Electronic Supplementary Information (ESI)

First tetrazole-bridged d-f heterometallic MOFs with large magnetic

entropy change

Huan-Cheng Hu, Xiao-Min Kang, Chun-Shuai Cao, Peng Cheng, Bin Zhao*

General Materials and Measurements

All raw materials were purchased commercially at analytical grade and used without further purification. C, N and H microanalysis were measured on a Perkin-Elmer elemental analyzer. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku D/Max-2500 diffractometer at room temperature using $Cu_{K\alpha}$ radiation ($\lambda = 1.5406$ Å). Inductively Coupled Plasma (ICP) data were collected on a USA Thermo Jarrell-Ash Corp ICP-9000 (N+M) spectrometer. Thermogravimetric analysis (TGA) was performed from a Netzsch TG 209 TG-DTA analyzer in the temperature range of 30-800 °C with a ramp rate of 10 °C min⁻¹ under N₂ atmosphere. Magnetic properties were measured on PPMS ACMS and Quantum Design SQUID VSM magnetometers.

Synthesis of {(H₃O)₃[Gd₃Mn₂(Trz)₄]·12H₂O}_n (1)

A mixture of GdCl₃·6H₂O (0.15 mmol, 0.0558 g), $MnCl_2·4H_2O$ (0.15 mmol, 0.0295 g), KC_4N_3 (0.05 mmol, 0.0065 g), NH_4F (0.3 mmol, 0.0111 g), NaN_3 (0.6 mmol, 0.039 g), H_2O (6 mL) and MeOH (2 mL) were sealed in a 25 mL Teflon-lined bomb and heated in an oven at 145 °C for three days, and then cooled to room temperature within four days. Colorless polyhedral crystals of 1 were separated by filtration and washed with MeOH. Yield: ca. 20%. Anal. calcd (%) for $Gd_3Mn_2C_{16}N_{48}O_{19}H_{33}$ (1783.37): C, 10.78; N, 37.70; H, 1.86; found (%): C, 10.83; N, 37.62; H, 1.82.

Additionally, for the chemical formula of 1, due to the high symmetry, it is difficult to determine the assignment of proton. The extra proton may be in the form of H_3O^+ , or be attached to tetrazole N atom from the ligand. Therefore, herein one of the chemical formulas is given.

Fig. S1 (a) The coordination environments and geometrical configuration of Mn^{2+} ion and (b) Gd^{3+} ion for compound 1; (c) Octahedral skeleton for six Gd^{III} ions in each { Gd_6O_8 } cluster; (d) The { Gd_6O_8 } cluster represented as an eight-connected node.

Thermogravimetric Analysis (TGA)

To investigate the thermal stability of compound 1, thermogravimetric analysis (TGA) curve of 1 were recorded, the 14.2% weight loss in the range of room temperature to 305 °C may be attributed to the removal of solvent water molecules and restrained water molecules from H_3O^+ ions (calc:15.1 %).

Powder X-ray Diffraction (PXRD)

Fig. S3 The power X-ray diffraction patterns of compound 1 in different organic solvents.

Fig. S4 Temperature dependence of χ_{M}^{-1} for compound **1** in applied field of 1000 Oe from 2 to 300K. The solid line is the best fit according to the Curie-Weiss law.

Crystallography Information

Empirical formula $Gd_3Mn_2C_{16}N_{48}O_{19}H_{33}$ Formula weight1783.37Temperature/K130.80(14)Crystal systemcubicSpace groupPn-3n $a/Å$ 17.1065(12) $b/Å$ 17.1065(12) $c/Å$ 17.1065(12) $a/°$ 90.00 $\beta/°$ 90.00 $\gamma/°$ 90.00 $\chi/°$ 5005.9(6) Z 4 ρ_{calc} mg/mm³2.291 m/mm^{-1} 4.523F(000)3304.0	
Formula weight1783.37Temperature/K130.80(14)Crystal systemcubicSpace groupPn-3n $a/Å$ 17.1065(12) $b/Å$ 17.1065(12) $c/Å$ 17.1065(12) $a/°$ 90.00 $\beta/°$ 90.00 $\gamma/°$ 90.00 $\chi/°$ 90.00 $\chi/°$ 200.00 $\chi/°$ 90.00 $\chi/~$ 90.00 $\chi/~$ 90.00 $\chi/~$ 90.00 $\chi/~$ 90.00 $\chi/~$ 90.00 $\chi/~$	
Temperature/K130.80(14)Crystal systemcubicSpace groupPn-3n $a/Å$ 17.1065(12) $b/Å$ 17.1065(12) $c/Å$ 17.1065(12) $a/°$ 90.00 $\beta/°$ 90.00 $\gamma/°$ 90.00Volume/Å 35005.9(6)Z4 ρ_{calc} mg/mm 32.291m/mm -14.523F(000)3004.0	
Crystal system cubic Space group Pn-3n a/Å 17.1065(12) b/Å 17.1065(12) c/Å 17.1065(12) c/Å 90.00 β/° 90.00 γ/° 90.00 Volume/Å ³ 5005.9(6) Z 4 ρ _{calc} mg/mm ³ 2.291 m/mm ⁻¹ 4.523 F(000) 304.0	
Space group Pn-3n a/Å 17.1065(12) b/Å 17.1065(12) c/Å 17.1065(12) a/° 90.00 β/° 90.00 γ/° 90.00 Volume/ų 5005.9(6) Z 4 pcalc mg/mm³ 2.291 m/mm ⁻¹ 4.523 F(000) 304.0	
a/Å17.1065(12)b/Å17.1065(12)c/Å17.1065(12)a/°90.00β/°90.00γ/°90.00Volume/ų5005.9(6)Z4ρ _{calc} mg/mm³2.291m/mm ⁻¹ 4.523F(000)3304.0	
b/Å17.1065(12)c/Å17.1065(12)α/°90.00β/°90.00γ/°90.00Volume/ų5005.9(6)Z4ρcalc mg/mm³2.291m/mm⁻¹4.523F(000)3304.0	
c/Å17.1065(12)α/°90.00β/°90.00γ/°90.00Volume/ų5005.9(6)Z4ρcalc mg/mm³2.291m/mm⁻¹4.523F(000)3304.0	
α/°90.00β/°90.00γ/°90.00Volume/ų5005.9(6)Z4ρcalc mg/mm³2.291m/mm⁻¹4.523F(000)3304.0	
β/°90.00γ/°90.00Volume/ų5005.9(6)Z4ρcalc mg/mm³2.291m/mm⁻¹4.523F(000)3304.0	
γ/°90.00Volume/ų5005.9(6)Z4ρcalc mg/mm³2.291m/mm⁻¹4.523F(000)3304.0	
Volume/ų 5005.9(6) Z 4 ρ _{calc} mg/mm³ 2.291 m/mm⁻¹ 4.523 F(000) 3304.0	
Z 4 ρ _{cale} mg/mm ³ 2.291 m/mm ⁻¹ 4.523 F(000) 3304.0	
$\rho_{cale} mg/mm^3$ 2.291 m/mm^{-1} 4.523F(000)3304.0	
m/mm ⁻¹ 4.523 F(000) 3304.0	
F(000) 3304.0	
Radiation Mo K α ($\lambda = 0.71073$)	
2Θ range for data collection 5.84 to 50°	
Index ranges $-12 \le h \le 7, -10 \le k \le 20, -19 \le l \le 12$	
Poflections collected 4051	
Independent reflections $753 [P_{1} = 0.0864 P_{2} = 0.0761$	I
$F_{\text{rections}} = 0.0701$	
Einal P indexes $[I > -2\sigma(I)]$ P = 0.0550 wP = 0.1571	
Final R indexes $[1 - 20 (1)]$ $R_1 = 0.0330, wR_2 = 0.1371$ Final R indexes [all data] $R_2 = 0.0027 wR_2 = 0.1824$	
Final K indexes [an data] $K_1 = 0.0957$, wK ₂ = 0.1824	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} \qquad {}^{b}wR_{2} = \sum w (F_{o}^{2} - F_{c}^{2}) / \sum w F_{o}^{4}$	/2

Table S1 Crystal data and structure refinement for 1

Table S2 Inductively Coupled Plasma (ICP) analyses for Na⁺ and K⁺ in 1 and blank, respectively.

sample	Na ⁺ (mg/L)	K ⁺ (mg/L)
blank	1.01	0.22
1	1.05	0.26

Blank: The solution of 10 mL water and 200 uL hydrochloric acid.

1: 5 mg sample 1 was dissolved in 200 uL hydrochloric acid, and then 10 mL water was added to form the solution.

Compounds	$-\Delta S_{\rm m} ({\rm J \ kg^{-1} \ K^{-1}})$	$\Delta H(\mathbf{T})$	$T(\mathbf{K})$	Ref.
$[Mn(H_2O)_6][MnGd(oda)_3]_2 \cdot 6H_2O$	50.1	7	1.8	1
$[Gd_{42}Co_{9}^{II}Co^{III}(\mu_{3}\text{-}OH)_{68}(CO_{3})_{12}(CH_{3}COO)_{30}(H_{2}O)_{70}] \cdot (ClO_{4})_{25} $	41.3	7	2	2
$(CH_3CH_2OH)_n \cdot 70H_2O$	40.2	-	•	
${(H_3O)_3[Gd_3Mn_2(1rz)_4] \cdot 12H_2O_{n}(this work)}$	40.3	7	2	
$[{CrF_3(Me_3tacn)}_2Gd_3F_2(NO_3)_7(H_2O)(CH_3CN)] \cdot 4CH_3CN$	38.3	7	2	3
$[Gd_{42}Ni^{11}_{10}(\mu_{3}\text{-}OH)_{68}(CO_{3})_{12}(CH_{3}COO)_{30}(H_{2}O)_{70}] \cdot (ClO_{4})_{24} \cdot \\80H_{2}O$	38.2	7	2	2
$[Gd_{36}Ni_{12}(CH_{3}COO)_{18}(\mu_{3}\text{-}OH)_{84}(\mu_{4}\text{-}O)_{6}(H_{2}O)_{54}(NO_{3})Cl_{2}] \\ (NO_{3})_{6}Cl_{9}\cdot 30H_{2}O$	36.3	7	3	4
$ [Cu^{II}_{2}Gd^{III}_{7}(OH)_{10}(teaH)_{2}(teaH_{3})_{2}(O_{2}CPh)_{6}(MeOH)_{3}(H_{2}O)_{3}](Cl)_{5} \cdot 6H_{2}O $	34.6	9	2.7	5
$[Ni_2Gd_2 (hmp)_4 (OAc)_6]$	34.4	7	4.5	6
$[Mn^{II}_{4}Gd^{III}_{6}(O_{3}PCH_{2}Ph)_{6}(HO_{2}C'Bu)_{13}(O_{2}CMe)(HO_{2}C'Bu)$ $(OH_{2})_{2}(MeCN)_{2}](MeCN)_{3}$	33.7	7	3	7
$[{FeF_3(Me_3tacn)}_2Gd_3F_2(NO_3)_7(H_2O)(CH_3CN)] \cdot 4CH_3CN$	33.1	7	4.2	3
$[Co^{II}_{6}Gd^{III}_{8} (\mu_{3}-OH)_{8}(O_{3}PtBu)_{6}(O_{2}C'Bu)_{16}(H_{2}O)_{2}](MeCN)_{2}$	33.0	14	4	8
$[Cu^{II}_{4}Gd^{III}_{12}(OH)_{20}(teaH)_{2}(teaH_{2})_{4}(O_{2}CPh-2-Ph)_{6}(H_{2}O)_{4}Cl_{2}(Cl_{2})_{6}(2MeOH)_{4}H_{2}O$	33.0	9	2.9	5
$\frac{[Co_4Gd_{10}(O_2C'Bu)_{12}(O_3PC_6H_{10}NH_2)_8(PO_4)_2(O_2CMe)_2}{(O_2PC_6H_{10}NH_2)_2]}$	32.6	7	2	9
$[Ni_{4}Gd_{4}(\mu_{2}-OH)_{2}(\mu_{2}-OAc)_{2}(O_{2}PR)_{4}(O_{2}C'B\mu)_{4}]$	32.0	7	3	10
$[Gd^{II}_{2}Fe^{II}_{2}(\mu_{s}-O)]_{2}(NO_{2})_{3}(H_{2}O)(MeOH)]_{1}^{10} 5MeOH$	31.7	7	3	11
$\frac{[Cu^{II}_{5}Gd^{III}_{4}O_{2}(OMe)_{4}(teaH)_{4}(O_{2}CC(CH_{3})_{3})_{2}(NO_{3})_{4}]}{2MeOH \cdot 2Et_{2}O}$	31.0	9	3	12
$\{[Gd_5Zn(BPDC)_3(H_2O)_{10}(\mu_3-OH)_6](CO_3)_{0.5}(NO_3)_4 \cdot 12H_2O\}_n$	30.7	7	3	13
$[{CrF_3(Me_3tame)}_2Gd_3(hfac)_6(\mu-F)_3] \cdot 7CH_3CN$	28.7	9	2.2	14
$[Co^{II}_{6}Gd^{III}_{8} (\mu_{3}-OH)_{8}(O_{3}PtBu)_{6}(O_{2}C'Bu)_{16}(H_{2}O)_{2}](MeCN)_{2}$	28.6	7	3	8
$[Mn^{II}_{9}Gd^{III}_{9}(O_{3}PMe)_{12}(O_{2}C'Bu)_{18}(L)]$	28.0	7	3	7
$[Ni^{II}_{6}Gd^{III}_{6}(OH)_{2}(O_{3}PCH_{2}Ph)_{6}(O_{2}CtBu)_{16}(MeCO_{2}H)_{2}](MeCN)_{4}$	26.5	7	3	15
$[Co_{16}Ln_{24}(OH)_{50}(pyacac)_{16}(NO_3)_{18}(H_2O)_{12}][Gd(H_2O)_8]_2(NO_3)_{16}$	26.0	7	3.8	16
$(OH)_{10} \cdot 20 \text{MeOH} \cdot 60 \text{H}_2 \text{O}$	25.7	7	2.4	17
$[Gdm_2Cdm_2(OH)_2(NO_3)_{2.5}(OAC)_{3.5}(L^2)_{2]n}$	25.7	/	2.4	1/
$[CuGd(pta)_2(Hpta)(4,4-bipy)_{0.5}(H_2O)]_n$	24.8	/	3	18
$[CO^{4}_{4}Gd^{4}_{6}(O_{3}PCH_{2}Ph)_{6}(O_{2}C^{2}Bu)_{14}(MeCN)_{2}]$	23.6	/	3	8
$[{(HL)(L)(DMF)Cu^{H}Gd^{H}(DMF)(H_{2}O)}_{6}] \cdot 6DMF$	23.5	/	2	19
$[Mn(CH_3OH)(\mu-L)Gd(NO_3)_3]$	23.5		2.7	20
$[Cu_{15}Gd_{7}(OH)_{6}(CO_{3})_{4}(O_{2}CPh)_{19}(pdm)_{9}(pdmH_{2})_{3}(H_{2}O)_{2}]$	22.2	/	2.5	21
$[Gd^{m_4}N1^{n_8}(OH)_8(L)_8(O_2CR)_8](CIO_4)_4$	22.0		3.6	22
$[Gd_5N_{12}(Gly)_{12}(IDA)_6(\mu_3-OH)_9(H_2O)_3](ClO_4)_6 \cdot 11H_2O$	21.8	7	4	23

Table S3 Summary of the value of $-\Delta S_m$ for more than 60 reported 3d-4f molecule-basedmagnetic coolants

$[Co^{II}_{8}Ln^{III}_{8}(\mu_{3}\text{-}OH)_{4}(NO_{3})_{4}(O_{3}P'Bu)_{8}(O_{2}C'Bu)_{16}]$	21.4	7	3	8
$[Gd^{III}_{9}Cu^{II}_{8}(NO_{3})_{2}(OH)_{10}(L^{3})_{4}(OAc)_{18}(H_{2}O)_{4}](NO_{3})_{2}(OH)_{3}$	21.4	7	27	17
22H ₂ O·4MeOH	21.4	/	2.7	1/
$[Co^{II}_{8}Gd^{III}_{4} (O_{3}P'Bu)_{6}(O_{2}C'Bu)_{16}]$	21.1	7	3	8
$[Gd_{24}Cu_{36}(OH)_{72}(NO_3)_6(O_2CPh)_{60}(MeOH)_6(H_2O)_{12}]$	21.0	7	0.1	24
(NO ₃) ₆ ·39H ₂ O·8MeOH·18MeCN	21.0	/	2.1	24
$[Gd^{III}_4Co^{II}(\mu_3\text{-}O)(dipp)_6(DMSO)_6(MeOH)_2] \cdot H_2O$	20.3	7	3	25
$[Co^{II}_{4}Gd^{III}_{2}(O_{3}PtBu)_{2}(O_{2}C'Bu)_{10}(MeCN)_{2}](MeCN)_{2}$	20.0	7	3	8
$[Na_{2}Co_{6}Gd_{4}(\mu_{3}\text{-}OH)_{2}(O_{2}C'Bu)_{12}(O_{3}PC_{6}H_{10}NH_{2})_{6}(MeCN)_{2}]$	19.7	7	2	9
$[Mn^{III}_{4}Gd^{III}_{4}(OH)_{4}(L)_{4}(NO_{3})_{2}(dmf)_{6}(H_{2}O)_{6}](OH)_{2}$	19.0	7	4	26
$[Ln_6Cu_{24}(Ala)_{12}(FA)_8(\mu_3-OH)_{30}(\mu_2-OH)_6(H_2O)_{18}]$	10 0	5	ſ	27
(ClO ₄) ₁₀ ·64H ₂ O	18.8	5	Z	21
$[Gd_2Ni_2(NO_3)_6(H_2O)_{1.5}(CH_3CN)_2(L)_2] \cdot CH_3CN$	18.5	5	3	28
[Ni ₃ Gd(hmp) ₄ (OAc) ₅]·H ₂ O·CH ₂ Cl ₂	18.3	7	5.5	29
$[Gd^{III}_{4}Zn^{II}_{8}(OH)_{8}(L)_{8}(O_{2}CR)_{8}](CIO_{4})_{4}$	18.0	7	2	22
[Et ₄ N][Gd ₂ Ni ₆ (val) ₁₂ (MeCN) ₆ (H ₂ O) ₃][Gd(NO ₃) ₅](ClO ₄) ₅	17.6	5	3	30
$[Gd_6Mn_{12}O_7(OH)_{10}(OAc)_{14}(mpea)_8] \cdot 13H_2O \cdot 6MeOH$	17.0	7	7	31
$[Gd_6Mn_{12}O_9(OH)_8(OAc)_{10}(mpea)_8(mp)_2(MeOH)_2(H_2O)_2]$	15.0	7	(21
17H ₂ O·12MeOH	15.8	/	0	31
[Gd ^{III} ₄ Cu ^{II} ₈ (OH) ₈ (L) ₈ (O ₂ CR) ₈](ClO ₄) ₄	14.6	7	5.6	22
$[Gd^{III}_{6}Cu^{II}_{12}(OH)_{12}(L^{3})_{6}(NO_{3})_{7}(OAc)_{3}(H_{2}O)_{12}]$	14.0	7	15	22
$(OH)_8 \cdot 19H_2O \cdot MeCN$	14.0	/	4.5	32
$[Ni_2Gd(L^-)_6](NO_3)$	13.7	7	4	33
$[Gd^{III}_4Cu^{II}_8(OH)_8(Me_3CCOO)_8(L^1)_8](NO_3)_2(OH)_2$	12.5	7	15	17
15H ₂ O·3MeCN	15.5	/	4.3	17
$[Ni_{3}Tb(hmp)_{4}(OAc)_{5}] \cdot H_{2}O \cdot CH_{2}Cl_{2}$	13.5	7	4.5	29
$[Mn^{II}{}_{6}Dy^{III}{}_{6}(\mu_{3}\text{-}OH)_{2}(O_{3}PCH_{2}Ph)_{6}(O_{2}C'Bu)_{16}(MeCN)_{5}$	13.0	7	3	7
$[Ln_2Cu_8(\mu_2-OH)_2(\mu_3-OH)_2(ClO_4)_2(HTMHSA)_4(H_2O)_{10}]$ ·15H ₂ O	12.8	7	3	34
[Co ₃ Dy(hmp) ₄ (OAc) ₅ H ₂ O]	12.6	7	5.5	35
$[Ni^{II}_{6}Dy^{III}_{6}(OH)_{2}(O_{3}PCH_{2}Ph)_{6}(O_{2}CtBu)_{16}(MeCO_{2}H)_{2}](MeCN)_{4}$	12.2	7	3	15
$[Cu_6Gd_2(L^{3-})_4(NO_3)_3(OAc)(CH_3OH)_6] \cdot NO_3 \cdot OAc \cdot 3CH_3OH \cdot 2H_2O$	11.9	7	2	36
[Ni ₂ Gd(LH ₃) ₄]·3NO ₃ ·3MeOH·H ₂ O·CH ₃ CN	11.8	5	4	37
$[Co^{II}_{8}Gd^{III}_{2} (\mu_{3}-OH)_{2}(O_{3}PCH_{2}Ph)_{4}(O_{2}C'Bu)_{12}(HO_{2}CMe)_{2}]$	11.0	7	2	0
(MeCN) ₆	11.8	/	3	δ
[Ni ₃ Dy(hmp) ₄ (OAc) ₅]·H ₂ O·CH ₂ Cl ₂	11.8	7	4.5	29
$[Cr_2Gd_2(\mu-F)_4F_2(py)_6(hfac)_6]$	11.4	9	4.1	38
$\{ [Dy_5Zn(BPDC)_3(H_2O)_{10}(\mu_3-OH)_6](CO_3)_{0.5}(NO_3)_4 \cdot 10H_2O \}_n \}$	10.8	7	4	13
[Ni ₃ Y(hmp) ₄ (OAc) ₅]·H ₂ O·CH ₂ Cl ₂	10.8	7	4.5	24
[Ni ₂ Gd ₄ (hfac) ₈ (pao) ₆ (CH ₃ COO) ₂ (MeOH)]·H ₂ O·MeOH	10.2	5	4	39
$[Dy^{III}_{3}Fe^{III}_{2}(\mu_{5}-O)L_{2}(NO_{3})_{5}(H_{2}O)(MeOH)] \cdot 0.5MeOH$	9.8	7	4	11
Mn ^{III} ₃ Mn ^{IV} O ₃ Gd ₃ (OH)(piv) ₆ (EtO) ₃ (EtOH) ₃ (Et-sao) ₃	7.4	5	6	40
[Ni ₃ Ho(hmp) ₄ (OAc) ₅]·H ₂ O·CH ₂ Cl ₂	7.3	7	4.5	29
$[Gd_{2}Cu_{6}(Gly)_{6}(FA)_{3}(\mu_{3}\text{-}OH)_{3}(\mu_{3}\text{-}OH_{2})_{3}(H_{2}O)_{9}](ClO_{4})_{6}\cdot 15H_{2}O$	6.0	5	2	27

$[Gd_{2}Cu_{6}(Gly)_{6}(FA)_{3}(\mu_{3}\text{-}OH)_{3}(\mu_{3}\text{-}OH_{2})_{3}(H_{2}O)_{8}](ClO_{4})_{6}\cdot 10H_{2}O$	5.8	5	2	27
$[Ni^{II}_{6}Y^{III}_{6}(OH)_{2}(O_{3}PCH_{2}Ph)_{6}(O_{2}CtBu)_{16}(MeCO_{2}H)_{2}](MeCN)_{4}$	5.6	7	3	15
Mn ^{III} ₃ Mn ^{IV} O ₃ Dy ₃ (OH)(piv) ₆ (EtO) ₃ (EtOH) ₃ (Et-sao) ₃	3.7	5	6	40

Crystal Data Collection and Structure Determination

Suitable single crystal of **1** was mounted on a SuperNova diffractometer equipped with a graphite monochromator Mo-K α radiation source ($\lambda = 0.71073$ Å). The structure was solved using direct methods by SHELXS-97 and refined by full matrix least-squares on F² using SHELTL-97 in conjunction with the OLEX2 graphical user interface. ^{41,42} The anisotropic thermal parameters were refined for all non-hydrogen atoms, and hydrogen atoms were calculated and refined with a riding model.

References

1. F. S. Guo, Y. C. Chen, J. L. Liu, J. D. Leng, Z. S. Meng, P. Vrábel, M. Orendáč and M. L. Tong, *Chem. Commun.*, 2012, **48**, 12219.

2. J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang,

L. S. Zheng and Z. P Zheng, J. Am. Chem. Soc., 2012, 134, 3314.

K. S. Pedersen, G. Lorusso, J. J. Morales, T. Weyhermüller, S. Piligkos, S. K. Singh, D. Larsen,
M. Schau-Magnussen, G. Rajaraman, M. Evangelisti and J. Bendix, *Angew. Chem. Int. Ed.*, 2014,
53, 2394.

4. J. B. Peng, Q. C. Zhang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng and Z. P. Zheng, *Angew. Chem. Int. Ed.*, 2011, **50**, 10649.

5. S. K. Langley, B. Moubaraki, C. Tomasi, M. Evangelisti, E. K. Brechin and K. S. Murray, *Inorg. Chem.*, 2014, **53**, 13154.

6. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Chem. Asian J., 2013, 8, 2943.

Y. Z. Zheng, E. M. Pineda, M. Helliwell and R. E. P. Winpenny, *Chem. Eur. J.*, 2012, 18, 4161.
Y. Z. Zheng, M. Evangelisti, F. Tuna and R. E. P. Winpenny, *J. Am. Chem. Soc.*, 2012, 134, 1057.

9. E. M. Pineda, F. Tuna, R. G. Pritchard, A. C. Regan, R. E. P. Winpenny and E. J. L. McInnes, *Chem. Commun.*, 2013, **49**, 3522.

10. E. M. Pineda, F. Tuna, Y. Z. Zheng, R. E. P. Winpenny and E. J. L. McInnes, *Inorg. Chem.*, 2013, **52**, 13702.

11. H. Li, W. Shi, Z. Niu, J. M. Zhou, G. Xiong, L. L. Li and P. Cheng, *Dalton Trans.*, 2015, 44, 468.

12. S. K. Langley, N. F. Chilton, B. Moubaraki, T. Hooper, E. K. Brechin, M. Evangelisti and K. S. Murray, *Chem. Sci.*, 2011, **2**, 1166.

13. P. F. Shi, Y. Z. Zheng, X. Q. Zhao, G. Xiong, B. Zhao, F. F. Wan and P. Cheng, *Chem. Eur. J.*, 2012, **18**, 15086.

14. T. Birk, K. S. Pedersen, C. Aa. Thuesen, T. Weyhermüller, M. Schau-Magnussen, S. Piligkos, H. Weihe, S. Mossin, M. Evangelisti and J. Bendix, *Inorg. Chem.*, 2012, **51**, 5435.

15. Y. Z. Zheng, M. Evangelisti and R. E. P. Winpenny, Angew. Chem. Int. Ed., 2011, 50, 3692.

16. Z. M. Zhang, L. Y. Pan, W. Q. Lin, J. D. Leng, F. S. Guo, Y. C. Chen, J. L. Liu and M. L. Tong, *Chem. Commun.*, 2013, **49**, 8081.

17. J. L. Liu, W. Q. Lin, Y. C. Chen, S. Gómez-Coca, D. Aravena, E. Ruiz, J. D. Leng and M. L. Tong, *Chem. Eur. J.*, 2013, **19**, 17567.

18. X. H. Miao, S. D. Han, S. J. Liu, X. H. Bu, Chin. Chem. Lett., 2014, 25, 829.

19. A. S. Dinca, A. Ghirri, A. M. Madalan, M. Affronte and M. Andruh, *Inorg. Chem.*, 2012, **51**, 3935.

20. E. Colacio, J. Ruiz, G. Lorusso, E. K. Brechin and M. Evangelisti, *Chem. Commun.*, 2013, 49, 3845.

21. D. Dermitzaki, G. Lorusso, C. P. Raptopoulou, V. Psycharis, A. Escuer, M. Evangelisti, S. P. Perlepes and T. C. Stamatatos, *Inorg. Chem.*, 2013, **52**, 10235.

22. T. N. Hooper, J. Schnack, S. Piligkos, M. Evangelisti and E. K. Brechin, *Angew. Chem. Int. Ed.*, 2012, **51**, 4633.

23. Z. Y. Li, J. Zhu, X. Q. Wang, J. Ni, J. J. Zhang, S. Q. Liu and C. Y. Duan, *Dalton Trans.*, 2013, 42, 5711.

24. D. Leng, J. L. Liu and M. L. Tong, Chem. Commun., 2012, 48, 5286.

25. S. K. Gupta, A. A. Dar, T. Rajeshkumar, S. Kuppuswamy, S. K. Langley, K. S. Murray, G. Rajaraman and R. Murugavel, *Dalton Trans.*, 2015, **44**, 5961.

26. G. Karotsis, M. Evangelisti, S. J. Dalgarno and E. K. Brechin, *Angew. Chem. Int. Ed.*, 2009, **48**, 9928.

27. Z. Y. Li, Y. X. Wang, J. Zhu, S. Q. Liu, G. Xin, J. J. Zhang, H. Q. Huang and C. Y. Duan, *Cryst. Growth Des.*, 2013, **13**, 3429.

28. C. Meseguer, S. Titos-Padilla, M. M. Hänninen, R. Navarrete, A. J. Mota, M. Evangelisti, J. Ruiz and E. Colacio, *Inorg. Chem.*, 2014, **53**, 12092.

29. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Dalton Trans., 2014, 43, 182.

30. A. Hosoi, Y. Yukawa, S. Igarashi, S. J. Teat, O. Roubeau, M. Evangelisti, E. Cremades, E. Ruiz, L. A. Barrios and G. Aromí, *Chem. Eur. J.*, 2011, **17**, 8264.

31. J. L. Liu, W. Q. Lin, Y. C. Chen, J. D. Leng, F. S. Guo and M. L. Tong, *Inorg. Chem.*, 2013, 52, 457.

32. J. L. Liu, Y. C. Chen, Q. W. Li, S. Gómez-Coca, D. Aravena, E. Ruiz, W. Q. Lin, J. D. Leng and M. L. Tong, *Chem. Commun.*, 2013, **49**, 6549.

33. A. Upadhyay, N. Komatireddy, A. Ghirri, F. Tuna, S. K. Langley, A. K. Srivastava, E. C. Sañudo, B. Moubaraki, K. S. Murray, E. J. L. McInnes, M. Affronte and M. Shanmugam, *Dalton Trans.*, 2014, **43**, 259.

34. H. Zhang, G. L. Zhuang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang and L. S. Zheng, *Cryst. Growth Des.*, 2013, **13**, 2493.

35. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Inorg. Chem., 2012, 51, 12059.

36. S. F. Xue, Y. N. Guo, L. Zhao, H. X. Zhang and J. K. Tang, Inorg. Chem., 2014, 53, 8165.

37. S. Das, A. Dey, S. Kundu, S. Biswas, A. J. Mota, E. Colacio and V. Chandrasekhar, *Chem. Asian J.*, 2014, **9**, 1876.

38. C. Aa. Thuesen, K. S. Pedersen, M. Schau-Magnussen, M. Evangelisti, J. Vibenholt, S. Piligkos, H. Weihe and J. Bendix, *Dalton Trans.*, 2012, **41**, 11284.

39. C. M. Liu, D. Q. Zhang and D. B. Zhu, RSC Adv., 2014, 4, 53870.

40. C. M. Liu, D. Q. Zhang and D. B. Zhu, Dalton Trans., 2010, 39, 11325.

41. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.

42. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J. Puschmann, Appl. Crystallogr. 2009, 42, 339.