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1. Experimental Method 

1.1.  Flow Screening System 
Figure S1 shows a complete schematic of the flow network for the automated screening 

and optimization system. A tank of nitrogen (≥99.998%, Airgas) supplied both the main process 
flow and provided an inert gas blanket for the reagents stored in 7 mL vials in the liquid handler 
(Gilson GX-271, 221 x 1.5 x 0.4 mm probe) under a custom-made septum-sealed manifold (Figure 
S2). All solvents were purchased anhydrous and used as received from Sigma-Aldrich, purged 
with nitrogen, and introduced under nitrogen into vials under the septum-sealed manifold. 4-
methoxybenzyl chloride (Sigma-Aldrich, 98% containing K2CO3 as stabilizer) was purged with 
nitrogen and stored in a vial under the inert gas manifold. 

 

Figure S1. Schematic of automated flow system for alkylation reaction optimization. 

 

Figure S2. Septum-sealed inert gas manifold for reagent storage under nitrogen atmosphere. 
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To prepare a slug, the liquid handler (Gilson GX-271) aspirated first a 30 μL volume of 
nitrogen from an empty vial under the nitrogen manifold, followed by aliquots of a chosen solvent, 
4-methoxybenzyl chloride, and the chosen solvent again. To minimize carryover during this 
process, the liquid handler probe (needle) was dipped in a wash solution of iPrOH before each 
reagent aspiration. 35 μL total liquid volume was nominally aspirated, although the relative 
volume of 4-methoxybenzyl chloride to solvent was corrected by the density ratio between the two 
reagents (accounting for the expansion of the nitrogen in the probe during aspiration). Following 
sample aspiration, the sample was “stirred” three times in the probe under nitrogen by pulling and 
pushing with the syringe pump 30 μL volume. All reagents were then transferred into a 6 port-2 
way injection valve (Cheminert 10S-0503H) containing a 14-μL sample loop. Switching of the 
sample loop to the inject position created a 14-μL slug. 

To minimize reagent carryover in the probe, injection valve, and system, three blank slugs 
were prepared and introduced to the system prior to introduction of a reagent slug. In sequence, 
the liquid handler aspirated 20 μL nitrogen, followed by 60 μL water with sample injection, 60 μL 

THF with sample injection, and finally 60 μL DMF with sample injection. Additionally, the sample 

injection valve and sample loop were cleared following every injection by pulling a vacuum for 3 
seconds on the outlet of the valve (residual liquid was collected in a trap and drained at the end of 
the optimization). Because acceleration of slugs was observed to occur when trailing slugs entered 
the heated reactor (a consequence of surface-tension driven thermocapillary flow1), blank slugs 
were not prepared and introduced until a reaction slug had traversed a full reactor volume in the 
system (240 μL). 

A 5 mL solution of 2.22 g trans-1,2-diaminocyclohexane (Sigma-Aldrich), 1.97 g (1 
equivalent) triethylamine (Sigma-Aldrich), and 135 mg naphthalene (Sigma-Aldrich) was 
prepared and stored under nitrogen. 2.1 μL of this solution was delivered into each reaction slug 
via syringe pump (Harvard PhD 2000 with 100 μL Hamilton Gastight syringe) through a T-
junction (500 μm ID Teflon, Upchurch Scientific) at room temperature. Refractive index sensors 
(Omron EE-SPX613) were attached to the Teflon tubing before and after the T-junction to 
correctly time the online reagent injection and to verify that the slug volume was within an 
acceptable tolerance (> 12.6 μL) following the online injection. A network of valves (6 port, 2-
way, Rheodyne MXP7960-000) and LabView software (ver. 8.6, National Instuments) allowed 
both the main nitrogen syringe (Harvard PhD 2000 pump with 8 mL Harvard stainless steel 
syringe) and the online injection syringe to be refilled automatically when syringe volumes were 
running low. 

For the maximum versatility in our system, we chose to react the slugs in 750 μm FEP 
tubing. This was critical to the success of our method, as other “inert” tubing materials (stainless 
steel, PEEK, and even PFA) showed differing degrees of wetting with the solvents of interest, 
leading to slug degradation along tubing walls and contamination of subsequent slugs. The tubing 
was inserted into a “pancake” reactor housing, comprising of an aluminum chuck with a 1.6 mm 
groove for the FEP tubing, a raised lip with an O-ring, and a sheet of polycarbonate which 
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compressed against the O-ring to allow for pressurization of the reactor to 6.9 bar. With this device, 

we were able to rapidly heat and cool the reactor tubing between 30ºC and 120ºC and neutralize 

nitrogen permeation out of the reactor, allowing for accurately controlled slug flow rates in the 
range of 1 min to 10 min reaction time. A thermocouple was introduced through the nitrogen 
supply line and held in place on the aluminum surface by a thin sheet of polycarbonate. The reactor 
was heated with four 50 W cartridge heaters (McMaster-Carr, two pairs spaced equally on opposite 
sides of the device). COMSOL (COMSOL, Inc.) simulations revealed that this configuration was 

sufficient for ensuring less than a 2ºC temperature gradient across the reactor tubing of the device 

at the maximum temperature of 120ºC. A PID temperature controller (Omega CN9412) controlled 

the reactor temperature. Reaction slugs were not introduced into the system unless the reactor 

temperature was within 1ºC of the reaction set point temperature. To conserve overall experimental 

time, slugs with the same temperature set point in the same optimization step were run 
consecutively. With the exception of this constraint, all experiments within an optimization step 
were run in random order. 

Downstream of the reactor, slugs were quenched at room temperature with a continuously 
flowing solution of 10% acetic acid in acetonitrile, delivered via syringe pump (Harvard Apparatus 
PhD 2000 with 8 mL Harvard stainless steel syringe) through a T-junction (1 mm ID Teflon, 
Upchurch Scientific). A third refractive index sensor (Omron EE-SPX613) was used downstream 
of the quench to time the HPLC sampling accurately. Following sampling with a 30 μL sample 
loop in a 6-port, 2-way valve (Rheodyne MXP7960-000) , the sample was transported via syringe 
pump (Harvard Apparatus PhD 2000 with 1 mL Hamilton Gastight syringe) in a solution of 10% 
acetic acid in acetonitrile to a second 6-port, 2-way valve (Agilent G1158A) with a 2 μL sample 
loop. An LC/MS (Agilent G1312B binary pump, G1329B ALS, G1316A column compartment, 
G1365C multi-wavelength detector, 6120 quadrupole MS) method was remotely started with 
LabView software. The LC flow rate increased from 0.5 mL/min (standby mode) to 3.5 mL/min 
(required for method), and the sample was injected into the HPLC after 15 s. The sample passed 
through a C18 guard column (Agilent Poroshell 300SB-C18 5 μm 2.1 x 12.5 mm), then was heated 

to 40ºC, passed through a T-junction (250 μm stainless steel Valco), and split by pressure 

difference between a 1.8 μm particle diameter column (Agilent Zorbax SB-C18 2.1 x 50 mm) and 
a 4.6 μm particle diameter column (Agilent Zorbax SB-C18 2.1 x 50 mm). The sample from the 
1.8 μm particle diameter column was detected by UV at 270 nm and passed to the MS. A suitable 
HPLC method was found to be 9 min, which included a gradient ramp from 95/5 water/acetonitrile 
+ 1% formic acid to 0/100 acetonitrile + 1% formic acid to 95/5 water/acetonitrile + 1% formic 
acid. Following UV analysis, the product yield was calculated in MATLAB (ver. R2011a, 
MathWorks). 

Pressure in the system was controlled at 6.9 bar with a nitrogen-regulated Parr bomb, 
approximately 40 mL in volume. The bomb was drained during refill of the nitrogen and quench 
syringes by automatically opening a 6-port, 2 way valve (Rheodyne MXT715-000). To minimize 
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nitrogen loss during regular system operation, 6.6 bar of backpressure (5.2 bar and 1.4 bar 
backpressure regulators, Upchurch Scientific) was applied to the gas vent of the Parr bomb during 
regular system operation. 

Valve manipulation, HPLC method initiation, and analog input communication with the 
refractive index sensors were accomplished using a Compact FieldPoint controller from National 
Instruments (cFP-2020, cFP-RLY-425, cFP-AI-110). The entire system including pumps, liquid 
handler, temperature control, refractive index monitoring, valving, remote triggering of the HPLC 
gradient, and MATLAB optimization was controlled with LabView software (ver. 8.6, National 
Instruments). 

1.2. Preparation of (N-4-methoxybenzyl)-(1R,2R)-(-)-diaminocyclohexane (1) 
All reagents were used as received. (1R,2R)-(-)-1,2-diaminocyclohexane (410.9 mg, 3.60 

mmol, 1 equiv, 98% purity, 99% ee Sigma-Aldrich), triethylamine (358.6 mg, 3.54 mmol, 1 equiv, 
≥99% Sigma-Aldrich), naphthalene (29.1 mg, 0.23 mmol, 99% Sigma-Aldrich), and DMSO (5 
mL, anhydrous ≥99.9% Sigma-Aldrich) were stirred in a 25 mL round-bottomed flask. To the flask 
was added 4-methoxybenzyl chloride (1064.6 mg, 6.80 mmol, 2 equiv, 98% w/ K2CO3 as stabilizer 

Sigma-Aldrich). The reactants were heated to 78ºC and stirred for 7.5 min. The reaction was 

quenched with 4 M aq. NaOH (5 mL) at room temperature, and analysis was taken by HPLC 
showing 61% yield of 1. The resulting solution was extracted 5 times with 40 mL ethyl acetate. 
The collected organic product was then extracted once with 50 mL 4 M NaOH, and the subsequent 
aqueous product was extracted twice with 25 mL ethyl acetate. The cumulative extracted organic 
product was then extracted again with 50 mL 4 M NaOH, and the subsequent aqueous product was 
extracted again twice with 25 mL ethyl acetate. The cumulative organic product was dried with 
Na2SO4, filtered, and the solvent was removed by rotary evaporation to yield an orange oil. This 
oil was purified using column chromatography with silica gel. The column mobile phase was 
increased from DCM/0.1% Et3N to DCM/8% MeOH/0.1% Et3N to yield an isolated sample of the 
product 1. The solvents were removed by rotary evaporation, and the resulting product was washed 
5 times with 5 mL ethyl acetate followed by rotary evaporation to remove excess Et3N. The product 
was then dissolved in DCM, precipitated with hexane, filtered, and dried under vacuum, yielding 
the product 1 (500.9 mg, 2.14 mmol, 59% yield) as a white powder. 

Product characterization: 1H NMR (400 MHz, CDCl3): δ = 7.36 (d, J = 8.6 Hz, 2H), 6.88 
(d, J = 8.7 Hz, 2H), 4.23 (s, 2H), 4.11 – 3.74 (dd, J = 115.5, J = 12.9, 2H), 3.79 (s, 3H), 2.81 (td, 
J = 11.2, 4.1 Hz, 1H), 2.53 (td, J = 10.9, 3.9 Hz, 1H), 2.18 (dd, J = 12.1 Hz, 2H), 1.75 (dd, J = 
25.0, 11.7 Hz, 2H), 1.54 – 1.14 (m, 5H). 13C NMR (101 MHz, CDCl3): δ = 159.28, 130.12, 129.52, 
114.15, 59.67, 55.37, 54.76, 49.57, 31.65, 30.32, 24.68, 24.36. HRMS (ESI) m/z 235.1805 
(calculated for C14H22N2O 235.1805 [M+H]+). 

 

1.3. Automated Reagent Calibration 
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A solution of 0.542 M (N-4-methoxybenzyl)-(1R,2R)-(-)-diaminocyclohexane and 0.0433 
M naphthalene in DMSO and a solution of 0.0474 M naphthalene in DMSO were stored under 
nitrogen in the liquid handler. Two replicates each of slugs containing 0 M, 0.13 M, 0.26 M, 0.39 
M, and 0.52 M (N-4-methoxybenzyl)-(1R,2R)-(-)-diaminocyclohexane were prepared following 
the same procedure as in the optimization, routed through the screening system (without online 

injection) at 30ºC and a residence time of 5 min, and analyzed by LC/MS. A calibration was 

constructed based on integrated peak absorbance measurements of the desired product and the 
internal standard naphthalene at λ = 270 nm. The calibrated slope was Cprod = 
6.98*Cnaphthalene*Aprod/Anaphthalene with R2 = 0.987. 

1.4. Test of System Carryover 
Neat 4-methoxybenzyl chloride and THF were stored under nitrogen in the liquid handler. 

A slug comprising 1 M 4-methoxybenzyl chloride in THF was prepared following the same 
procedure as in the optimization, routed through the screening system (without online injection) at 

30ºC and a residence time of 5 min, and analyzed by LC/MS. Two subsequent slugs were then 

prepared with only THF as the reagent and routed through the system at the same flow rate and 
temperature and analyzed by LC/MS. This procedure was repeated 9 times. On average, the LC 
area for 4-methoxybenzyl chloride was 6578 in the 1 M slugs, 216 in the first subsequent THF 
slugs, and 116 in the second subsequent THF slugs. The percent carryover was 3.3% ± 0.6% in 
the first THF slugs and 1.8% ± 0.6% in the second THF slugs with a maximum carryover in the 
first THF slugs of 3.9% (twice). 

2. Optimization Method 
Simultaneous solvent screening and reaction optimization was achieved using a design of 

experiments (DoE) approach similar to that outlined in Atkinson and Donev.2 Continuous variables 
were first scaled assuming the first-order kinetic relationship: 

/
0, 0,

sE RT
Prod s Diamine MeOBnCl resC A e C C t

 
(1)

       1
0,

0,

ln ln ln ln lnProd s
s MeOBnCl res
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C E
Yield A T C t

C R
                 

(2)

ln(As) and (Es/R) were proposed to be coefficients strictly correlated with the choice of solvent. To 
correct for inaccuracies in our assumed scaling, additional coefficients were introduced to weigh 
the ln(C0,MeOBnCl) and ln(tres) terms and account for interactions and quadratic functionality among 
all continuous variables. The final response surface model to fit was: 

 
13 3

3 3 1 1 2 2
4 1,

ˆ
s s s s ij i j

s i j i

b c x a x x c x c x a x x
  

     
 

(3)

where b̂  was the response value (ln(Yield)), aij and ci were coefficients to fit, and the vector x was: 
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Naturally b̂  was reformulated as: 
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(5)

which allowed for fast optimization and Hessian calculation in subsequent steps. 

To initialize the response surface model, we began experimentation with a 20-experiment 
fractional factorial design, or 2 experiments for each of 10 solvents. Critical to the selection of 
these 20 experiments was that the continuous variable experiments for each solvent completed a 
fractional factorial design—in this case a 23-2 design where high and low values were selected in 
opposite pairs—and that the sum of all 10 continuous variable designs gave the maximum amount 
of information—in this case a full 23 factorial design with 2 additional replicates. All continuous 
and discrete variables were randomized so as to minimize the bias in the selection of initial 
fractional factorial design, and the factorial experiments spanned the entire constrained continuous 
variable space so as to minimize uncertainty in the yield in future calculations. 

From the data collected in 20 experiments, an initial linear response surface was 
constructed of the form: 
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ˆ Tb θ X  (6)

where X represented a matrix of the previous (scaled) experiments run (X = [x1 x2 … x3]T), b̂ was 
a vector of model-predicted responses for the 20 experiments, and θ was a vector of best-fit 
parameters. The goal of this simplification was to find a quadrant of the experimental space 
identified by the preliminary fractional factorial design which most likely contained the optimum, 
and to concentrate future factorial design experiments in that quadrant. This was a more efficient 
use of real-time information than the traditional central composite design, which would have 
allowed estimation of quadratic terms only by experimentation over the entire experimental space. 
To estimate θ from a vector of the (scaled) responses b, we had: 

  1T T
θ X X X b

 
(7)

Optima for each solvent s were then found by solving: 

 . . 1,1 if 1, ..., 3

1 if

0 if 3 and 

max

  

 

  

 T
s

i

i

i

s t x i

x i s

x i i s

J x θ x

 

(8)

A new set of 20 fractional factorial design experiments was constructed as before, but instead of 
spanning the full design space these factorial experiments spanned from the midpoint of the 
continuous variables (0 in this scaling) to the linear maxima xs*. 

With a sufficient number of experiments and midpoint experiments, we were able to 
reformulate X in terms of scaled linear, interaction, and quadratic variables and solve for the 

scaling parameter vector θ as in Equation 7. To estimate the accuracy of a predicted response b̂ at 
experimental conditions x required both the sensitivity matrix of experiments already run (given 
by (XTX)-1) and the response covariance VB, which was analogous to the noise in collecting a 
measurement. The prediction covariance was estimated as:3 

  11
ˆ

 T T
BB

V Vx X X x  (9)

for which an estimate of the scalar VB was found using:3 

   TT T

B
expts params

V
N N

 




θ X b W θ X b
 

(10)

where W, a weighting matrix, was taken as the identity matrix and Nexpts – Nparams was the 
difference in the number of experiments run and the number of response surface parameters fit. 
Necessarily Nexpts had to be greater than Nparams. 
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Global optima for the each solvent xs* were identified by converting θ to A and c and 
solving the quadratic optimization problem:  

 

*

. . 1,1 if 1, ..., 3

1 if

0 if 3 and 

max

  

 

  

 T T
s

i

i

i

s t x i

x i s

x i i s

J x x Ax c x

 

(11)

The overall maximum, J*, corresponded to the maximum over all Js*. J-*, the lower bound on J*, 
was found from a Student’s t-distribution around J* with uncertainty 

B̂
V  evaluated at the optimum 

x*:3 

   1 2* *
ˆ 1 ,     

conf expts paramsN NB
J J V t  (12)

αconf was chosen before experimentation as 0.05, corresponding to a 95% one-sided confidence 
level on the lower bound of J*. For all remaining solvents, a paired 2-sample t-test at 95% 
confidence revealed whether Js* was significantly less than the overall optimum J*: 
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a s
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N N sB
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H J J

J J
t t t

V

J V t J

J J

 

(13)

(Note this assumed a constant 
B̂

V for all xs*.) Solvents for which the null hypothesis was rejected 

were fathomed (eliminated) from the ensuing experimental optimization step but were reevaluated 
at subsequent optimization iterations after updating all response surfaces. 

Our goal in subsequent experiments was to minimize the uncertainty on the optimum for 
each discrete variable, thereby helping reduce the number of discrete variables considered in the 
optimization system and allowing more experimental emphasis to be focused on the solvents of 
highest interest. To accomplish this task, we employed a G-optimal experimental design strategy 
to select experiments where the uncertainty at a proposed optimum could be most greatly 
minimized. This entailed feeding xs* for each non-fathomed solvent to a constrained optimization 
program in MATLAB: 
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(14)

xs* was supplied as the initial guess of experimental conditions. A group of N experiments—one 
optimal experiment for each unfathomed variable—was selected, those experiments were 
conducted in the slug flow system, and the optimization was repeated until the termination criterion 
was satisfied. To minimize downtime, the optimization procedure was performed after experiment 
N – 1, and optimal experiments were added to a queue of the remaining incomplete experiments. 
We found a suitable termination criterion to be linear convergence of the error in J* (namely J* - 
J-*): 

 

* * *

* * * *
2 1 2

* *
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n

J J J n

N n n
J J J J

N n n

J J

J

 

(15)

This criterion was independent of the number of remaining unfathomed solvents, which allowed 
the possibility of multiple similar solvents to be discriminated with the quasi-Newton search and 
allowed the noise in the optimum to be reduced substantially for the case where only a single 
solvent remained under consideration after a few G-optimal search iterations. 

With sufficient reduction in the error on the optimum J* (leading to termination of the G-
optimal search), a gradient-based quasi-Newton search was conducted for unfathomed solvents, 
initialized at xs*. The final gradient and line search strategy was employed to test the assumptions 
of the response surface method for the remaining candidate solvent(s) and identify an optimum 
within a user-defined tolerance. The quasi-Newton search comprised a gradient estimation and a 
back-stepping line search, the search direction for which was calculated using the estimated 
gradient and a BFGS approximation for the Hessian. To estimate a gradient, a randomly chosen 
23-1 fractional factorial design was run around xs* at vertex points given by xs* ± Δx, where Δx 
was a user-defined tolerance on the desired optimization accuracy. For variables where xi* ± Δxi 
exceeded a constraint, xi was set equal to the constraint. xs* was also examined experimentally, 
and a gradient was calculated from all experiments run throughout the optimization within xs* ± 
1.05*Δx. A new estimate of Js* was calculated based on the linearized response surface within xs* 
± Δx, with uncertainty ΔJs*: 
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  *
* 1 2

1 ,     
conf expts paramss N NJ

J V t  (16)

VJ* was the prediction covariance estimated over only xs* ± 1.05*Δx. The confidence parameter 
αconf was chosen to be 0.16, corresponding to a one-sided single-standard deviation confidence 
level. The (uphill) search direction p was evaluated from the gradient g and approximate Hessian 
H: 

1k k kp H g  (17)

H-1 was initialized as the inverse of Hessian found in the optimization of Equation 11, and an 
update for H-1 was calculated following the BFGS approximation:4 

 

1 1 1
1 1

1 2

  
 

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k k TT
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s y y H y s s H y s s y H
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s ys y
 

 (18)

 k k ks p  (19)

1 k k ky g g  (20)

New experiments along a line search were selected with the scaling factor α according to: 

*  s s kx x p  (21)

For xi in violation of a constraint, xi was chosen equal to the constraint. α was halved iteatively 
until the subsequent experiment would not be a replicate of the constrained experiment. 

The objective function value found at xs, Bs, was evaluated statistically against the 
uncertainty in Js* to determine if the line search experiment was a candidate optimum. Similarly 
to the G-optimal search, a paired t-test was employed with the criterion: 

* *  s s sJ J B  
(22)

Satisfaction of this criterion implied that xs was not a candidate optimum, and hence α was reduced 
to α/2 and a new line search experiment was commenced. In the event that xs could not be 
disregarded as an optimum, a gradient was calculated around xs with a randomly-selected 23-1 
fractional factorial design. A new candidate optimum, Js’, was established in the region xs ± Δx 
with variance VJ’. Js’ was compared to Js* with an unpaired 2-sample t-test: 
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 (23)

Rejection of the null hypothesis established xs as the new optimum xs, and a new search direction 
was calculated following Equations 17-20. Failure to reject the null hypothesis resulted in a 
continuation of the line search with α was reduced to α/2. When the step size was small enough 
such that αpk < Δx for all xi, the optimization terminated and Js* was recorded as the optimum for 
solvent s with uncertainty ΔJs*.  
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3. Raw Experimental Data 
Table S1. Observed yields for conditions screened during first fractional factorial design.  

Expt Number Solvent tres (s) T (ºC) C0,MeoBnCl (M) Yield 

1 iPrOH 60 30.0 0.999 2.4% 
2 THF 60 30.0 0.999 1.8% 
3 Toluene 600 30.0 0.998 9.7% 
4 MeCN 60 30.0 0.206 2.0% 
5 DMF 600 30.0 0.206 6.1% 
6 DMSO 600 30.0 0.999 52.2% 
7 Pyridine 60 30.0 0.206 8.5% 
8 DMC 60 30.0 0.206 1.0% 
9 DME 600 30.0 1.000 5.4% 

10 DCE 600 30.0 0.206 2.7% 
11 DMSO 60 120.0 0.206 28.4% 
12 iPrOH 600 120.0 0.206 23.5% 
13 MeCN 600 120.0 1.000 46.6% 
14 Pyridine 600 120.0 0.999 47.2% 
15 DMC 600 120.0 0.999 56.8% 
16 THF 600 120.0 0.206 27.7% 
17 Toluene 60 120.0 0.206 9.3% 
18 DMF 60 120.0 0.999 36.4% 
19 DME 60 120.0 0.206 8.7% 
20 DCE 60 120.0 1.000 44.6% 

 

Table S2. Observed yields for conditions screened during second fractional factorial design.  

Expt Number Solvent tres (s) T (ºC) C0,MeoBnCl (M) Yield 

21 DMC 600 120.0 0.999 45.5% 
22 DCE 190 120.0 1.000 53.4% 
23 iPrOH 600 120.0 0.444 43.2% 
24 MeCN 600 120.0 1.000 36.1% 
25 THF 600 120.0 0.444 35.7% 
26 DME 190 120.0 0.445 42.3% 
27 Pyridine 190 120.0 0.999 51.5% 
28 DMSO 190 120.0 0.445 52.2% 
29 Toluene 190 120.0 0.444 43.7% 
30 DMF 190 120.0 0.444 48.9% 
31 DMF 600 69.2 0.999 56.2% 
32 DCE 600 69.2 0.444 35.9% 
33 THF 190 69.2 0.999 29.9% 
34 MeCN 190 69.2 0.444 34.2% 
35 Pyridine 600 69.2 0.444 30.5% 
36 DME 600 69.2 1.000 41.5% 
37 DMC 190 69.2 0.444 16.2% 
38 Toluene 600 69.2 0.998 41.9% 
39 iPrOH 190 69.2 0.999 33.6% 
40 DMSO 600 69.2 0.999 62.9% 
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Table S3. Observed yields for conditions screened during G-optimal design of experiments.  

Expt Number Solvent tres (s) T (ºC) C0,MeoBnCl (M) Yield 

41 DMSO 77 46.4 0.999 36.0% 
42 DCE 137 63.6 1.000 24.0% 
43 THF 161 120.0 0.999 43.2% 
44 Pyridine 94 61.1 0.999 33.0% 
45 iPrOH 161 120.0 0.999 48.7% 
46 DMF 100 52.1 0.999 31.4% 
47 Toluene 91 59.4 0.998 9.9% 
48 DMSO 265 90.6 0.999 57.2% 
49 DMF 429 120.0 0.999 48.7% 
50 DMSO 391 102.8 0.999 59.3% 
51 DMSO 323 58.8 0.333 31.4% 
52 DCE 326 120.0 0.429 34.8% 
53 DMF 229 98.9 0.364 46.1% 
54 DMF 600 101.0 0.999 58.6% 
55 DCE 419 120.0 1.000 47.7% 
56 Pyridine 600 45.0 0.999 44.0% 
57 DMSO 600 87.8 0.999 60.7% 
58 DMF 431 94.3 0.999 52.3% 
59 DMSO 600 85.2 0.999 64.3% 
60 Pyridine 455 73.2 0.999 53.1% 
61 DMSO 319 74.9 0.999 53.9% 
62 Pyridine 340 77.7 0.999 53.5% 
63 DMF 332 93.1 0.999 54.4% 
64 DMF 340 96.0 0.778 54.9% 
65 iPrOH 188 120.0 0.667 23.7% 
66 DMSO 514 75.6 0.682 59.4% 
67 DMSO 600 79.8 0.999 62.9% 
68 DMSO 516 81.1 0.999 62.6% 
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Table S4. Observed yields for conditions screened during quasi-Newton gradient-based search.  

Expt Number Solvent tres (s) T (ºC) C0,MeoBnCl (M) Yield 

69 10 444 78.1 0.999 61.1% 
70 10 459 76.1 0.983 60.7% 
71 10 429 76.1 0.999 62.2% 
72 10 429 80.1 0.983 61.5% 
73 10 459 80.1 0.999 60.4% 
74 10 189 76.2 0.999 62.8% 
75 10 204 74.2 0.983 56.7% 
76 10 174 74.2 0.999 60.6% 
77 10 204 78.2 0.999 59.2% 
78 10 189 76.2 0.999 54.8% 
79 10 174 78.2 0.983 59.8% 
80 10 290 77.2 0.999 64.1% 
81 10 305 75.2 0.983 65.8% 
82 10 275 75.2 0.999 57.1% 
83 10 305 79.2 0.999 62.4% 
84 10 275 79.2 0.983 59.3% 
85 10 290 77.2 0.999 58.3% 
86 10 359 77.6 0.999 63.2% 
87 10 374 75.6 0.983 61.3% 
88 10 344 75.6 0.999 62.5% 
89 10 359 77.6 0.999 60.9% 
90 10 344 79.6 0.983 60.3% 
91 10 374 79.6 0.999 63.8% 
92 10 399 77.8 0.999 60.3% 
93 10 421 78.0 0.999 61.5% 
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4. Optimization Results 

4.1. Optimization Results after Optimization Step 2 
 

Table S5. Observed maxima and maxima predicted by a linear response surface model through 40 fractional 
factorial design experiments. 

 Observed Maximum Predicted Maximum 

Solvent tres (s) T (ºC) C0
[a] Yield tres (s) T (ºC) C0

[a] Yield 

DMSO 600 69 1.00 63% 144 64 1.00 197%[b] 
DMF 600 69 1.00 56% 159 76 1.00 106% 
DCE 190 120 1.00 53% 176 89 1.00 85% 

Pyridine 190 120 1.00 51% 168 84 1.00 82% 
iPrOH 600 120 0.44 43% 216 120 1.00 77% 
THF 600 120 0.44 36% 216 120 1.00 77% 

Toluene 190 120 0.44 44% 160 77 1.00 77% 
DMC 600 120 1.00 57% 216 120 1.00 67%[c] 
DME 190 120 0.44 42% 170 85 1.00 65%[c] 

MeCN 600 120 1.00 47% 199 107 1.00 62%[c] 
[a]-4-methoxybenzyl chloride initial concentration. [b]-Estimated error ±121%. [c]-Denotes predicted yield less than 

lower bound on maximum, indicating solvent will not be considered in next iteration of experiments. 
 

Notice that by assuming similar trends among the continuous variables, our method was 
able to predict higher yields for solvents in other regions of the experimental space that were not 
considered during the fractional factorial DoE. For that reason, THF, with a maximum observed 
yield of only 36% in four slugs, ranked above DMC, with a maximum observed yield of 57%. 

4.2. Optimization Results after Optimization Step 3 
In addition to solvent hydrogen bond basicity, we correlated the results following 

optimization step to the dielectric constant of the solvent (Figure S3).5 Good qualitative agreement 
was only observed for DMSO, DMF, isopropanol, dimethoxyethane, and toluene.  

 
Figure S3. Correlation of maximum predicted yield through step 3 to the solvent diectric constant. 
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5. NMR Spectra 
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Spectroscopic Datea 
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6. Nomenclature 
Latin Definition 

A Matrix of quadratic and interaction response surface coefficients 
As Pre-exponential factor for solvent s 
aij Response surface coefficient for continuous variables i and j 
asi Response surface coefficient for solvent s and continuous variable i 
Bs Candidate optimal response for solvent s 
b Vector of measured objective function values (responses) for all experiments 

b̂  
Vector of predicted objective function values (responses) for all experiments 

b Measured objective function (response) value 

b̂  
Predicted objective function (response) value 

C0,Diamine Initial concentration of trans-1,2-diaminocyclohexane 
C0,MeOBnCl Initial concentration of 4-methoxybenzyl chloride 

CProd Concentration of desired product 
c Vector of linear response surface coefficients 
ci Response surface coefficient for continuous variable i 

cs Response surface coefficient for solvent s 
Es Activation energy for solvent s 

gk Gradient at iteration k 
Hk Hessian at iteration k 
H0 Null hypothesis 
Ha Alternative hypothesis 
J* Optimal predicted response value (over all solvents) 
Js’ Optimal predicted response value at candidate optimum xs* 
Js* Optimal predicted response value for solvent s 
J-* Lower bound on J* 
N Number of experiments (single optimization iteration) 

Ncont variables Number of continuous variables 
Nexpts Number of experiments (entire optimization) 
Nexpts’ Number of experiments used to calculate Js’ 
Nexpts* Number of experiments used to calculate Js* 
Nparams Number of non-zero response surface coefficients (= length of θ) 

n Current experiment number 
pk Search direction for line search at iteration k 
R Gas constant 
sk Scaled search direction at iteration k 
tcrit Critical Student’s t statistic for rejection of H0 
tres Residence time 
tstat Student’s t statistic 
tα,ν Inverse Student’s t value for 1-α confidence and ν degrees of freedom 
VB Response covariance matrix 

B̂
V

 
Prediction covariance matrix 

VJ* Prediction covariance matrix at the optimum x* 
VJ’ Prediction covariance matrix at candidate optimum xs 
W Weighting matrix 
X Matrix of scaled continuous and discrete variables for all experiments 
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x Vector of scaled continuous and discrete variables in a single experiment  
xs Vector of continuous and discrete variables for solvent s 

xs* Optimal vector of continuous and discrete variables for solvent s  
xi Scaled continuous variable i 
xi* Scaled continuous variable i in x* 
xs Solvent composition of discrete variable s (1 if solvent s is active, 0 if inactive) 
yk Gradient difference at iteration k 

 

Greek Definition 

α Line search step size 
αconf Rejection confidence level specified for Student’s t-test 
ΔJn* Error on the optimal response through experiment n 
ΔJpred* Predicted error on the optimal response in next iteration of optimization 
ΔJs* Error on the optimal response for solvent s 
Δx Tolerance on the vector of optimal continuous variables 
Δxi Tolerance on the optimum for continuous variable i 
θ Optimal vector of response surface model coefficients 
ν Degrees of freedom 
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