trifluoromethanesulfonic anhydride($13.6 \mu \mathrm{~L}, 1.2$ equiv). After activation for 30 min (for donor $\mathbf{1 e}$, the activation time was 1 h), a solution of silylated nucleobase (3.0 equiv) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ $(0.7 \mathrm{ml})$ was added, and the reaction mixture was maintained at this temperature for 2 h and then raise $20^{\circ} \mathrm{C}$ higher for another 2 h . The reaction mixture was quenched with saturated NaHCO_{3} solution (1 ml), diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite, washed with saturated brine, dried and concentrated to leave a residue which was purified by column chromatography on silica gel to afford the pure nucleosides 3-20 and 29-37.

(2) General procedure for \mathbf{N}-glycosylations of purines

To a mixture of thioglycoside donor (1.0 equiv, 0.069 mmol), (p-Tol) $)_{2} \mathrm{SO}$ (2.0 equiv), and activated $3 \AA$ powdered sieves in flame-dried glass vessel was added anhydrous dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~mL}\right)$, which was freshly distilled over calcium hydride. The resulting mixture was stirred at preactivation temperature $\left(-50^{\circ} \mathrm{C}--40^{\circ} \mathrm{C}\right)$ for 20 min , followed by the addition of trifluoromethanesulfonic anhydride ($13.6 \mu \mathrm{~L}, 1.2$ equiv). After activation for 30 min (for donor $\mathbf{1 e}$, the activation time was 1 h), a solution of accepotr (3.0 equiv) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(0.7 \mathrm{ml}$) was added, and the reaction mixture was allowed warming to rt gradually. After which, the reaction mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite, washed with saturated brine, dried and concentrated to leave a residue which was purified by column chromatography on silica gel to afford the pure nucleosides 21-28.
5. NMR data for coupling products
(1) Reference for known compounds

Compounds	References	${ }^{1} \mathrm{H} \text { NMR }$	Compounds	References	${ }^{1}$ H NMR
3	[6]	\star	22	[8]	\star
4	[7]	\star	23	[8]	\star
5	[8]	\star	25	[8]	\star
6	[6]	\star	26	[8]	\star
7	[9]	\star	29	[16]	\star
8	[8]	\star	30	[16]	\star
9	[10]	\star	31	[16]	\star
10	[11]	\star	32	[13]	\star
11	[12]	\star	33	[13]	\star
15	[8]	\star	34	[16]	\star
16	[13]	\star	35	[10]	\star
18	[14]	\star	36	[17]	\star
19	[14]	\star	37	[17]	\star
20	[14]	\star	S1	[8]	\star
21	[15]	\star			

(2) New compounds

Compounds	${ }^{1}$ H NMR	${ }^{13}$ C NMR	HRMS
12	\star	\star	\star
13	\star	\star	\star
14	\star	\star	\star
17	\star	\star	\star
24	\star	\star	\star
27	\star	\star	\star
28	\star	\star	\star
S2	\star	\star	\star

1-(2',3', $\mathbf{4}^{\prime}, 6^{\prime}$-Tetra-O-acetyl- β-D-galactopyranosyl)-uracil (3)

$\left(\mathrm{R}_{\mathrm{f}}=0.40\right.$, petroleum: ethyl acetate $\left.=1: 3\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~s}$, broad, $1 \mathrm{H}, \mathrm{NH})$,
7.40 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.90-5.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ 'and H-5), $5.51(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=$
$9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.18(\mathrm{~m}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 2.06(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc})$,
2.02 (s, 3H, -OAc), 2.01 (s, 3H, -OAc).

1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-Tetra-O-acetyl- β-D-galactopyranosyl)-thymine (4)

$\left(\mathrm{R}_{\mathrm{f}}=0.21\right.$, petroleum: ethyl acetate $\left.=2: 3\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.16(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.85\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 5.32 (t, $J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 5.22 (dd, $J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $4.22-4.05$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5^{\prime}$ and H-6'), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), $2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.98\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

N^{4}-benzoyl-1-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$ '-tetra- O-acetyl- β-D-galactopyranosyl)-cytosine (5)

$\left(\mathrm{R}_{\mathrm{f}}=0.40 \text {, petroleum: ethyl acetate }=1: 4\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=15.3,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.11\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.54(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 5.32 (dd, $\left.J=12.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.26(\mathrm{dd}, J=10.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $4.23-4.09$ (m, 3H, H-5' and H-6'), 2.22 (s, 3H, OAc), 2.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), 2.01 (s, 6H, OAc).

1-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-Tetra-O-acetyl- β-D-glucopyranosyl)-uracil (6)

$\left(\mathrm{R}_{\mathrm{f}}=0.34\right.$, petroleum: ethyl acetate $\left.=1: 3\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.35(\mathrm{~s}$, broad, $1 \mathrm{H}, \mathrm{NH})$, 7.35 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.90\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.84$ (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.41 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 5.17 (dt, $J=13.5,9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}$ and H-4’), 4.28 (dd, $J=12.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, H-6'), 4.13 (dd, $J=12.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.96 (ddd, $J=10.2,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 2.10 (s, 3H, $\mathrm{Ac}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$.

1-(2', $\mathbf{3}^{\mathbf{\prime}}, \mathbf{4}^{\mathbf{\prime}, 6 '} \mathbf{6}^{\mathbf{\prime}}$ Tetra-O-acetyl- β-D-glucopyranoside)-thymine (7)

$\left(\mathrm{R}_{\mathrm{f}}=0.49 \text {, petroleum: ethyl acetate }=1: 3\right)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.14(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.87$ (d, $\left.J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.38$ (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $5.24-5.11$ (m, 2H, H-2', H-4'), 4.28 (dd, $J=12.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 4.12 (dd, $\left.J=12.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.93$ (ddd, $J=$ $10.2,5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.00(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OAc}), 1.96\left(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

N^{4}-benzoyl-1-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosly)-cytosine (8)

$\left(\mathrm{R}_{\mathrm{f}}=0.30\right.$, petroleum: ethyl acetate $\left.=1: 3\right){ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.50(\mathrm{~m}, 4 \mathrm{H}), 6.14(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.

1-(2', 3', 5'-Tri-O-acetyl- $\boldsymbol{\beta}$-D-ribofuranosyl)-uracil (9)

$\left(\mathrm{R}_{\mathrm{f}}=0.28\right.$, petroleum: ethyl acetate $\left.=1: 3\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.39(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.04\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.79(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.37-5.31(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$ and H-3'), $4.40-4.32$ (m, 3H, H-4' and H-5'), 2.15 (s, 3H, Ac), 2.13 (s, 3H, Ac), 2.11 (s, 3H, Ac).

$1-\left(2^{\prime}, 3^{\prime}, 5^{\prime}\right.$-Tri- O-acetyl- β-D-ribofuranosyl)-thymine (10)

$\left(\mathrm{R}_{\mathrm{f}}=0.41\right.$, petroleum: ethyl acetate $\left.=2: 5\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.18$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.12-6.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.38-5.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ and H-3'), $4.41-4.31$ (m, $3 \mathrm{H}, \mathrm{H}-4$ ' and $\mathrm{H}-5^{\prime}$), $2.16(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 2.13(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 2.10(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OAc}), 1.95(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}$, $-\mathrm{CH}_{3}$).
N^{4}-benzoyl-1-(2, $\mathbf{3}^{\prime}, 5$ '-tri-O-acetyl- β-D-ribofuranosyl)- cytosine (11)

$\left(\mathrm{R}_{\mathrm{f}}=0.22 \text {, petroleum: ethyl acetate }=2: 7\right)^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 11.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ex}, \mathrm{NH}), 8.19$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 8.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$), 7.40 (bs, 1H, H-5), 5.94 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.54 (dd, $J=6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 5.40
(apt, $\left.J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.41-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=11.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$.

1-(2',3',4',6'-Tetra-O-benzoyl- β-D-galactopyranosyl)-uracil (12)

$\left(\mathrm{R}_{\mathrm{f}}=0.20\right.$, petroleum: ethyl acetate $\left.=1: 1\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.08-$ $8.03(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=$ $10.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.09,165.62,165.42,165.35,162.62,150.39,139.25,133.98,133.93,133.58,133.48,130.03$, 129.94, 129.90, 129.85, 129.28, 129.02, 128.97, 128.65, 128.57, 128.47, 128.14, 104.06, 81.04, 74.62, $71.79,68.37,68.20$, 62.16; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 713.1742$, found: 713.1741

1-(2', 3', 4', $\mathbf{6}^{\prime}$-Tetra-O-benzoyl- β-D-galactopyranosyl)-thymine (13)

$\left(\mathrm{R}_{\mathrm{f}}=0.51\right.$, petroleum: ethyl acetate $\left.=1: 1\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.04$ (m, 2H), $8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H})$, 7.55 (ddd, $J=7.6,4.8,3.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.51-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.57(\mathrm{~m}$, $2 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.12, 165.61, $165.41,165.37,163.18,150.43,134.75,134.02,133.94,133.61,133.53,130.05,129.95,129.91$, $129.88,129.30,129.10,128.98,128.68,128.60,128.49,128.22,112.41,81.00,74.53,71.91,68.36$, 68.23, 62.24, 12.97;HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 727.1898, found: 727.1897.
N^{4}-benzoyl-1-($\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$ '-tetra-O-benzoyl- β-D-galactopyranosyl)-cytosine (14)

$\left(\mathrm{R}_{\mathrm{f}}=0.40\right.$, petroleum: ethyl acetate $\left.=2: 3\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.85(\mathrm{~m}, 9 \mathrm{H}), 7.81$ $-7.52(\mathrm{~m}, 7 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.13(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.60(\mathrm{~m}$, 2H), $4.48(\mathrm{q}, ~ J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.06,165.73,165.43,165.32,162.62$, $144.39,133.98,133.81,133.53,133.45,133.40$, $130.11,129.93,129.86,129.29,129.12,129.03$, $128.98,128.67,128.60,128.56,128.44,127.79,81.86,74.86,71.94,69.05,68.44,62.19$; HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 816.2164$, found: 816.2165.

1-(2', 3', 4’, $\mathbf{6}^{\prime}$-Tetra-O-benzoyl- β-D-glucopyranosyl)-uracil (15)

$\left(\mathrm{R}_{\mathrm{f}}=0.30 \text {, petroleum: ethyl acetate }=1: 1\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=$ $8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J$ $=12.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{ddd}, J=10.0,5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.15,165.61,165.40,165.29,161.99,150.10,139.13,134.05,133.86,133.61$, $133.48,130.15,130.05,129.94,129.87,129.52,128.71,128.67,128.63,128.52,128.00,103.96,80.89$, 75.63, 73.00, 70.31, 68.99, 62.72.

1-(2', 3', $\mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-Tetra-O-benzoyl- β-D-glucopyranosyl)-thymine (16)

$\left(\mathrm{R}_{\mathrm{f}}=0.41\right.$, petroleum: ethyl acetate $\left.=1: 1\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.00(\mathrm{~m}$, 2 H), $7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=10.9,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{q}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H})$, $6.24(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=12.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=12.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=10.0,5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$.

N^{4}-benzoyl-1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-benzoyl- β-D-glucopyranosyl)-cytosine (17)

$\left(\mathrm{R}_{\mathrm{f}}=0.42\right.$, petroleum: ethyl acetate $\left.=2: 3\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 11.24(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=29.9,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.82(\mathrm{dd}, J=22.7,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.76-7.36(\mathrm{~m}, 18 \mathrm{H}), 6.67$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 167.39,165.42,165.10,164.80,164.72$, $163.54,154.25,146.35,133.99,133.84,133.79$, 133.47, 132.94, 132.82, 129.52, 129.27, 128.95, 128.80, 128.55, 128.43, 128.13, 97.24, 80.47, 73.34, 71.60, 68.43, 62.48; HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 816.2164$, found: 816.2164

$\left(\mathrm{R}_{\mathrm{f}}=0.52\right.$, petroleum: ethyl acetate $\left.=2: 3\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.10$ (dd, $J=5.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.53(\mathrm{~m}$, $3 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.89(\mathrm{dd}, J=5.9,4.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.75\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.61(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.84(\mathrm{dd}, J=12.0$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $4.74-4.70$ (m, 1H, H-4'), 4.67 (dd, J= 12.1, 3.8 Hz, 1H, H-5').

1-(2',3',5'-Tri-O-benzoyl- β-D-ribofuranosyl)-thymine (19)

$\left(\mathrm{R}_{\mathrm{f}}=0.58\right.$, petroleum: ethyl acetate $\left.=4.5\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.17-$ 8.11 (m, 2H), 7.99 (dd, $J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.47(\mathrm{~m}, 5 \mathrm{H})$, 7.42-7.35 (m, 4H), $7.16(\mathrm{~d}, ~ J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.92(\mathrm{dd}, J=6.0,3.7$ Hz, 1H, H-3'), 5.76 (t, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.89$ (dd, $J=12.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 4.70 (dd, $J=6.3$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=12.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}),, 1.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
N^{4}-benzoyl-1-(2', $\mathbf{3}^{\prime}, \mathbf{5}^{\prime}$ '-tri- O-benzoyl- β-D-ribofuranosyl)-cytosine (20)

$\left(\mathrm{R}_{\mathrm{f}}=0.28\right.$, petroleum: ethyl acetate $\left.=2: 3\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.09(\mathrm{~m}, 2 \mathrm{H}), 8.06-$ $7.89(\mathrm{~m}, 7 \mathrm{H}), 7.65-7.45(\mathrm{~m}, 9 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 4 \mathrm{H}), 6.47(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.92(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88-5.82(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=12.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=$ $12.2,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.

$\left(\mathrm{R}_{\mathrm{f}}=0.39\right.$, petroleum: ethyl acetate $\left.=2: 1\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.08-$ $8.00(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OBz}), 7.93(\mathrm{~d}, ~ J=7.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OBz}), 7.63-7.53(\mathrm{~m}, 3 \mathrm{H},-\mathrm{OBz}), 7.45(\mathrm{dd}, J=15.1,7.5$ $\mathrm{Hz}, 4 \mathrm{H},-\mathrm{OBz}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OBz}), 6.49(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $6.19(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-3'), $6.16-6.12$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 4.93 (dd, $J=12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 4.88 (dd, $J=7.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4$ '), 4.73 (dd, $J=12.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.16,165.41,165.25(3$ Bz), 153.57, 152.73, 152.42,(C-6, C-2, C-4), 143.98(C-8), 134.12, 134.01, 133.76, 131.46, 130.02, 129.98 , 129.73, 129.15, 128.85, 128.75, 128.72, 128.65, 128.19,(3Bz, C-5) 87.12(C-1'), 81.61(C-4'), 74.41(C-3'), 71.66(C-2'), 63.60(C-5').

2-tert-Butoxycarbonylamino-6-chloro-9-(2', 3',5'-tri-O-benzoyl- β-D-ribofuranosyl)purine

(22)

$\left(\mathrm{R}_{\mathrm{f}}=0.44\right.$, petroleum: ethyl acetate $\left.=2: 1\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.98$ $(\mathrm{m}, 4 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.61(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-$ $6.26(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{dd}, J=11.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=11.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (s, 9H).

N, N-Di-tert-butoxycarbonyl-9-(2', $\mathbf{3}^{\prime}, \mathbf{5}^{\prime}$-tri-O-benzoyl- β-D-ribofuranosyl)adenine (23)

$\left(\mathrm{R}_{\mathrm{f}}=0.52 \text {, petroleum: ethyl acetate }=1: 1\right)^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H})$, 8.11 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.49-$ $7.33(\mathrm{~m}, 6 \mathrm{H}), 6.51(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=$ $12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=7.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=12.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H})$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.47(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=12.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=7.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J$ $=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H})$.
$\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-Tetra-O-benzoyl- β-D- glucopyranosyl -2,6-dichloropurine (24)

$\left(\mathrm{R}_{\mathrm{f}}=0.32 \text {, petroleum: ethyl acetate }=2: 1\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.02(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.26 \mathrm{~m}, 4 \mathrm{H}), 6.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $6.19(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=14.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.09,165.62,165.21,164.96,(4 \mathrm{Bz}), 153.67,153.10$, 152.37 (C-2, C-4, C-6), $143.45(\mathrm{C}-8), 134.13,133.90,133.69,133.50$, 130.72(C-5), 130.02, 129.97, 129.89, 129.86, 129.34, 128.67, 128.61, 128.53, 128.43, 128.39, 127.44, 81.39(C-1'), 76.01, 72.83, 71.21, 68.80, 62.53; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 767.1312$, found: 767.1307.

2-tert-Butoxycarbonylamino-6-chloro-9-($\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$ 'tetra-O-benzoyl- β-D-glucopyranosyl)puri ne (25)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.79(\mathrm{~m}$, 2H), $7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.36(\mathrm{~m}, 9 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 6.18 $(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{q}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-$ 4.48 (m, 2H), 1.58 (s, 9H, Boc).

N, N-Di-tert-butoxycarbonyl-9-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-benzoyl- β-D-glucopyranosyl)adenine (26)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.93(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.22(\mathrm{~m}$, $4 \mathrm{H}), 6.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.10(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=12.9,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56-4.48(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H})$.

N-tert-Butoxycarbonyl-9-(2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra-O-benzoyl- β-D-glucopyranosyl)adenine (S2)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 2 \mathrm{H})$, $7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.23(\mathrm{~m}$, $4 \mathrm{H}), 6.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.14$, $165.67,165.27,165.02,153.10,151.22,149.92,149.50,140.21,133.97,133.85,133.62,133.46$, $130.05,129.92,129.89,129.47,128.67,128.59,128.55,128.52,127.70,121.14,82.70,81.08,75.86$, 73.11, 71.33, 69.02, 62.66, 28.21. HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+}: 814.2724$, found: 814.2717.
$\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-Tetra-O-benzoyl- β-D- galactopyranosyl -2,6-dichloropurine (27)

$\left(\mathrm{R}_{\mathrm{f}}=0.51\right.$, petroleum: acetone $\left.=2: 1\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.17(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=18.5,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}$, $J=14.4,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.40\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.26-$ 6.15 (m, 2H, H-1' and H-4'), $5.92\left(\mathrm{dd}, \mathrm{J}=10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.76-4.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$ ' and H-6'), 4.52 (dd, $J=11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.09,165.45,165.43,165.05(4$ Bz), 153.67, 153.11, 152.40(C-2, C-4 and C-6), 143.82(C-8), 134.12, 134.09, 133.72, 133.57, 130.96(C-5), 130.12, 129.91, 129.88, 129.18, 129.04, 128.81, 128.64, 128.60, 128.53, 128.45, 127.62 , 82.25(C-1'), 75.03(C-5'), 71.72(C-3'), 68.87(C-2'), 68.06(C-4'), 62.12(C-6'). HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 767.1312$, found: 767.1305.

N, N-Di-tert-butoxycarbonyl-9-(2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzoyl- β-D-galactopyranosyl)adenine (28)

${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.22-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.97(\mathrm{~m}$, 2 H), $7.83-7.77$ (m, 2H), 7.69 (dd, $J=7.2,4.7 \mathrm{~Hz}, 3 \mathrm{H}$), $7.56(\mathrm{dd}, J=16.1,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.48-7.38(\mathrm{~m}$, 4H), $7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.49\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.31\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.19(\mathrm{~d}, J=3.0$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.90\left(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.72-4.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$ and H-6'), $4.51(\mathrm{dd}, J=$ $11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 1.35 (s, 18H, Boc). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.10,165.45,165.42$, $164.98(4 \mathrm{Bz}), 153.26(\mathrm{C}-4), 152.56(\mathrm{C}-2), 150.82(\mathrm{C}-6), 150.17(\mathrm{Boc}), 142.51(\mathrm{C}-8), 134.06,133.86$, $133.65,133.52,130.12,129.93,129.91,129.79$, 129.25, 128.99, 128.96, 128.76, 128.58, 128.49, 128.46, 127.85(C-5), 83.85(Boc), 81.68(C-1'), 74.70(C-5'), 72.05(C-3'), 68.87(C-2'), 68.12(C-4'), 62.04(C-6'), 27.76(Boc). HRMS (ESI) calcd for $\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 914.3249$, found: 914.3247.

1-(2', 3', 4', 6'-Tetra-O-benzyl-D-galactopyranosyl)-uracil (29)

For the $\boldsymbol{\alpha}$-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.59(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.39$ $-7.24\left(\mathrm{~m}, 18 \mathrm{H}\right.$, benzyl), 7.02 (dd, $J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 6.04 (d, $\left.J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.60$ (dd, $J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.65-4.47(\mathrm{~m}, 7 \mathrm{H}), 4.32(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=11.9,4.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{dd}, J=6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=3.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$.
For the $\boldsymbol{\beta}$-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.41-7.22(\mathrm{~m}, 18 \mathrm{H}$, benzyl), 7.17 (dd, $J=6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 6.94 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 5.58 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.34 (dd, $J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.95\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.84-4.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.57(\mathrm{dd}, J$ $\left.=16.6,11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.44\left(\mathrm{q}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 3.99\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.87$ (t, $\left.J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.78-3.70$ (m, 2H, H-2', H-5'), $3.58-3.47$ (m, 2H, H-6'a, H-6'b).

1-(2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$ '-Tetra-O-benzyl- β-D-galactopyranosyl)-thymine (30)

$\left(\mathrm{R}_{\mathrm{f}}=0.31\right.$, petroleum: ethyl acetate $\left.=1: 1\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.42-$ 7.13 ($\mathrm{m}, 20 \mathrm{H}$, benzyl), 6.65 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 5.58 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 4.97 (d, $J=11.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83-4.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(\mathrm{dd}, J=20.0,11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45(\mathrm{q}, J=$ $\left.11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.00(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.53$ (ddd, $\left.J=15.0,9.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 1.63\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ thymine $)$.

N^{4}-benzoyl-1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-benzyl- β-D-galactopyranosyl)-cytosine (31)

$\left(\mathrm{R}_{\mathrm{f}}=0.49\right.$, petroleum: ethyl acetate $\left.=1: 2\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.10(\mathrm{~m}, 22 \mathrm{H}), 5.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ') , $4.98(\mathrm{~d}, J=$ $\left.11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.84-4.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55-4.38(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.48(\mathrm{~m}$, 2 H).

For the $\boldsymbol{\alpha}$-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}$, $16 \mathrm{H}), 7.19$ (dd, $J=7.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=6.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J$ $=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.40(\mathrm{~m}, 7 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H})$.
For the $\boldsymbol{\beta}$-isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 16 \mathrm{H}), 7.17$ (td, $J=8.1,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=22.9,11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.45(\mathrm{~m}, 3 \mathrm{H}), 3.86$ (t, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$

1-(2', 3', 4', $\mathbf{6}^{\prime}$-Tetra-O-benzyl-D-glucopyranosyl)-thymine (33)

For the $\boldsymbol{\alpha}$-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}$, $16 \mathrm{H}), 7.20(\mathrm{dd}, J=7.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-$ $4.49(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$.
For the $\boldsymbol{\beta}$-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 16 \mathrm{H}), 7.17(\mathrm{dd}, J=5.7$, $3.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=21.7,11.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.59(\mathrm{~d}, ~ J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65$ (dd, $J=11.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.27(\mathrm{~m}, 14 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 8 \mathrm{H}), 5.91\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 4.97-4.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.95-4.80 (m, 1H, CH ${ }_{2} \mathrm{Ph}$), $4.74\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54(\mathrm{~d}$, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.47\left(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.91\left(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-\mathbf{4}^{\prime}\right), 3.82-$ 3.72 (m, 2H, H-3' and H-2'), $3.70-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(3',5'-Di-O-benzoyl-2'-deoxy- β-D-ribofuranosyl)-thymine (35)

$\left(\mathrm{R}_{\mathrm{f}}=0.50\right.$, petroleum: ethyl acetate $\left.=1: 2\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 6.47(\mathrm{dd}, J=8.6,5.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.66$ (d, $\left.J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 '\right), 4.80(\mathrm{dd}, J=12.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 4.69 (dd, $J=12.2,3.3$ Hz, 1H, H-5'), 4.54 (d, J = 2.2 Hz, 1H, H-4'), 2.72 (dd, $\left.J=14.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime}\right), 1.62\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

1-(3',5'-Di-O-benzoyl-2'-deoxy- β-D-ribofuranosyl)-uracil (36)

$\left(\mathrm{R}_{\mathrm{f}}=0.43\right.$, petroleum: ethyl acetate $\left.=1: 2\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-8.05(\mathrm{~m}, 3 \mathrm{H}), 8.02$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (dt, $J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=6.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76$ (ddd, $J=14.4,5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddd, $J=14.6,8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H})$.

N^{4}-benzoyl-1-(3',5'-Di-O-benzoyl-2'-deoxy- β-D-ribofuranosyl)-cytosine (37)

$\left(\mathrm{R}_{\mathrm{f}}=0.32\right.$, petroleum: ethyl acetate $\left.=1: 2\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.05(\mathrm{~m}, 3 \mathrm{H}), 8.03-$ 7.97 (m, 2H), 7.89 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.42(\mathrm{~m}, 10 \mathrm{H}), 6.41$ (dd, $\left.J=7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 5.64$ $(\mathrm{dt}, J=6.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{qd}, J=12.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{dd}, J=5.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.06(\mathrm{~m}$, 1H, H-2'), 2.31 (ddd, $J=14.5,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$).

References

1. C. Chao, M. Chen, S. Lin and K. T. Mong, Carbohydr. Res., 2008, 343, 957-964.
2. F. Zhang, W. Zhang, Y. Zhang, D. P. Curran and G. Liu, J. Org. Chem., 2009, 74, 2594-2597.
3. M. Kurosu and K. Li, J. Org. Chem., 2008, 73, 9767-9770.
4. R. R. France, N. V. Rees, J. D. Wadhawan, A. J. Fairbanks and R. G. Compton, Org. Biomol. Chem., 2004, 2, 2188-2194.
5. S. Hsieh, M. Jan, L. N. Patkar, C. Chen and C. Lin, Carbohydr. Res., 2005, 340, 49-57.
6. K. W. C. G. Roland Haeckel and M. W. A. F. Joseph Eisenbarth, Journal of Labelled Cornpourids and Radiopharrnaceuticals, 1996, 1061-1070.
7. B. Gerland, A. Goudot, C. Ligeour, G. Pourceau, A. Meyer, S. Vidal, T. Gehin, O. Vidal, E. Souteyrand, J. Vasseur, Y. Chevolot and F. Morvan, Bioconjugate Chem., 2014, 25, 379-392.
8. Q. Zhang, J. Sun, Y. Zhu, F. Zhang and B. Yu, Angew. Chem. In. Ed., 2011, 50, 4933-4936.
9. J. Huchting and C. Meier, Eur. J. Org. Chem., 2014, 2014, 3423-3429.
10. I. Nowak and M. J. Robins, Org. Lett., 2005, 7, 4903-4905.
11. K. C. A. S. Danishefsky, J. Org. Chem., 1990, 55, 4211-4214.
12. J. W. Rigoli, M. E. Østergaard, K. M. Canady, D. C. Guenther and P. J. Hrdlicka, Tetrahedron Lett., 2009, 50, 1751-1753.
13. J. Liao, J. Sun and B. Yu, Tetrahedron Lett., 2008, 49, 5036-5038.
14. T. M. T. M. Naoyuki SHIMOMURA, Bull. Chem. Soc. Jpn, 1994, 67, 3100-3106.
15. B. Fraser-Reid, P. Ganney, C. V. S. Ramamurty, A. M. Gómez and J. C. López, Chem. Commun, 2013, 49, 3251-3253.
16. J. J. C. H. Stephen Hanessian, Tetrahedron, 1996, 52, 10827-11083.
17. A. K. Prasad, V. Kumar, J. Maity, W. Zhiwei, V. T. Ravikumar, Y. S. Sanghvi and V. S. Parmar, Synth. Commun., 2005, 35, 935-945.

1d

1 g

			Nos					8					8	ऊ					
9. 5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4. 0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	

8
i
i

3

6
©

				$\begin{aligned} & { }^{\prime} \\ & \mathbf{V}^{\prime} \\ & \end{aligned}$					$\begin{aligned} & \text { To } \\ & \text { N } \\ & - \end{aligned}$			N				${ }^{\circ} \stackrel{\infty}{\circ}$				
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

N
$\stackrel{m}{\text { N }} \stackrel{y}{4}$
8

10

$\stackrel{\stackrel{n}{3}}{=}$

12

13

5
$\stackrel{y}{2}$

13

0	1		17		150	14	1	12	110	100	1	1	10	1		10	1	1	
20	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

14

15

15

[^0]

16

17

17

20	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40			10
	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	1

19

21

21

$20 \quad 190 \quad 180$

HSQC

25

26

S2

28

28

N

31

32- β

© लेलু

[^0]:

