## **Supporting Information for**

## MOF derived composites for cathode protection: coatings of LiCoO<sub>2</sub> from UiO-66 and MIL-53 as ultra-stable cathodes

Pengfei Qi, ‡*a* Yuzhen Han, ‡*a* Junwen Zhou,b Xiaotao Fu,*a* Siwu Li,*a* Jingshu Zhao, *a* Lu Wang, *a* Xinxin Fan,b Xiao Feng*a* and Bo Wang\*a

## **Experimental section**

The synthesis of UiO-66 were carried out under mild hydrothermal conditions using zirconium tetrachloride (ZrCl<sub>4</sub>, 2.330 g), 1,4benzenedicarboxylic acid (C<sub>6</sub>H<sub>4</sub>-1,4-(CO<sub>2</sub>H)<sub>2</sub> or BDC, 1.661 g), and dimethylformamide (DMF, 30 mL). The reaction was performed in a 100 mL Teflon-lined stainless steel Parr bomb under autogenous pressure for 24 h at 220  $^{\circ}$ C.

The synthesis of MIL-53 were carried out under mild hydrothermal conditions using aluminum nitrate nonahydrate  $(Al(NO_3)_3 \ 9H_2O, 1.300 \text{ g})$ , 1,4-benzenedicarboxylic acid  $(C_6H_4-1,4-(CO_2H)_2 \text{ or BDC}, 0.288 \text{ g})$ , and deionized water (80 mL). The reaction was performed in a 100 mL Teflon-lined stainless steel Parr bomb under autogenous pressure for 72 h at 220 °C.

UiO-66@LiCoO<sub>2</sub> and MIL-53@LiCoO<sub>2</sub> were both synthesized through a simple mechanochemical synthetic protocol. Reactions were carried out

in a ball mill (QM-3B, Nanjing University Instrument Factory, China) using a 80 mL PTFE grinding jar with five 10 mm zirconia balls. A solid mixture of  $LiCoO_2$  (2.000 g), UiO-66 (0.220 g) (or MIL-53 (0.060 g)) and ethanol (400 µL) was placed into the jar and ground at high speed for 1h.

The as-prepared UiO-66@LiCoO<sub>2</sub> (or MIL-53@LiCoO<sub>2</sub>) were transferred to a tube furnace and were annealed at 600 °C for 5 h in air under constant heating and cooling rates of 5 °C min<sup>-1</sup>. After that, the as-prepared product was transferred to the grinding jar with five 10 mm zirconia balls and ground at high speed for 1h, followed by another heating treatment at 500 °C of 4 h in air under the same heating and cooling rates.

 $ZrO_2@LiCoO_2$  and  $Al_2O_3@LiCoO_2$  were both conducted in a similar fashion through a simple mechanochemical synthetic protocol by treating commercial LiCoO\_2 (2.000 g) with  $ZrO_2$  (0.030 g, PDF # 65-1022) or  $Al_2O_3$  (0.070 g, PDF # 46-1212) powders. The powders were placed into the jar and ground at high speed for 1h. The as-prepared  $ZrO_2@LiCoO_2$ (or  $Al_2O_3@LiCoO_2$ ) were transferred to a tube furnace and annealed at 600 °C for 5 h) in air under constant heating and cooling rates of 5 °C min<sup>-1</sup>.

## Characterization

Powder X-ray diffraction (PXRD) was conducted with monochromatized

Cu-K $\alpha$  ( $\lambda$  = 1.54178 Å) incident radiation on a D8 Advance Bruker powder diffractometer operating at 40 kV and 50 mA. Nitrogen sorption isotherm was measured at 77 K on a Quantachrome Instrument Autosorb-IQ7 after pretreatment by heating the samples under vacuum at 180 °C for 3 h before the measurement. Fourier transform infrared (FT-IR) spectra were recorded on a Bruker ALPHA FT-IR Spectrometer. ICP (Inductive Coupled Plasma Emission Spectrometer) was tested by Varian 725 inductively coupled plasma emission spectrometer. Scanning electron microscopic (SEM) images were obtained with a JEOL JSM7500F instrument.

To prepare the cathodes, 86 wt% active material, 8 wt% Super P carbon black and 6 wt% poly(vinylidene fluoride) (PVDF) binder were mixed in N-methyl pyrrolidinone (NMP) to form a slurry. The slurry was cast onto aluminium foil and dried under vacuum at 120 °C for 12 h. The loading mass of active material is about 2.45 mg/cm<sup>2</sup>. Coin cells of CR2032 type were assembled in an argon-filled glove box using a lithium metal anode and a polypropylene microporous separator (Celgard 2400). The electrolyte was 1 M LiPF<sub>6</sub> in ethyl carbonate (EC), methyl carbonate (DMC) and ethyl methyl carbonate (EMC) (1:1:1 v/v/v). The coin cells were allowed to be aged overnight before tested. Galvanostatic tests were carried out between 3.0 V and 4.5 V with a LAND CT2001A instrument (Wuhan, China) at ambient temperature (or 55 °C). The electrochemical impedance spectra were also performed using an electrochemical workstation (CHI 760E: CH Instrumental Inc.) with the frequency range of  $10^4$  Hz to  $10^{-1}$  Hz with an applied voltage of 4.5 V after 4 cycles at current density of 77.5 mA g<sup>-1</sup>.

The active material in all the cells is the sum of LiCoO<sub>2</sub> and coating layer.



Fig. S1 PXRD of UiO-66, UiO-66-600 and ZrO<sub>2</sub>.



Fig. S2 PXRD UiO-66-600.



Fig. S3 PXRD of MIL-53, MIL-53-600 and  $Al_2O_3$ .



Fig. S4 PXRD of MIL-53-600.



**Fig. S5** Nitrogen adsorption isotherms at 77 K for UiO-66-600. Inset shows the pore size distribution from DFT calculation.



**Fig. S6** Nitrogen adsorption isotherms at 77 K for MIL-53-600. Inset shows the pore size distribution from DFT calculation.



**Fig. S7** PXRD of MIL-53@LiCoO<sub>2</sub>,  $Al_2O_3$ @LiCoO<sub>2</sub>, UiO-66@LiCoO<sub>2</sub>, ZrO<sub>2</sub>@LiCoO<sub>2</sub> and LiCoO<sub>2</sub>.



**Fig. S8** FT-IR of the  $LiCoO_2$ , UiO-66@LiCoO<sub>2</sub> and MIL-53@LiCoO<sub>2</sub>.



**Fig. S9** SEM image of LiCoO<sub>2</sub>.



Fig. S10 (a) SEM images and elemental mapping of (a) MIL-53@LiCoO<sub>2</sub>-600, (b)  $Al_2O_3$ @LiCoO<sub>2</sub>-600 (green dots: Al, blue dots: Co).



Fig. S11 (a) SEM images and elemental mapping of (a) UiO-66@LiCoO<sub>2</sub>-600, (b) MIL-53@LiCoO<sub>2</sub>-600 (green dots: Zr (or Al), blue dots: Co).



Fig. S12 Nyquist plots for (a) UiO-66@LiCoO<sub>2</sub>-600, ZrO<sub>2</sub>@LiCoO<sub>2</sub>-600,
(b) MIL-53@LiCoO<sub>2</sub>-600, Al<sub>2</sub>O<sub>3</sub>@LiCoO<sub>2</sub>-600 and LiCoO<sub>2</sub> after four cycles.



**Fig. S13** Cycle-life performance of MIL-53@LiCoO<sub>2</sub> between 3.0 and 4.5 V at a current density of 2325 mA  $g^{-1}$  at room temperature, the cell was activated at a current density of 77.5 mA  $g^{-1}$  for the first four cycles.



**Fig. S14** Capacity retention for  $LiCoO_2$  (dark cyan line),  $Al_2O_3$ @LiCoO<sub>2</sub>-600 (blue bar) and MIL-53@LiCoO<sub>2</sub>-600 (red bar).



**Fig. S15** Cycle-life performance of UiO-66@LiCoO<sub>2</sub>-600,  $ZrO_2@LiCoO_2$ -600 and  $LiCoO_2$  between 3.0 and 4.5 V at rate of 1 C and 5 C (1 C = 180 mA g<sup>-1</sup>) at room temperature; the cell was activated at a rate of 0.5 C for the first four cycles.



**Fig. S16** Cycle-life performance of MIL-53@LiCoO<sub>2</sub>-600, Al<sub>2</sub>O<sub>3</sub>@LiCoO<sub>2</sub>-600 and LiCoO<sub>2</sub> between 3.0 and 4.5 V at rate of 1 C and 5 C (1 C = 180 mA g<sup>-1</sup>) at room temperature; the cell was activated at a rate of 0.5 C for the first four cycles.