Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

Supporting Information

An Unprecedented Base-Promoted Domino Reaction of Methyleneindolinones and N-Tosyloxycarbamates for the Construction of Bispirooxindoles and Spiroaziridine Oxindoles

Qi-Lin Wang ^{a,b}, Tian Cai ^{a,b}, Jing Zhou ^{a,b}, Fang Tian ^a, Xiao-Ying Xu ^{a,*}, Li-Xin Wang ^{a,*}

^a Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu

Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

^b University of Chinese Academy of Sciences, Beijing 10049, China

E-mail: wlxioc@cioc.ac.cn; xuxy@cioc.ac.cn.

Table of Contents

1.	General methods	3
2.	Condition optimization for the synthesis of compound 3a	3
3.	Condition optimization for the synthesis of compound 4a	6
4.	Mechanistic studies	8
5.	Experimental data for bispirooxindoles 3	11
6.	Experimental data for compounds 4	18
7.	Experimental data for compounds 5 and 7	23
8.	Crystal data for 3a and 4a	24
9.	Selected ¹ H NMR and ¹³ C NMR spectra	60

1. General methods

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). NMR spectra were recorded with tetramethylsilane as the internal standard. ¹H NMR spectra were recorded at 300 MHz, and ¹³C NMR spectra were recorded at 75 MHz (Bruker Avance). ¹H NMR chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard (CDCl₃ at 7.26 ppm, (CD₃)₂SO at 2.50 ppm). ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.00 ppm, (CD₃)₂SO at 39.52 ppm). Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet), br (broad) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Highresolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. IR spectra were recorded on a ThermoFisherNicolet Avatar 360 FTIR spectrometer on a KBr beamsplitter.

2. Condition optimization for the synthesis of compound 3a

In order to develop an efficient approach for the synthesis of bispirooxindole **3a**, the easily available methyleneindolinone **1a** was chosen to react with N-tosyloxycarbamate **2a** for the condition optimization. We first screened a series of bases. As shown in Table S1, Na₂CO₃ was proved to be the best inorganic base (entry 2) and DABCO'6H₂O was the best organic base (entry 6), respectively. After a combination of Na₂CO₃ and DABCO'6H₂O (1:1), better result was obtained (entry 11) and bispirooxindole **3a** was obtained in 85% yield. Also the loading of DABCO'6H₂O could be reduced to 0.2 equiv, giving **3a** in 85% yield (entry 12). Thus, the combined base (Na₂CO₃ and DABCO'6H₂O (1:1)) was recommended for further optimization. **Table S1**: The optimization of bases ^{*a*}

entry	base	time (h)	yield ^b (%)
1	NaHCO ₃	48	41
2	Na ₂ CO ₃	48	48
3	K_2CO_3	48	35
4	Cs ₂ CO ₃	48	47
5	NaOAc	48	25
6	DABCO ⁻ 6H ₂ O	48	67
7	NEt ₃	48	49
8	pyridine	48	27
9	DMAP	48	47
10	DBU	48	14
11	DABCO ⁻⁶ H ₂ O $(1.0 \text{ eq}) + \text{Na}_2\text{CO}_3(1.0 \text{ eq})$	48	85
12	DABCO ⁻⁶ H ₂ O $(0.2 \text{ eq}) + \text{Na}_2\text{CO}_3(1.0 \text{ eq})$	48	83

^{*a*} Unless otherwise specified, the reaction was conducted on a scale of 0.12 mmol with 1.0 equiv. of **2a** and 2.1 equiv. of **1a**. All reactions afforded **3a** as a single diastereomer. ^{*b*} Isolated yield.

Then, the reaction media was investigated and the typical results were shown in Table S2. The reaction proceeded smoothly in aprotic solvents such as halogenated hydrocarbons, ethers, aromatic solvents, and esters (entries 1-10). Also the reaction could take place in protic solvent, and **3a** could be generated in EtOH in 38% yield (entry 11). Among the solvents screened, THF turned out to be the best in terms of the yield of **3a** (entry 3).

 Table S2: Screening of solvents ^a

H ₃ CO ₂ C N Boc 1a	DABCC + N <u>Na₂C</u> solver 2a	0°6H₂O (1.0 equiv) <u>CO₃ (1.0 equiv)</u> nt (1 mL), 30 °C	
entry	solvent	time (h)	yield b (%)
1	CHCl ₃	48	85
2	CH_2Cl_2	48	80
3	THF	24	85

2	4	MTBE	48	83
4	5	toluene	48	85
6	6 (CH ₃ CN	8	67
7	7	EtOAc	29	71
8	8	DMC	29	60
Ç	9	DEC	29	66
1	0 <i>n</i> -Bi	ityl acetate	29	67
1	1	EtOH	24	38

^{*a*} Unless otherwise specified, the reaction was conducted with 0.12 mmol **2a**, 2.1 equiv. **1a**, 2.0 equiv. base in 1 mL CHCl₃ at 30 °C. All reactions afforded **3a** as a single diastereomer. ^{*b*} Isolated yield. EA= ethyl acetate, DMC= dimethyl carbonate, DEC=diethyl carbonate.

In order to further optimize the reaction condition, we investigated the effect of the substrate ratios. The substrate ratios had an obvious influence on the reaction efficiency and the results were summarized in Table S3. When the molar ratio of **1a** to **2a** was varied from 2.1:1 to 3.5:1, the yield increased from 85% to 94% (entries 1-7). And no further increase occurred when the molar ratio of **1a** to **2a** was improved to 4.5:1 (entries 7 vs 9-10). By contrast, when excessive **2a** was used, the yields decreased sharply and product **3a** was obtained in only 39% yield when using 1.5 equiv of **2a** and the spirocyclic aziridine **4a** was the major product (entry 11). Thus, a 3.5:1 ratio of **1a** /**2a** was optimal. Notably, when 1.0 equiv of DABCO₆H₂O was used instead of the combined base, the comparable result was obtained (entries 7 vs 8). Consequently, the following conditions were recommended: 0.12 mmol **2a** and 3.5 equiv of **1a** with 1.0 equiv of DABCO₆H₂O in 1.0 mL THF at 30 °C.

H ₃ CO ₂ C	Boc a 2a 1mol y mmol	DABCO·6H ₂ O (1.0 equiv) <u>Na₂CO₃ (1.0 equiv)</u> THF (1 mL), 30 °C 24 h	Cbz-N NOO Boc 3a	OCH ₃ COOCH ₃ Boc
entry	Х	у	x/y	Yield ^b
1	0.252	0.12	2.1:1	85
2	0.264	0.12	2.2:1	79

3	0.288	0.12	2.4:1	84
4	0.300	0.12	2.5:1	89
5	0.360	0.12	3.0:1	93
6	0.420	0.12	3.5:1	94
7 ^c	0.420	0.12	3.5:1	92
8	0.480	0.12	4.0:1	90
9	0.540	0.12	4.5:1	87
10	0.240	0.144	1:1.2	71
11	0.240	0.18	1:1.5	39

^{*a*} Unless otherwise specified, the reaction was conducted on a 0.12 mmol scale. All reactions afforded **3a** as a single diastereomer. ^{*b*} Isolated yield. ^{*c*} Only 1.0 equiv of DABCO.6H₂O used instead of the combined base.

3. Condition optimization for the synthesis of compound 4a

During the screening of substrate ratios for the synthesis of bispirooxindole **3a**, we found that excess **2a** could result in the formation of spirocyclic aziridine **4a** which is a class of unique and versatile synthon. In order to develop a more general and robust approach for the synthesis of spirocyclic aziridines, we examined the condition parameters such as substrate ratios and reaction temperatures (Table S4). When using a 1:2.5 ratio of **1a/2a**, spirocyclic aziridine **4a** could be obtained in 60% yield (entry 1) and no further improvement took place by a 1:3 ratio of **1a/2a** (entry 2). Therefore, a 1:2.5 ratio of **1a/2a** was chosen for further investigation. Temperatures also affected the reaction. Lowering the reaction temperature resulted in lower yields and prolonged reaction time (entries 1 vs 3-4). By contrast, product **4a** could be obtained in 72% yield when the reaction was conducted at 50 °C (entry 5).

Based on the above screenings, the optimal condition was determined as the following: 0.15 mmol **1a** and 2.5 equiv of **2a** with 1.0 equiv of DABCO⁶H₂O in 1.0 mL THF at 50 $^{\circ}$ C. **Table S4**: Optimizations of the aziridination of methyleneindolinones ^{*a*}.

1	1:2.5	30	45 min	60
2	1:3	30	45 min	56
3	1:2.5	-5	7 h	24
4	1:2.5	-30	12 h	21
5	1:2.5	50	10 min	72

^{*a*} Unless otherwise specified, the reaction was conducted on a scale of 0.15 mmol. All cases afforded **4a** as a single diastereomer. ^{*b*} Isolated yield.

 Table S5. Scope of substrates for synthesis of aziridines ^{a,b}

		D ₂ C N PG ₁ +	TsONHPG 2 2a PG= Cbz 2b PG= Boc	ABCO [.] 6H ₂ O THF (1 mL)	(1.0 equiv)), 50 °C		5
entry	1	R_1	PG_1	R	2	time	4 /yield ^b (%)
1	1a	Н	Boc	Me	2a	10 min	4a /72
2	1a	Н	Boc	Me	2b	10 min	4b /55
3	1b	Н	Boc	Et	2a	10 min	4c /77
4	1b	Н	Boc	Et	2b	20 min	4d /58
5	1c	Н	Boc	<i>t</i> -Bu	2a	3 h	4e /70
6	1c	Н	Boc	<i>t</i> -Bu	2b	12 h	4f /59
7	1d	Н	CO ₂ Et	Me	2a	5 min	4g /59
8	1e	Н	Cbz	Me	2a	5 min	4h /72
9	1g	5-F	Boc	Me	2a	5 min	4i /81
10	1g	5-F	Boc	Me	2b	5 min	4j /91
11	1h	5-Cl	Boc	Me	2a	5 min	4k /80
12	1h	5-Cl	Boc	Me	2b	5 min	41 /79
13	1i	5-Br	Boc	Me	2a	5 min	4m /65
14	1i	5-Br	Boc	Me	2b	5 min	4n /63
15	1j	5-Me	Boc	Me	2a	10 min	40 /55
16	1k	7-Cl	Boc	Me	2a	5 min	4p /65

^{*a*} Unless otherwise specified, the reaction was conducted on a scale of 0.15 mmol. ^{*b*} Isolated yield. With the optimized condition in hand, the generality of this transformation was next investigated and the results were shown in Table S5. This domino reaction had a wide tolerance of methyleneindolinones and all the cases could afford the desired products (**4a-o**) in moderate to good yields (58-91%). Increasing the bulkiness of the ester group had minimal impact on the yields, albeit with longer reaction time (Table S5, entries 1-6). Then, the influence of the N-protecting groups, the positions or the electronic nature of the substitution patterns on the methyleneindolinones 1 was studied. And the results revealed that they had some effect on the yields (Table S5, entries 7-16), especially the electronic nature. Substrates with electron-donating substituents gave lower yields than those with electron-withdrawing ones (Table S5, entries 15 vs 9-14).

4. Mechanistic studies

Based on the experimental data and the important roles of tertiary amines played in MBH reaction, a reaction mechanism has been proposed (Scheme S1). First, spirocyclic aziridine **4a** was obtained via a Michael/S_N2 sequence by reaction of compounds **1a** and **2a**. Then, ring-opening reaction of aziridine **4a** occurred after the attack by DABCO⁶H₂O, and the corresponding zwitterionic intermediate **I** was obtained. Subsequently, intermediate **I** reacted with methyleneindolinone **1a** to form zwitterionic intermediate **II**. Finally, the annulation product **3a** was obtained through an intramolecular nucleophilic substitution and the tertiary amine was released.

Scheme S1: A plausible catalytic cycle for this domino reaction

To get support for the proposed catalytic cycle, both ESI-HRMS analysis and control experiments were conducted, and the results were discussed below.

First, the formation of the spirocyclic aziridine **4a** and zwitterionic intermediates **I** and **II** was supported by ESI-HRMS. Three typical spectrums obtained after blending **1a**, **2a** and DABCO⁶H₂O for 2 minutes were shown in Scheme S2 and Figure S1. A characteristic signal at m/z 475.15 was observed which was consistent with spirocyclic aziridine **4a**, and $[I+H]^+$ at 565.27 as well as $[II+H]^+$ at 565.27 (A, Figure S1). However, after stirred for 25 hours, the signal at m/z 475.15 and 629.21 disappeared as expected and the signal of product **3a** at m/z 778.26 became stronger (B, Figure S1). These observations indicated that the reaction proceeded in a stepwise mechanism.

Scheme S2: The reaction for HRMS analysis

Figure S1: A) ESI-HRMS spectrum of the reaction of **1a**, **2a** and DABCO⁶H₂O in 1.0 mL of THF after 2 minutes; B) ESI-HRMS spectrum of the reaction of **1a**, **2a** and DABCO⁶H₂O in 1.0 mL of THF after 25 hours.

In addition, the intermediates **I** and **II** could also be detected by mixing **4a**, **1a** and DABCO⁶H₂O (Figure S2). It is noteworthy that the tertiary amine played an important role in the reaction (Scheme S3). When the mixture of **4a** (0.1 mmol), **1a** (0.25 mmol) and DABCO⁶H₂O (0.1 mmol) was stirred at 25 °C for 48 h, product **3a** was obtained in 97% yield. However, no reaction occurred without DABCO⁶H₂O. Moreover, the reaction could be promoted by a catalytic loading of DABCO⁶H₂O and **3a** was generated in 94% yield.

Figure S2: ESI-HRMS spectrum of the reaction of 1a, 4a and DABCO'6H₂O in 1.0 mL of THF

after 2.5 h

Scheme S3: Examination of the role played by the tertiary amine

5. Experimental data for bispirooxindoles 3

General procedure: To a 5.0 mL vial were successively added methyleneindolinones 1 (0.42 mmol), N-tosyloxycarbamates 2 (0.12 mmol), DABCO'6H₂O (26.4 mg, 0.12 mmol) and 1.0 mL THF. The resulting mixture was stirred for 24-48 h at 30 $^{\circ}$ C till almost full consumption of 2 by TLC analysis, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products

3.

Product **3a** was obtained in 92% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.83 (d, J = 5.4 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.55 (s, 1H), 7.31-7.10 (m, 9H), 6.68 (s, 1H), 5.48 (d, J = 5.8 Hz, 1H), 5.10-4.86

(m, 2H), 4.25 (d, J = 8.0 Hz, 1H), 3.75 (d, J = 104.4 Hz, 3H), 3.41 (s, 3H), 1.44 (s, 9H), 1.38 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 170.5, 167.4, 152.6, 148.2, 139.1, 129.9, 128.3, 126.7, 126.2, 124.3, 123.9, 122.3, 114.5, 84.4, 83.7, 68.3, 62.0, 52.8, 52.4, 28.0, 27.7. IR (KBr) v 3435.9, 2980.9, 2954.3, 2918.6, 1805.7, 1779.4, 1731.5, 1608.1, 1481.0, 1468.8, 1346.4, 1294.3, 1250.6, 1153.6, 1097.8, 761.1 cm⁻¹. HRMS (ESI) Calcd. for C40H41N3NaO12 [M+Na]⁺: 778.2582, Found: 778.2553.

(s, 7H); ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 170.2, 167.4, 151.6, 148.4, 148.2, 139.0, 138.1, 129.7, 129.6, 129.4, 126.6, 126.2, 124.2, 123.8, 122.8, 114.5, 114.3, 114.0, 84.2, 83.7, 82.5, 61.6, 52.9, 52.3, 52.2, 52.1, 51.8, 28.0, 27.9, 27.8. IR (KBr) *v* 3434.6, 2978.1, 2917.9, 1779.2, 1752.9, 1731.0, 1714.8, 1370.1, 1349.7, 1294.0, 1249.2, 1152.4, 1099.3, 765.8. HRMS (ESI) Calcd. for C37H43N3NaO12 [M+Na]⁺: 744.2739, Found: 744.2719.

Product **3c** was obtained in 91% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.94 (s, 1H), 7.68 (dd, J_1 = 8.0 Hz, J_2 = 7.4 Hz, 2H), 7.41-7.00 (m, 9H), 6.67 (s, 1H), 5.39 (d, J= 9.0 Hz, 1H), 5.07-4.80 (m, 2H), 4.38 (brs, 1H), 4.29 (d, J= 9.0 Hz, 1H), 4.10 (brs, 1H), 3.96-3.85 (m,

1H), 3.82-3.76 (m,1H), 1.46-1.12 (m, 21H), 0.74 (t, *J*= 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 169.8, 166.6, 152.4, 148.3, 148.2, 139.1, 137.9, 135.1, 130.1, 129.7, 128.2, 127.2, 126.8, 126.3, 124.2, 123.8, 122.8, 114.4, 84.2, 83.6, 68.1, 62.0, 61.5, 52.5, 51.7, 28.0, 27.9, 13.9, 13.2. IR (KBr) *v* 3439.2, 2981.5, 2920.0, 1779.4, 1732.1, 1720.9, 1346.6, 1293.6, 1249.4, 1153.4, 765.0, 752.9. HRMS (ESI) Calcd. for C42H45N3NaO12 [M+Na]⁺: 806.2895, Found: 806.2897.

Product **3d** was obtained in 98% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 8.03 (d, *J*= 6.2 Hz, 1H), 7.73 (dd, *J*₁= 8.0 Hz, *J*₂= 7.4 Hz, 2H), 7.38-7.13 (m, 5H), 5.31 (d, *J*= 9.3 Hz, 1H), 4.42-4.35 (m, 2H), 4.29 (d, *J*= 6.2 Hz, 1H), 3.94-3.89 (m, 1H), 3.80-3.74 (m, 1H), 1.44 (s, 9H),

1.39 (s, 15H), 1.03 (s, 6H), 0.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 169.8, 166.6, 151.5, 148.4, 148.4, 139.0, 138.0, 129.6, 129.5, 126.8, 126.5, 124.1, 123.8, 123.2, 114.3, 114.0, 84.1, 83.6, 82.4, 61.9, 61.6, 61.4, 53.3, 52.0, 28.0, 27.7, 27.5, 14.0, 13.2. IR (KBr) *v* 3441.4, 2981.1, 2933.1, 1781.7, 1735.3, 1713.4, 1369.1, 1349.3, 1294.4, 1249.4, 754.5. HRMS (ESI) Calcd. for C39H47N3NaO12 [M+Na]⁺: 872.3052, Found: 772.3039.

Product **3e** was obtained in 80% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 8.04 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.82-.63 (m, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.33-7.05 (m, 8H), 6.67 (d, J = 6.7 Hz, 1H), 5.20 (d, J = 7.9 Hz, 1H), 5.18-4.23 (m, 2H), 4.21 (d, J = 9.6 Hz, 1H), 1.54-1.25 (m,

27H), 0.96 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 169.6, 169.3, 165.1, 152.3, 148.6, 138.9, 138.1, 129.7, 129.6, 128.4, 128.1, 127.6, 127.1, 126.7, 126.5, 126.2, 124.1, 123.8, 123.5, 114.6, 114.3, 84.0, 83.4, 82.7, 68.2, 67.8, 62.5, 62.4, 61.6, 53.7, 52.6, 27.9, 27.7, 27.0, 26.7. IR (KBr) *ν* 3438.2, 2980.1, 2930.2, 1781.2, 1732.6, 1719.7, 1369.1, 1352.4, 1295.4, 1250.1, 1153.8, 1099.0, 844.2, 751.9. HRMS (ESI) Calcd. for C46H53N3NaO12 [M+Na]⁺: 862.3521, Found: 862.3498.

Product **3f** was obtained in 74% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 8.04 (dd, J_1 = 7.3 Hz, J_2 = 6.9 Hz, 1H), 7.80-1.68 (m, 2H), 7.42 (t, J= 7.6 Hz, 1H), 7.33-7.14 (m, 4H), 5.12 (t, J= 13.6 Hz, 1H), 4.17 (dd, J_1 = 10.2 Hz, J_2 = 9.8 Hz, 1H), 1.56 (s, 9H), 1.38 (t, J= 10.7 Hz, 21H),

1.04 (s, 6H), 0.96 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 169.7, 169.4, 165.2, 151.4, 148.6, 138.9, 137.7, 129.5, 129.4, 127.1, 126.8, 126.2, 125.9, 123.9, 123.8, 114.7, 114.1, 113.9, 84.0, 83.6, 82.6, 82.5, 62.3, 62.1, 61.7, 53.4, 52.9, 28.2, 27.9, 27.7, 27.5, 27.1. IR (KBr) *v* 3439.7, 2979.3, 2929.9, 1780.3, 1735.1, 1715.3, 1480.1, 1369.6, 1351.5, 1295.3, 1250.5, 1154.0, 1099.1, 844.7, 751.7. HRMS (ESI) Calcd. for C43H55N3NaO12 [M+Na]⁺: 828.3678, Found: 828.3660.

Product **3g** was obtained in 94% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.86 (d, *J*= 6.4 Hz, 1H), 7.68 (dd, *J*₁= 8.2 Hz, *J*₂= 26.2 Hz, 2H), 7.43-7.10 (m, 9H), 6.68 (d, *J*= 6.3 Hz, 1H), 5.49 (d, *J*= 6.7 Hz, 1H), 5.09-4.83 (m, 2H), 4.35-4.13 (m, 5H), 3.95-3.61 (m, 3H), 3.43 (s,

3H), 1.36-1.21 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 167.3, 152.7, 149.8, 138.9, 130.2, 128.2, 127.7, 127.0, 126.5, 124.6, 124.1, 121.7, 114.7, 68.4, 63.5, 63.0, 61.7, 58.4, 52.9, 52.5, 18.4, 14.1. IR (KBr) *ν* 3440.5, 2955.3, 2922.8, 2851.2, 1778.6, 1737.7, 1371.3, 1342.7, 1289.2, 1236.6, 1174.4, 756.4, 699.0. HRMS (ESI) Calcd. for C36H33N3NaO12 [M+Na]⁺: 722.1956, Found: 722.1935.

Product **3h** was obtained in 98% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.96 (s, 1H), 7.73 (dd, J_1 = 8.1 Hz, J_2 = 8.0 Hz, 2H), 7.33-7.14 (m, 5H), 5.36 (d, J= 8.6 Hz, 1H), 4.33-4.21 (m, 5H), 3.91 (s, 3H), 3.37 (s, 3H), 1.29-1.20 (m, 9H), 1.01 (s, 6H); ¹³C NMR (75 MHz,

CDCl₃) δ 171.4, 170.1, 167.2, 151.5, 150.0, 149.9, 138.6, 137.9, 130.0, 129.9, 126.8, 126.5, 125.8, 124.5, 124.1, 122.2, 115.1, 114.6, 114.3, 82.7, 63.4, 63.3, 63.0, 61.3, 58.3, 52.9, 52.4, 52.3, 27.4, 18.3, 14.0. IR (KBr) *ν* 3445.9, 2979.3, 2924.1, 1805.9, 1781.6, 1737.4, 1708.9, 1370.5, 1345.4, 1291.4, 1237.8, 1170.9, 767.3. HRMS (ESI) Calcd. for C33H35N3NaO12 [M+Na]⁺: 688.2113, Found: 688.2093.

Product **3i** was obtained in 93% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.84 (s, 1H), 7.68 (d, *J*= 8.1 Hz, 1H), 7.36-6.98 (m, 20 H), 6.69-6.63 (m, 1H), 5.50 (d, *J*= 9.1 Hz, 1H), 5.53-4.79 (m, 6H), 4.26 (d, *J*= 7.8 Hz, 1H), 3.98-3.59 (m, 3H), 3.40 (s, 3H); ¹³C NMR (75 MHz,

CDCl₃) δ 171.1, 167.2, 152.6, 149.7, 138.6, 134.8, 134.7, 130.3, 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 127.8, 127.7, 126.9, 126.4, 124.7, 124.2, 121.6, 114.7, 68.5, 68.4, 68.2, 68.1, 61.8, 52.9, 52.7, 52.6, 52.5. IR (KBr) *v* 3436.8, 3033.6, 2954.2, 1779.1, 1741.0, 1382.0, 1343.6, 1289.2, 1225.6, 1171.4, 754.4, 697.8 cm⁻¹. HRMS (ESI) Calcd. for C46H37N3NaO12 [M+Na]⁺: 846.2269, Found: 846.2256.

Product **3j** was obtained in 97% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.96 (s, 1H), 7.69 (t, *J*= 8.9 Hz, 2H), 7.35-7.07 (m, 15H), 5.39 (d, *J*= 8.6 Hz, 1H), 5.28 (t, *J*= 5.6 Hz, 2H), 5.20 (t, *J*= 7.2 Hz, 2H),

4.29 (d, J= 8.6 Hz, 1H), 3.92 (s, 3H), 3.34 (s, 3H), 1.29 (s, 2H), 0.98 (s,

7H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 170.1, 167.2, 151.5, 149.9, 149.7 138.4, 137.7, 134.8, 134.7, 130.1, 129.9, 128.5, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 126.9, 126.5, 124.5, 124.2, 122.2, 114.6, 114.3, 82.7, 68.4, 68.1, 61.4, 58.3, 53.4, 52.9, 52.6, 52.5, 52.4, 27.8 (d, *J*= 50.4 Hz, 1C). IR (KBr) *v* 3447.9, 2954.7, 2926.0, 1780.4, 1741.1, 1713.2, 1482.2, 1466.8, 1379.5, 1345.5, 1290.0, 1224.7, 1169.5, 1150.3, 1099.7, 754.3.697.0. HRMS (ESI) Calcd. for C43H39N3NaO12 [M+Na]⁺: 812.2426, Found: 812.2424.

Product 3k was obtained in 93% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 8.03 (d, J= 7.4 Hz, 1H), 7.83-7.70 (m, 5H), 7.52 (d, J= COOCH 8.1 Hz, 1H), 7.36 (t, J= 7.7 Hz, 1H), 7.24-7.08 (m, 8H), 5.09 (d, J= 10.1 Hz, 1H), 4.13 (d, J= 10.2 Hz, 1H), 3.84 (s, 3H), 2.85 (d, J= 95.8 Hz, 3H), 2.46 (s, 3H), 2.38 (s, 3H), 1.23 (s, 3H), 0.95 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) & 171.6, 169.2, 169.1, 166.3, 145.7, 145.5, 137.7, 137.6, 134.5, 130.4, 129.9, 129.6, 129.3, 128.3, 128.2, 127.3, 127.1, 124.3, 124.1, 113.1, 112.8, 83.4, 72.4, 60.5, 53.2, 53.1, 51.8, 27.8, 22.7, 21.7. IR (KBr) v 3446.6, 2956.3, 2924.0, 1764.3, 1712.9, 1603.2, 1464.1, 1377.9, 1235.8, 1191.0, 1088.6, 812.7, 753.4, 688.9, 660.4 cm⁻¹. HRMS (ESI) Calcd. for C41H39N3NaO12S2 [M+Na]⁺: 852.1867, Found: 852.1829.

Product **31** was obtained in 96% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.73 (s, 2H), 7.50 (dd, J_1 = 2.6 Hz, J_2 = 8.0 Hz, 1H), 7.33 (t, J= 4.8 Hz, 2H), 7.21-6.95 (m, 5H), 6.76 (s, 1H), 5.48 (d, J=

7.3 Hz, 1H), 5.17-4.81 (m, 2H), 4.12 (d, J= 6.7 Hz, 1H), 3.79 (d, J= 96.2 Hz, 3H), 3.54 (s, 3H), 1.25 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 170.7, 168.9, 167.3, 159.6 (d, J= 242.8 Hz, 1C), 159.0 (d, J= 242.7 Hz, 1C), 152.6, 148.1 (d, J= 11.6 Hz, 1C), 135.4, 134.6, 128.5, 128.4, 128.3, 128.0, 127.8, 123.0 (d, J= 8.3 Hz, 1C), 117.2, 117.0, 116.7, 116.4, 115.9, 115.8, 114.6 (d, J= 25.8 Hz, 1C), 113.8 (d, J= 25.8 Hz, 1C), 85.0, 84.3, 68.5, 52.9, 27.7. IR (KBr) v 3442.2, 2957.1, 2924.1, 2852.9, 1777.6, 1736.0, 1486.0, 1345.7, 1300.3, 1266.6, 1151.6, 1102.8, 820.6, 765.7, 698.3 cm⁻¹. HRMS (ESI) Calcd. for C40H39F2N3NaO12 [M+Na]⁺: 814.2394, Found: 814.2389.

Product **3m** was obtained in 98% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.77-7.61 (m, 3H), 6.99 (q, J= 8.3 Hz, 3H), 5.37 (d, J= 6.5 Hz, 1H), 4.15 (d, J= 7.7 Hz, 1H), 3.92 (s, 3H), 3.48 (s, 3H), 1.46 (s, 9H), 1.43 (s, 9H), 1.24 (s, 9H); ¹³C NMR (75 MHz,

CDCl₃) δ 171.3, 170.3, 167.3, 159.6 (d, J= 242.6 Hz, 1C), 159.0 (d, J= 242.7 Hz, 1C), 151.5, 148.2, 148.1, 135.2 (d, J= 2.4 Hz, 1C), 134.3 (d, J= 2.4 Hz, 1C), 116.8, 116.5, 116.2, 115.7 (d, J= 7.8 Hz, 1C), 115.4, 114.7, 114.3, 114.0, 113.7, 84.8, 84.4, 83.0, 61.7, 58.3, 53.0, 52.8, 51.6, 27.7. IR (KBr) v 3441.1, 2981.2, 2923.9, 2851.5, 1777.4, 1737.6, 1486.1, 1371.0, 1347.7, 1300.4, 1269.0, 1251.0, 1152.9, 821.9 cm⁻¹. HRMS (ESI) Calcd. for C37H41F2N3NaO12 [M+Na]⁺: 780.2551, Found: 780.2562.

Product **3n** was obtained in 92% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.74-7.70 (m, 3H), 7.35-7.13 (m, 7H), 6.77 (d, J= 7.0 Hz, 1H), 5.46 (d, J= 7.4 Hz, 1H), 5.15-4.82 (m,2H), 4.14 (d, 3n J= 6.9 Hz, 1H), 3.95-3.61 (m, 3H), 3.53 (s, 3H), 1.48 (s, 9H), 1.43 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 170.3, 167.2, 152.6, 147.9, 137.8, 137.1, 130.6, 130.3, 130.2, 130.0, 129.5, 128.5, 128.4, 128.3, 127.8, 127.0, 126.3, 125.4, 123.1, 115.9, 115.8, 85.1, 84.9, 84.5, 68.6, 68.4, 52.9, 52.8, 27.8. IR (KBr) v 3440.7, 2982.2, 2924.1, 2851.8, 1780.8, 1756.2, 1730.4, 1476.1, 1336.9, 1295.3, 1250.1, 1155.2, 1111.5, 823.1, 700.2 cm⁻¹. HRMS (ESI) Calcd. for C40H39Cl2N3NaO12 [M+Na]⁺: 846.1803, Found: 846.1804.

Product **30** was obtained in 97% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.82 (s, 1H), 7.70 (d, J= 8.9 Hz, 1H), 7.66-7.64 (m, 1H), 7.29-7.22 (m, 3H), 5.37 (t, J= 2.6 Hz, 1H), 4.15 (d, J= 7.7 Hz, 1H), 3.92 (s, 3H), 3.48 (s, 3H), 1.47 (s, 9H), 1.44 (s,

9H), 1.24 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 170.1,167.2, 151.6, 148.2, 148.0, 137.8, 136.9, 130.5, 130.0, 129.9, 129.8, 129.5, 126.3, 125.5, 123.6, 115.7, 85.0, 84.8, 83.0, 61.7, 59.8, 58.4, 53.0, 52.8, 52.6, 51.8, 48.9, 27.8. IR (KBr) v 3440.2, 2982.0, 2927.7, 2852.6, 1784.8, 1741.3, 1728.1, 1710.9, 1476.6, 1370.9, 1338.3, 1298.4, 1249.3, 1152.3, 1108.6, 821.2, 766.3 cm⁻¹. HRMS (ESI) Calcd. for C37H41Cl2N3NaO12 [M+Na]⁺: 812.1960, Found: 812.1949.

Product **3p** was obtained in 98% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.87 (d, J= 2.1 Hz, 1H), 7.68-7.62 (m, 2H), 7.47-7.33 (m, 6H), 7.22-7.16 (m, 1H), 6.74 (s, 1H), 5.45 (d, J= 6.0 Hz, 1H), 5.15-4.83 (m, 2H), 4.14 (d, J= 7.0 Hz, 1H), 3.95-3.61 (m,

3H), 3.52 (s, 3H), 1.49 (s, 9H), 1.44 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 170.7, 167.1, 152.5, 147.9, 138.4, 137.6, 133.5, 133.1, 133.0, 129.8, 129.1, 128.5, 128.4, 128.2, 128.0, 127.8, 126.8, 126.7, 123.5, 117.5, 116.9, 116.2, 116.1, 85.2, 84.6, 68.6, 61.8, 52.9, 52.6, 27.7. IR (KBr) v 3442.4, 2924.1, 1852.5, 1781.7, 1756.6, 1724.7, 1472.2, 1335.5, 1249.9, 1155.2, 1112.8, 1020.0, 821.7, 701.4 cm⁻¹. HRMS (ESI) Calcd. for C40H39Br2N3NaO12 [M+Na]⁺: 934.0793, Found: 934.0793.

Product **3q** was obtained in 98% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ7.94 (s, 1H), 7.67-7.58 (m, 2H), 7.43-7.39 (m, 2H), 7.35 (s., 1H), 5.36 (d, *J*= 4.4 Hz, 1H), 4.15 (d, *J*= 7.7 Hz, 1H), 3.93 (s, 3H), 3.48 (s, 3H), 1.47 (s, 9H), 1.44 (s, 9H), 1.24 (s, 9H);

¹³C NMR (75 MHz, CDCl₃) δ 171.1, 169.9, 169.1, 167.2, 151.6, 148.1, 148.0, 138.2, 137.4, 133.0, 132.7, 129.7, 129.2, 128.3, 127.4, 126.7, 117.4, 117.0, 116.4, 85.1, 84.6, 83.1, 61.7, 53.0, 52.6, 51.9, 27.8. IR (KBr) *v* 3441.3, 2981.8, 2924.3, 2852.0, 1784.1, 1731.7, 1474.7, 1369.8, 1338.7, 1298.7, 1250.1, 1151.3, 1109.0, 835.9 cm⁻¹. HRMS (ESI) Calcd. for C37H41Br2N3NaO12 [M+Na]⁺: 900.0949, Found: 900.0926.

Product **3r** was obtained in 86% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ7.58 (d, *J*= 8.6 Hz, 2H), 7.33 (s, 3H), 7.07 (d, *J*= 7.7 Hz, 4H), 6.66 (s, 1H), 5.47 (s, 1H), 5.08-4.77 (m, 2H), 4.23 (d, *J*= 8.1 Hz, 1H), 3.75 (d, *J*= 109.7 Hz, 3H), 3.42 (s, 3H),

2.37 (s, 3H), 2.33 (s, 3H), 1.44 (s, 9H), 1.39 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 170.7, 170.2, 167.5, 152.7, 148.2, 136.7, 136.0, 135.2, 133.8, 133.5, 130.3, 128.2, 127.3, 126.7, 125.0, 122.1, 114.3, 114.2, 84.1, 83.5, 68.2, 61.8, 58.4, 52.7, 52.4, 51.5, 27.7, 21.3, 21.1. IR (KBr) v 3439.6, 2923.5, 1777.4, 1754.4, 1728.7, 1719.2, 1492.3, 1341.7, 1159.7, 1114.8, 996.6, 765.3, 700.6 cm⁻¹. HRMS (ESI) Calcd. for C42H45N3NaO12 [M+Na]⁺: 806.2895, Found: 806.2894.

Product **3s** was obtained in 82% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ7.66-7.49 (m, 3H), 7.06 (d, *J*= 7.3 Hz, 3H), 5.37 (d, *J*= 8.6 Hz, 1H), 4.23 (d, *J*= 8.6 Hz, 1H), 3.91 (s, 3H), 3.38 (s, 3H), 2.37 (s, 3H), 2.33 (s, 3H), 1.43 (s, 9H), 1.40 (s, 9H), 1.02 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 170.7, 170.4,

167.6, 151.8, 148.4, 48.2, 136.6, 135.8, 133.7, 133.4, 130.2, 130.0, 127.2, 126.7, 125.9, 122.4, 114.1, 113.8, 84.0, 83.5, 82.4, 61.7, 58.3, 52.8, 52.3, 51.8, 27.7, 21.2, 21.1. IR (KBr) v 3447.4,

2980.1, 2928.5, 2854.1, 1778.9, 1734.6, 1716.8, 1491.7, 1370.1, 1341.4, 1249.7, 1157.0, 819.9 cm⁻¹. HRMS (ESI) Calcd. for C39H47N3NaO12 [M+Na]⁺: 772.3052, Found: 772.3031.

6. Experimental data for spirocyclic aziridines 4

General procedure: To a 5.0 mL vial were successively added methyleneindolinones 1 (0.15 mmol), N-tosyloxycarbamates 2 (0.375 mmol), DABCO'6H₂O (33.0 mg, 0.15 mmol) and 1.0 mL THF. The reaction was kept at 50 °C till almost full consumption of 1 by TLC analysis (5-60 min), and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products 4.

1-benzyl 1'-tert-butyl 3-methyl 2'-oxospiro[aziridine -2,3'-indoline] -1,1',3-tricarboxylate(4a) $H_{3}CO_{2}C_{N-Cbz}$ Product **4a** was obtained in 72% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.94 (d, J = 8.3 Hz, 1H), 7.43-7.34 (m, 7H), 7.17 (t, J = 7.5 Hz, 1H), 5.19 (q, J = 12.0 Hz, 2H), 3.91 (s, 1H), 3.75 (s, 3H), 1.64 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 164.7, 157.9, 148.4, 141.4, 134.7, 130.7, 128.7, 128.5,

128.4, 124.9, 123.8, 119.6, 115.4, 85.2, 69.3, 52.8, 49.4, 49.1, 28.0. IR (KBr) v 3435.5, 2924.0, 2851.4, 1775.3, 1741.4, 1324.9, 1293.6, 1252.1, 1216.6, 1169.9, 1099.5, 762.4, 730.7 cm⁻¹.

1,1'-di-tert-butyl 3-methyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4b)

 $H_3CO_2C_{N}$ Product 4b was obtained in 55% yield as a white solid. ¹H NMR (300 MHz,
CDCl₃), δ 7.93 (d, J = 8.0 Hz, 1H), 7.41 (t, J = 7.2 Hz, 2H), 7.17 (t, J = 7.8 Hz,
1H), 3.86 (s, 1H), 3.76 (s, 3H), 1.63 (s, 9H), 1.45 (s, 9H); ¹³C NMR (75 MHz,
CDCl₃) δ 167.4, 165.2, 156.4, 148.5, 141.3, 130.4, 124.8, 123.8, 120.1, 115.2,

85.0, 83.7, 52.8, 49.3, 49.1, 28.0, 27.8. HRMS (ESI) Calcd. for C21H26N2NaO7 [M+Na]⁺: 441.1632, Found: 441.1627.

1-benzyl 1'-tert-butyl 3-ethyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4c)

Product **4c** was obtained in 77% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.93 (d, J = 8.1 Hz, 1H), 7.43-7.31 (m, 7H), 7.16 (t, J = 7.8 Hz, 1H), Boc **4c 5**.18 (q, J = 12.0 Hz, 2H), 4.27-4.14 (m, 2H), 3.90 (s, 1H), 1.65 (s, 9H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.5, 164.2, 158.0, 148.4,

141.3, 134.7, 130.6, 128.7, 128.5, 128.4, 124.8, 123.9, 119.6, 115.4, 85.2, 69.3, 62.2, 49.5, 49.0, 28.0, 14.0. IR (KBr) *v* 3440.3, 2923.2, 2851.2, 1771.0, 1758.3, 1743.8, 1322.1, 1246.1, 1183.1, 1152.0, 1038.4, 779.2 cm⁻¹. HRMS (ESI) Calcd. for C25H26N2NaO7 [M+Na]⁺: 489.1632, Found: 489.1623.

1,1'-di-tert-butyl 3-ethyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4d)

Product 4d was obtained in 58% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.93 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 4.27-4.14 (m, 2H), 3.84 (s, 1H), 1.63 (s, 9H), 1.44 (s, 9H), 1.24 (t, J = 4.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.4, 164.7, 156.5, 148.5, 141.3, 130.4,

124.7, 123.9, 120.2, 115.2, 85.0, 83.6, 62.1, 49.4, 49.0, 28.0, 27.8, 14.0. IR (KBr) v 3456.5, 2981.7, 2932.4, 1771.6, 1738.4, 1468.7, 1369.9, 1325.8, 1252.9, 1189.5, 1151.4, 1100.6, 1025.2, 771.8 cm⁻¹. HRMS (ESI) Calcd. for C22H28N2NaO7 [M+Na]⁺: 455.1789, Found: 455.1783.

1-benzyl 1',3-di-tert-butyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4e)

MHz, CDCl₃) δ 167.7, 163.1, 158.2, 148.5, 141.2, 134.8, 130.5, 128.7, 128.4, 124.6, 123.9, 119.8, 115.3, 85.1, 83.6, 69.2, 50.1, 48.7, 28.0, 27.9. IR (KBr) *v* 3438.7, 2982.8, 2922.8, 1795.8, 1766.1, 1742.8, 1326.0, 1254.5, 1150.5, 838.1, 806.7, 774.9 cm⁻¹. HRMS (ESI) Calcd. for C27H30N2NaO7 [M+Na]⁺: 517.1945, Found: 517.1934.

tri-tert-butyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4f)

t-BuO2CProduct 4f was obtained in 59% yield as a white solid. ¹H NMR (300 MHz,
CDCl3), δ 7.92 (d, J = 8.2 Hz, 1H), 7.44-7.37 (m, 2H), 7.15 (t, J = 7.6 Hz, 1H),
3.76 (s, 1H), 1.63 (s, 9H), 1.44 (s, 9H), 1.40 (s, 9H); ¹³C NMR (75 MHz, CDCl3)
 δ 167.6, 163.6, 156.7, 148.6, 141.2, 130.3, 124.6, 123.9, 120.3, 115.1, 84.9, 83.4,

83.3, 50.0, 48.8, 28.0, 27.9, 27.8. IR (KBr) v 3440.1, 2980.9, 2930.7, 1798.2, 1774.5, 1740.1, 1370.6, 1326.1, 1292.5, 1254.0, 1149.0, 841.7, 808.3, 756.4 cm⁻¹. HRMS (ESI) Calcd. for C24H32N2NaO7 [M+Na]⁺: 483.2102, Found: 483.2090.

1-benzyl 1'-ethyl 3-methyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4g)

164.6, 157.7, 150.1, 141.0, 134.7, 130.8, 128.7, 128.5, 128.4, 125.2, 124.0, 119.7, 115.5, 69.4, 63.9, 52.9, 49.5, 49.0, 14.2. IR (KBr) *v* 3436.7, 2959.9, 2921.1, 2850.8, 1799.0, 1776.6, 1748.7, 1741.0, 1251.1, 1184.0, 1171.9, 1098.9, 1026.9, 799.3, 760.0 cm⁻¹. HRMS (ESI) Calcd. for C22H20N2NaO7 [M+Na]⁺: 447.1163, Found: 447.1163.

1,1'-dibenzyl 3-methyl 2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4h)

Product **4h** was obtained in 72% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.53-7.30 (m, 12 H), 7.19 (t, *J* = 7.6 Hz, 1H), 5.46 (q, *J* = 12.3 Hz, 2H), 5.19 (q, *J* = 12.0 Hz, 2H), 3.93 (s, 1H), 3.75 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 164.6, 157.7, 150.0, 140.9, 134.6, 134.5,

130.8, 128.7, 128.6, 128.5, 128.4, 128.2, 125.3, 124.0, 119.7, 115.6, 69.4, 69.1, 52.9, 49.5, 49.0. IR (KBr) *v* 3439.8, 2961.0, 2921.4, 2850.8, 1798.6, 1774.1, 1744.7, 1260.7, 1223.6, 1099.7, 1028.7, 803.0, 760.6, 698.8 cm⁻¹. HRMS (ESI) Calcd. for C27H22N2NaO7 [M+Na]⁺: 509.1319, Found: 509.1316.

1-benzyl 1'-tert-butyl 3-methyl 5'-fluoro-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4i)

Product **4i** was obtained in 81% yield as a white solid. ¹H NMR (300 MHz,
CDCl₃),
$$\delta$$
 7.93 (dd, $J_1 = J_2 = 4.4$ Hz, 1H), 7.34 (s, 5H), 7.18 (dd, $J_1 = 2.7$ Hz, J_2
Boc
4i
5 = 2.6 Hz, 1H), 7.14-7.07 (m, 1H), 5.19 (t, $J = 12.5$ Hz, 2H), 3.91 (s, 1H), 3.78
(s, 3H), 1.64 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 163.0 (d, $J = 229.4$

Hz, 1C), 158.2, 157.6, 148.3, 137.3, 134.6, 128.7, 128.6, 128.5, 121.5 (d, *J* = 9.3 Hz, 1C), 117.3 (d, *J* = 23.0 Hz, 1C), 116.9 (d, *J* = 7.8 Hz, 1C), 111.7 (d, *J* = 26.2 Hz, 1C), 85.4, 69.5, 53.0, 49.5, 48.8, 28.0. IR (KBr) *v* 3438.2, 2954.3, 2923.7, 2850.9, 1777.7, 1740.9, 1484.7, 1283.2, 1256.4, 1169.4, 803.2, 730.3 cm⁻¹. HRMS (ESI) Calcd. for C24H23FN2NaO7 [M+Na]⁺: 493.1382, Found: 493.1387.

1,1'-di-tert-butyl 3-methyl 5'-fluoro-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarb-

oxylate (4j)

^{H₃CO₂C, Product **4j** was obtained in 91% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.91 (dd, $J_1 = J_2 = 4.4$ Hz, 1H), 7.18 (dd, $J_1 = J_2 = 2.7$ Hz, 1H), ^{Boc} **4j** 7.13-7.07 (m, 1H), 3.86 (s, 1H), 3.78 (s, 3H), 1.62 (s, 9H), 1.45 (s, 9H); ¹³C}

NMR (75 MHz, CDCl₃) δ 167.1, 163.2 (d, J = 265.1 Hz, 1C), 158.2, 156.0, 148.1, 137.3 (d, J = 2.6 Hz, 1C), 122.0 (d, J = 9.1 Hz, 1C), 117.1 (d, J = 23.0 Hz, 1C), 116.7 (d, J = 7.8 Hz, 1C), 111.7 (d, J = 26.1 Hz, 1C), 85.2, 83.9, 52.9, 49.4, 48.9, 28.0, 27.8. IR (KBr) v 3431.4, 2989.1, 2981.0, 2924.1, 1774.3, 1759.9, 1748.2, 1739.9, 1481.7, 1369.9, 1329.3, 1299.1, 1272.1, 1209.7, 1150.4, 841.1, 806.9 cm⁻¹. HRMS (ESI) Calcd. for C21H25FN2NaO7 [M+Na]⁺: 459.1538, Found: 459.1525.

1-benzyl 1'-tert-butyl 3-methyl 5'-chloro-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4k)

166.9, 164.5, 157.5, 148.2, 139.8, 134.6, 130.7, 130.6, 128.7, 128.6, 128.5, 124.3, 121.4, 116.7, 85.6, 69.5, 53.0, 49.5, 48.6, 27.9. IR (KBr) *v* 3438.3, 2981.3, 1926.6, 1778.9, 1744.6, 1457.1, 1328.0, 1297.7, 1255.3, 1178.1, 1153.1, 829.0, 696.5 cm⁻¹. HRMS (ESI) Calcd. for

C24H23ClN2NaO7 [M+Na]⁺: 509.1086, Found: 509.1078.

1,1'-di-tert-butyl 3-methyl 5'-chloro-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4l)

Product **41** was obtained in 79% yield as a white solid. ¹H NMR (300 MHz, Cl = 0 Ml = 0Ml = 0

1-benzyl 1'-tert-butyl 3-methyl 5'-bromo-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4m)

Product **4m** was obtained in 65% yield as a white solid. ¹H NMR (300 MHz, Br = 0 M = 0M =

CDCl₃) δ 166.7, 164.5, 157.5, 148.2, 140.4, 134.6, 133.6, 128.7, 128.6, 128.5, 127.1, 121.7, 118.0, 117.1, 85.6, 69.5, 53.0, 49.5, 48.5, 28.0. IR (KBr) *v* 3438.3, 2982.0, 2927.3, 1764.2, 1753.1, 1730.1, 1263.5, 1173.9, 1151.0, 833.5, 800.5, 755.7, 701.8 cm⁻¹. HRMS (ESI) Calcd. for C24H23BrN2NaO7 [M+Na]⁺: 553.0581, Found: 553.0575.

1,1'-di-tert-butyl 3-methyl 5'-bromo-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4n)

156.0, 148.3, 140.3, 133.4, 127.1, 122.2, 118.0, 116.8, 85.4, 84.0, 52.9, 49.5, 48.6, 28.0, 27.4. IR (KBr) v 3434.1, 2922.7, 2851.2, 1776.1, 1761.9, 1749.9, 1736.9, 1326.3, 1259.6, 1150.1, 826.5, 807.4 cm⁻¹. HRMS (ESI) Calcd. for C21H25BrN2NaO7 [M+Na]⁺: 519.0737, Found: 519.0731. **1-benzyl 1'-tert-butyl 3-methyl 5'-methyl-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarb-**

oxylate (40)

827.5, 800.6, 753.7, 700.5 cm . HRMS (ESI) Calcd. for C25H26N2NaO7 [M+Na] : 489.1632 Found: 489.1630.

1-benzyl 1'-tert-butyl 3-methyl 7'-chloro-2'-oxospiro[aziridine-2,3'-indoline]-1,1',3-tricarboxylate (4p)

Product **4p** was obtained in 65% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.40-7.31 (m, 7H), 7.10 (t, *J* = 7.8 Hz, 1H), 5.17 (q, *J* = 12.0 Hz, 2H), 3.92 (s, 1H), 3.77 (s, 3H), 1.63 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.7,

164.6, 157.7, 146.9, 138.2, 134.5, 132.3, 128.7, 128.6, 128.5, 125.6, 122.9, 122.8, 119.1, 86.3, 69.5, 52.9, 49.2, 49.0, 27.6. IR (KBr) *v* 3435.6, 2957.5, 2920.2, 1758.2, 1250.5, IR (KBr) *v* 3435.6, 2957.5, 2920.2, 1758.2, 1250.5, 1227.7, 1172.7, 1139.0, 807.7, 784.1, 755.4, 701.0 cm⁻¹. HRMS (ESI) Calcd. for C24H23ClN2NaO7 [M+Na]⁺: 509.1086, Found: 509.1091.

7. Experimental data for compounds 5 and 7

General procedure: To a 5.0 mL vial were successively added spiroaziridine oxindole **4b** (0.10 mmol), 5-Br-substituted methyleneindolinone **1i** or **N**-phenyl maleimide **6**, DABCO⁶H₂O (33.0 mg, 0.10 mmol) and 1.0 mL THF. The reaction was kept at 30 °C till almost full consumption of **4b** by TLC analysis (2 days), and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products **5** or **7**.

Product 5 was obtained in 93% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.83 (s, 1H), 7.65-7.60 (m, 2H), 7.43-7.37 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.23-7.16 (m, 1H), 5.37 (d, J = 8.0 Hz, 1H), 4.20 (d, J = 8.1 Hz, 1H), 3.92 (s, 3H), 3.48 (s, 3H), 1.45 (s, 9H), 1.43 (s,

9H), 1.24 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 170.0, 169.3, 167.3, 151.6, 148.4, 148.0, 138.3, 138.2, 133.3, 132.8, 129.8, 126.2, 125.4, 124.3, 116.8, 116.0, 114.6, 114.2, 84.7, 82.7, 61.6, 59.8, 52.9, 52.5, 51.7, 48.7, 28.1. IR (KBr) v 3445.3, 2980.4, 2954.8, 2926.6, 2852.9, 1779.7, 1736.4, 1713.7, 1477.4, 1370.3, 1346.2, 1297.5, 1250.8, 1152.0, 1105.0, 70.1 cm⁻¹. HRMS (ESI) Calcd. for C37H42BrN3NaO12 [M+Na]⁺: 822.1844, Found: 822.1848.

Product 7 was obtained in 95% yield as a white solid. ¹H NMR (300 MHz, CDCl₃), δ 7.89-7.84 (m, 2H), 7.47-7.29 (m, 6H), 7.04 (d, J = 7.0 Hz, 1H), 5.19 (dd, $J_1 = 9.7$ Hz, $J_2 = 44.6$ Hz, 1H), 4.16-4.00 (m, 1H), 3.89 (d, J = 11.1 Hz, 3H), 3.70 (d, J = 8.4 Hz, 1H), 1.62 (d, J = 16.5 Hz, 9H), 1.07 (d, J = 9.5 Hz, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1, 172.5,

172.0, 170.5, 148.6, 139.7, 130.3, 129.9, 129.1, 129.0, 128.9, 126.8, 125.9, 125.4, 124.6, 115.2, 84.9, 84.5, 62.3, 61.7, 53.0, 52.8, 48.0, 28.0. IR (KBr) v 3436.0, 2978.8, 2920.6, 2850.9, 1797.9, 1758.7, 1723.6, 1370.7, 1150.1, 754.5 cm⁻¹. HRMS (ESI) Calcd. for C31H33N3NaO9 [M+Na]⁺: 614.2109, Found: 614.2110.

Crystal data for 3a and 4a 8.

Table 1. Crystal data and structure refinement for compound 3a.

Identification code 3a Empirical formula C40H41N3O12

Formula weight	755.76
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 10.8958(12) A alpha = 90 deg.
	b = 17.3981(19) A beta = 91.143(2) deg.
	c = 19.868(2) A gamma = 90 deg.
Volume	3765.6(7) A^3
Z, Calculated density	4, 1.333 Mg/m^3
Absorption coefficient	0.099 mm^-1
F(000)	1592
Crystal size	0.44 x 0.35 x 0.35 mm
Theta range for data collection	1.56 to 30.10 deg.
Limiting indices	-15<=h<=13, -24<=k<=24, -28<=l<=26
Reflections collected / unique	e 38954 / 10572 [R(int) = 0.0365]
Completeness to theta $= 30.10$	95.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9661 and 0.9576
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	10572 / 0 / 504
Goodness-of-fit on F^2	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0449, $wR2 = 0.1174$
R indices (all data)	R1 = 0.0597, wR2 = 0.1276
Largest diff. peak and hole	0.454 and -0.310 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for compound **3a**.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	х	У	Z	U(eq)

O(1)	2217(1)	5932(1)	8564(1)	23(1)
O(2)	2284(1)	9436(1)	10126(1)	19(1)
C(39)	1416(1)	8719(1)	11372(1)	25(1)
C(38)	627(2)	8170(1)	11626(1)	31(1)
C(40)	1857(2)	4612(1)	8153(1)	35(1)
O(6)	3682(1)	5282(1)	9162(1)	28(1)
O(7)	2955(1)	7284(1)	8061(1)	19(1)
O(8)	3918(1)	8129(1)	10546(1)	18(1)
O(9)	1007(1)	6553(1)	10566(1)	23(1)
O(10)	2969(1)	6775(1)	10922(1)	21(1)
O(11)	3420(1)	10125(1)	8185(1)	22(1)
O(12)	5432(1)	10373(1)	8358(1)	26(1)
O(3)	5851(1)	7679(1)	7873(1)	23(1)
O(4)	6764(1)	8777(1)	8206(1)	27(1)
O(5)	3630(1)	10359(1)	9793(1)	20(1)
N(1)	3893(1)	6563(1)	8925(1)	17(1)
N(2)	3644(1)	9145(1)	9359(1)	16(1)
N(3)	2153(1)	7517(1)	10111(1)	15(1)
C(1)	257(2)	5647(1)	8134(1)	35(1)
C(2)	1311(1)	5287(1)	8531(1)	22(1)
C(3)	3270(1)	5851(1)	8895(1)	18(1)
C(4)	3566(1)	7239(1)	8566(1)	15(1)
C(5)	4183(1)	7913(1)	8946(1)	13(1)
C(6)	3192(1)	8361(1)	9380(1)	13(1)
C(7)	3224(1)	9710(1)	9772(1)	16(1)
C(8)	1822(1)	9893(1)	10683(1)	22(1)
C(9)	949(1)	9355(1)	11021(1)	20(1)
C(10)	-629(2)	8252(1)	11526(1)	36(1)
C(11)	928(1)	5086(1)	9238(1)	26(1)
C(12)	4910(1)	6721(1) 26	9372(1)	16(1)

C(13)	5149(1)	7511(1)	9372(1)	15(1)
C(14)	1872(1)	8252(1)	9158(1)	15(1)
C(15)	1209(1)	8612(1)	8647(1)	18(1)
C(16)	-33(1)	8438(1)	8566(1)	22(1)
C(17)	-587(1)	7915(1)	8995(1)	24(1)
C(18)	66(1)	7555(1)	9516(1)	21(1)
C(19)	1301(1)	7737(1)	9590(1)	15(1)
C(20)	3193(1)	8008(1)	10100(1)	14(1)
C(21)	1959(1)	6903(1)	10558(1)	17(1)
C(22)	3061(1)	6092(1)	11368(1)	21(1)
C(23)	4381(1)	6149(1)	11625(1)	29(1)
C(24)	2159(1)	6166(1)	11939(1)	22(1)
C(25)	2863(2)	5362(1)	10958(1)	29(1)
C(26)	4646(1)	9286(1)	8900(1)	14(1)
C(27)	4396(1)	9983(1)	8450(1)	16(1)
C(28)	5348(2)	11029(1)	7908(1)	37(1)
C(29)	4643(1)	8546(1)	8476(1)	14(1)
C(30)	5881(1)	8366(1)	8179(1)	17(1)
C(31)	6971(1)	7462(1)	7539(1)	32(1)
C(32)	-312(1)	9435(1)	10942(1)	26(1)
C(33)	-1101(1)	8880(1)	11196(1)	36(1)
C(34)	6115(1)	7811(1)	9751(1)	18(1)
C(35)	6846(1)	7307(1)	10132(1)	21(1)
C(36)	6584(1)	6526(1)	10136(1)	24(1)
C(37)	5611(1)	6216(1)	9758(1)	22(1)

Table 3. Bond lengths [A] and angles [deg] for compound **3a**.

O(1)-C(3)		1.3186(16)
O(1)-C(2)	27	1.4953(15)

O(2)-C(7)	1.3418(15)
O(2)-C(8)	1.4592(15)
C(39)-C(38)	1.388(2)
C(39)-C(9)	1.3978(19)
C(39)-H(39)	0.9500
C(38)-C(10)	1.386(2)
C(38)-H(38)	0.9500
C(40)-C(2)	1.522(2)
C(40)-H(40A)	0.9800
C(40)-H(40B)	0.9800
C(40)-H(40C)	0.9800
O(6)-C(3)	1.2056(16)
O(7)-C(4)	1.1963(15)
O(8)-C(20)	1.1937(15)
O(9)-C(21)	1.2039(16)
O(10)-C(21)	1.3237(15)
O(10)-C(22)	1.4849(15)
O(11)-C(27)	1.2023(16)
O(12)-C(27)	1.3331(15)
O(12)-C(28)	1.4515(16)
O(3)-C(30)	1.3415(15)
O(3)-C(31)	1.4498(16)
O(4)-C(30)	1.1996(16)
O(5)-C(7)	1.2123(15)
N(1)-C(3)	1.4130(15)
N(1)-C(4)	1.4173(15)
N(1)-C(12)	1.4320(16)
N(2)-C(7)	1.3654(15)
N(2)-C(6)	1.4514(14)
N(2)-C(26)	1.4582(15)

N(3)-C(21)	1.4069(15)
N(3)-C(20)	1.4196(15)
N(3)-C(19)	1.4299(16)
C(1)-C(2)	1.516(2)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(11)	1.5133(19)
C(4)-C(5)	1.5411(16)
C(5)-C(13)	1.5089(16)
C(5)-C(29)	1.5356(16)
C(5)-C(6)	1.5969(16)
C(6)-C(14)	1.5089(16)
C(6)-C(20)	1.5571(16)
C(8)-C(9)	1.5026(19)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(32)	1.3868(19)
C(10)-C(33)	1.370(3)
C(10)-H(10)	0.9500
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-C(37)	1.3859(18)
C(12)-C(13)	1.3990(16)
C(13)-C(34)	1.3835(17)
C(14)-C(15)	1.3841(17)
C(14)-C(19)	1.3948(16)
C(15)-C(16)	1.3930(18)
C(15)-H(15)	0.9500

C(16)-C(17)	1.3913(19)
C(16)-H(16)	0.9500
C(17)-C(18)	1.3948(19)
C(17)-H(17)	0.9500
C(18)-C(19)	1.3875(17)
C(18)-H(18)	0.9500
C(22)-C(23)	1.520(2)
C(22)-C(24)	1.5212(18)
C(22)-C(25)	1.5228(19)
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-C(27)	1.5276(16)
C(26)-C(29)	1.5377(16)
C(26)-H(26)	1.0000
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-C(30)	1.5162(17)
C(29)-H(29)	1.0000
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
C(32)-C(33)	1.394(2)

C(32)-H(32)	0.9500
C(33)-H(33)	0.9500
C(34)-C(35)	1.3972(18)
C(34)-H(34)	0.9500
C(35)-C(36)	1.3880(19)
C(35)-H(35)	0.9500
C(36)-C(37)	1.396(2)
C(36)-H(36)	0.9500
C(37)-H(37)	0.9500
C(3)-O(1)-C(2)	120.53(10)
C(7)-O(2)-C(8)	118.87(10)
C(38)-C(39)-C(9)	120.29(13)
C(38)-C(39)-H(39)	119.9
C(9)-C(39)-H(39)	119.9
C(10)-C(38)-C(39)	119.61(14)
C(10)-C(38)-H(38)	120.2
C(39)-C(38)-H(38)	120.2
C(2)-C(40)-H(40A)	109.5
C(2)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
C(2)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(21)-O(10)-C(22)	120.41(10)
C(27)-O(12)-C(28)	116.16(11)
C(30)-O(3)-C(31)	115.20(11)
C(3)-N(1)-C(4)	126.17(11)
C(3)-N(1)-C(12)	124.06(10)
C(4)-N(1)-C(12)	109.60(10)
C(7)-N(2)-C(6)	122.83(10)

C(7)-N(2)-C(26)	121.29(10)
C(6)-N(2)-C(26)	115.75(9)
C(21)-N(3)-C(20)	126.63(10)
C(21)-N(3)-C(19)	123.87(10)
C(20)-N(3)-C(19)	109.50(10)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-C(11)	109.14(11)
O(1)-C(2)-C(1)	101.82(11)
C(11)-C(2)-C(1)	110.94(13)
O(1)-C(2)-C(40)	109.68(11)
C(11)-C(2)-C(40)	113.39(12)
C(1)-C(2)-C(40)	111.23(13)
O(6)-C(3)-O(1)	128.30(12)
O(6)-C(3)-N(1)	121.79(12)
O(1)-C(3)-N(1)	109.87(10)
O(7)-C(4)-N(1)	127.29(11)
O(7)-C(4)-C(5)	126.31(11)
N(1)-C(4)-C(5)	106.39(10)
C(13)-C(5)-C(29)	116.15(10)
C(13)-C(5)-C(4)	102.41(9)
C(29)-C(5)-C(4)	113.07(9)
C(13)-C(5)-C(6)	113.27(9)
C(29)-C(5)-C(6)	102.15(9)
C(4)-C(5)-C(6)	110.06(9)
N(2)-C(6)-C(14)	115.60(10)
32	

N(2)-C(6)-C(20)	113.75(9)
C(14)-C(6)-C(20)	101.68(9)
N(2)-C(6)-C(5)	102.14(9)
C(14)-C(6)-C(5)	115.56(9)
C(20)-C(6)-C(5)	108.36(9)
O(5)-C(7)-O(2)	126.46(11)
O(5)-C(7)-N(2)	124.36(11)
O(2)-C(7)-N(2)	109.16(10)
O(2)-C(8)-C(9)	103.30(10)
O(2)-C(8)-H(8A)	111.1
C(9)-C(8)-H(8A)	111.1
O(2)-C(8)-H(8B)	111.1
C(9)-C(8)-H(8B)	111.1
H(8A)-C(8)-H(8B)	109.1
C(32)-C(9)-C(39)	119.11(13)
C(32)-C(9)-C(8)	121.44(13)
C(39)-C(9)-C(8)	119.19(12)
C(33)-C(10)-C(38)	120.70(15)
C(33)-C(10)-H(10)	119.6
C(38)-C(10)-H(10)	119.6
C(2)-C(11)-H(11A)	109.5
C(2)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(2)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(37)-C(12)-C(13)	121.44(12)
C(37)-C(12)-N(1)	129.21(11)
C(13)-C(12)-N(1)	109.34(10)
C(34)-C(13)-C(12)	120.68(11)

C(34)-C(13)-C(5)	130.19(11)
C(12)-C(13)-C(5)	109.06(10)
C(15)-C(14)-C(19)	120.63(11)
C(15)-C(14)-C(6)	129.68(11)
C(19)-C(14)-C(6)	109.55(10)
C(14)-C(15)-C(16)	118.52(12)
C(14)-C(15)-H(15)	120.7
C(16)-C(15)-H(15)	120.7
C(17)-C(16)-C(15)	120.28(12)
C(17)-C(16)-H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16)-C(17)-C(18)	121.82(12)
C(16)-C(17)-H(17)	119.1
C(18)-C(17)-H(17)	119.1
C(19)-C(18)-C(17)	117.06(12)
C(19)-C(18)-H(18)	121.5
C(17)-C(18)-H(18)	121.5
C(18)-C(19)-C(14)	121.68(11)
C(18)-C(19)-N(3)	128.97(11)
C(14)-C(19)-N(3)	109.12(10)
O(8)-C(20)-N(3)	127.65(11)
O(8)-C(20)-C(6)	126.92(11)
N(3)-C(20)-C(6)	105.44(9)
O(9)-C(21)-O(10)	127.96(12)
O(9)-C(21)-N(3)	122.22(12)
O(10)-C(21)-N(3)	109.78(10)
O(10)-C(22)-C(23)	101.57(10)
O(10)-C(22)-C(24)	109.93(10)
C(23)-C(22)-C(24)	111.39(11)
O(10)-C(22)-C(25)	109.95(10)
34	

C(23)-C(22)-C(25)	110.95(12)
C(24)-C(22)-C(25)	112.51(12)
C(22)-C(23)-H(23A)	109.5
C(22)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(22)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(22)-C(24)-H(24A)	109.5
C(22)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(22)-C(25)-H(25A)	109.5
C(22)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(22)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
N(2)-C(26)-C(27)	111.89(10)
N(2)-C(26)-C(29)	102.03(9)
C(27)-C(26)-C(29)	110.20(9)
N(2)-C(26)-H(26)	110.8
C(27)-C(26)-H(26)	110.8
C(29)-C(26)-H(26)	110.8
O(11)-C(27)-O(12)	125.44(12)
O(11)-C(27)-C(26)	124.41(11)
O(12)-C(27)-C(26)	109.99(10)
O(12)-C(28)-H(28A)	109.5

H(28A)-C(28)-H(28B) 109.5 O(12)-C(28)-H(28C) 109.5 H(28A)-C(28)-H(28C) 109.5 H(28B)-C(28)-H(28C) 109.5 C(30)-C(29)-C(5) 113.13(10) C(30)-C(29)-C(26) 105.35(9) C(30)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(32)-C(33)-	O(12)-C(28)-H(28B)	109.5
O(12)-C(28)-H(28C) 109.5 H(28A)-C(28)-H(28C) 109.5 H(28B)-C(28)-H(28C) 109.5 C(30)-C(29)-C(5) 113.13(10) C(30)-C(29)-C(26) 105.35(9) C(30)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.1 C(9)-C(32)-H(32) 119.8 C(10)-C(33)-H(31) 120.1 C(10)-C(33)-H(33) 120.1 C(10)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(32)-C(32)-H(32) 118.52(12) C(13)-C(34)-H(3	H(28A)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28C) 109.5 H(28B)-C(28)-H(28C) 109.5 C(30)-C(29)-C(26) 113.13(10) C(30)-C(29)-C(26) 105.35(9) C(30)-C(29)-C(26) 108.3 C(5)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) </td <td>O(12)-C(28)-H(28C)</td> <td>109.5</td>	O(12)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C) 109.5 C(30)-C(29)-C(26) 113.19(10) C(30)-C(29)-C(26) 105.35(9) C(5)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7	H(28A)-C(28)-H(28C)	109.5
C(30)-C(29)-C(5) 113.13(10) C(30)-C(29)-C(26) 113.19(10) C(5)-C(29)-C(26) 105.35(9) C(30)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(10)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	H(28B)-C(28)-H(28C)	109.5
C(30)-C(29)-C(26) 113.19(10) C(5)-C(29)-C(26) 105.35(9) C(30)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 103.1(10) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(30)-C(33)-H(32) 119.8 C(10)-C(33)-H(32) 119.8 C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(10)-C(33)-H(34) 120.7 C(31)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(30)-C(29)-C(5)	113.13(10)
C(5)-C(29)-C(26) 105.35(9) C(30)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 125.34(11) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(30)-C(33)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7	C(30)-C(29)-C(26)	113.19(10)
C(30)-C(29)-H(29) 108.3 C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 110.31(10) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(30)-C(33)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7	C(5)-C(29)-C(26)	105.35(9)
C(5)-C(29)-H(29) 108.3 C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 125.34(11) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(10)-C(33)-H(32) 119.8 C(10)-C(33)-H(32) 119.8 C(10)-C(33)-H(32) 120.1 C(10)-C(33)-H(33) 120.1 C(10)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(30)-C(29)-H(29)	108.3
C(26)-C(29)-H(29) 108.3 O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 125.34(11) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.8 C(10)-C(33)-H(32) 120.1 C(10)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(5)-C(29)-H(29)	108.3
O(4)-C(30)-O(3) 124.35(12) O(4)-C(30)-C(29) 125.34(11) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(33)-C(32)-H(32) 119.8 C(10)-C(33)-H(32) 119.8 C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34)-H(34) 120.17(12)	C(26)-C(29)-H(29)	108.3
O(4)-C(30)-C(29) 125.34(11) O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(10)-C(33)-H(32) 119.8 C(10)-C(33)-H(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	O(4)-C(30)-O(3)	124.35(12)
O(3)-C(30)-C(29) 110.31(10) O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(30)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	O(4)-C(30)-C(29)	125.34(11)
O(3)-C(31)-H(31A) 109.5 O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(33)-C(32)-H(32) 119.8 C(10)-C(33)-H(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	O(3)-C(30)-C(29)	110.31(10)
O(3)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(33)-C(32)-H(32) 119.8 C(10)-C(33)-H(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	O(3)-C(31)-H(31A)	109.5
H(31A)-C(31)-H(31B) 109.5 O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(30)-C(32)-H(32) 119.8 C(10)-C(33)-H(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	O(3)-C(31)-H(31B)	109.5
O(3)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(33)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	H(31A)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31C)109.5H(31B)-C(31)-H(31C)109.5C(9)-C(32)-C(33)120.35(14)C(9)-C(32)-H(32)119.8C(33)-C(32)-H(32)119.8C(10)-C(33)-C(32)119.90(15)C(10)-C(33)-H(33)120.1C(32)-C(33)-H(33)120.1C(13)-C(34)-C(35)118.52(12)C(13)-C(34)-H(34)120.7C(35)-C(34)-H(34)120.7C(36)-C(35)-C(34)120.17(12)3636	O(3)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C) 109.5 C(9)-C(32)-C(33) 120.35(14) C(9)-C(32)-H(32) 119.8 C(33)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	H(31A)-C(31)-H(31C)	109.5
$\begin{array}{ccc} C(9)-C(32)-C(33) & 120.35(14) \\ C(9)-C(32)-H(32) & 119.8 \\ C(33)-C(32)-H(32) & 119.8 \\ C(10)-C(33)-C(32) & 119.90(15) \\ C(10)-C(33)-H(33) & 120.1 \\ C(32)-C(33)-H(33) & 120.1 \\ C(13)-C(34)-C(35) & 118.52(12) \\ C(13)-C(34)-H(34) & 120.7 \\ C(35)-C(34)-H(34) & 120.7 \\ C(36)-C(35)-C(34) & 120.17(12) \\ \end{array}$	H(31B)-C(31)-H(31C)	109.5
C(9)-C(32)-H(32) 119.8 C(33)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(9)-C(32)-C(33)	120.35(14)
C(33)-C(32)-H(32) 119.8 C(10)-C(33)-C(32) 119.90(15) C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(9)-C(32)-H(32)	119.8
$\begin{array}{cccc} C(10)-C(33)-C(32) & 119.90(15) \\ C(10)-C(33)-H(33) & 120.1 \\ C(32)-C(33)-H(33) & 120.1 \\ C(13)-C(34)-C(35) & 118.52(12) \\ C(13)-C(34)-H(34) & 120.7 \\ C(35)-C(34)-H(34) & 120.7 \\ C(36)-C(35)-C(34) & 120.17(12) \\ \end{array}$	C(33)-C(32)-H(32)	119.8
C(10)-C(33)-H(33) 120.1 C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(10)-C(33)-C(32)	119.90(15)
C(32)-C(33)-H(33) 120.1 C(13)-C(34)-C(35) 118.52(12) C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(10)-C(33)-H(33)	120.1
$\begin{array}{ccc} C(13)-C(34)-C(35) & 118.52(12) \\ C(13)-C(34)-H(34) & 120.7 \\ C(35)-C(34)-H(34) & 120.7 \\ C(36)-C(35)-C(34) & 120.17(12) \\ \end{array}$	C(32)-C(33)-H(33)	120.1
C(13)-C(34)-H(34) 120.7 C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(13)-C(34)-C(35)	118.52(12)
C(35)-C(34)-H(34) 120.7 C(36)-C(35)-C(34) 120.17(12)	C(13)-C(34)-H(34)	120.7
C(36)-C(35)-C(34) 120.17(12)	C(35)-C(34)-H(34)	120.7
50	C(36)-C(35)-C(34) 36	120.17(12)
C(36)-C(35)-H(35)	119.9	
-------------------	------------	
C(34)-C(35)-H(35)	119.9	
C(35)-C(36)-C(37)	121.90(12)	
C(35)-C(36)-H(36)	119.1	
C(37)-C(36)-H(36)	119.1	
C(12)-C(37)-C(36)	117.26(12)	
C(12)-C(37)-H(37)	121.4	
C(36)-C(37)-H(37)	121.4	

Table 4. Anisotropic displacement parameters ($A^2 \times 10^3$) for compound **3a**.

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2 a^* 2 U11 + ... + 2 h k a^* b^* U12$]

Atom 1	J11	U22	U33	U23	U13	U12
O(1)	23(1)	19(1)	26(1)	4(1)	-3(1)	-7(1)
O(2)	20(1)	18(1)	20(1)	-4(1)	7(1)	-2(1)
C(39)	23(1)	30(1)	21(1)	0(1)	5(1)	5(1)
C(38)	40(1)	28(1)	27(1)	3(1)	14(1)	6(1)
C(40)	40(1)	32(1)	32(1)	-14(1)	5(1)	-11(1)
O(6)	30(1)	15(1)	38(1)	2(1)	-4(1)	-1(1)
O(7)	21(1)	19(1)	16(1)	-1(1)	0(1)	-2(1)
O(8)	18(1)	21(1)	15(1)	-2(1)	-1(1)	-2(1)
O(9)	23(1)	24(1)	23(1)	6(1)	-1(1)	-8(1)
O(10)	21(1)	24(1)	18(1)	8(1)	-2(1)	-2(1)
O(11)	21(1)	23(1)	22(1)	4(1)	-3(1)	1(1)
O(12)	22(1)	22(1)	34(1)	15(1)	-4(1)	-6(1)
O(3)	18(1)	23(1)	27(1)	-8(1)	6(1)	0(1)
O(4)	20(1)	27(1)	34(1) 37	-6(1)	9(1)	-6(1)

O(5)	23(1)	14(1)	21(1)	-2(1)	0(1)	-2(1)
N(1)	19(1)	13(1)	18(1)	0(1)	0(1)	-1(1)
N(2)	18(1)	12(1)	16(1)	-1(1)	4(1)	-3(1)
N(3)	14(1)	18(1)	13(1)	2(1)	0(1)	-3(1)
C(1)	32(1)	36(1)	37(1)	11(1)	-10(1)	-14(1)
C(2)	25(1)	20(1)	22(1)	0(1)	0(1)	-10(1)
C(3)	22(1)	16(1)	18(1)	-2(1)	3(1)	-2(1)
C(4)	16(1)	14(1)	15(1)	-1(1)	4(1)	-1(1)
C(5)	14(1)	12(1)	13(1)	0(1)	2(1)	-1(1)
C(6)	14(1)	12(1)	13(1)	0(1)	2(1)	-1(1)
C(7)	17(1)	16(1)	14(1)	0(1)	0(1)	1(1)
C(8)	23(1)	21(1)	21(1)	-7(1)	7(1)	0(1)
C(9)	20(1)	23(1)	17(1)	-5(1)	4(1)	1(1)
C(10)	34(1)	33(1)	42(1)	-4(1)	20(1)	-7(1)
C(11)	29(1)	26(1)	22(1)	2(1)	3(1)	-7(1)
C(12)	17(1)	16(1)	16(1)	-1(1)	2(1)	1(1)
C(13)	15(1)	15(1)	14(1)	1(1)	2(1)	1(1)
C(14)	14(1)	16(1)	14(1)	-1(1)	2(1)	0(1)
C(15)	18(1)	20(1)	16(1)	1(1)	2(1)	1(1)
C(16)	19(1)	29(1)	18(1)	2(1)	-2(1)	4(1)
C(17)	15(1)	33(1)	25(1)	1(1)	-2(1)	-2(1)
C(18)	17(1)	26(1)	20(1)	2(1)	2(1)	-4(1)
C(19)	15(1)	18(1)	13(1)	0(1)	1(1)	0(1)
C(20)	15(1)	14(1)	14(1)	-1(1)	2(1)	0(1)
C(21)	20(1)	18(1)	13(1)	1(1)	2(1)	-2(1)
C(22)	27(1)	21(1)	14(1)	4(1)	0(1)	1(1)
C(23)	26(1)	39(1)	22(1)	9(1)	-2(1)	4(1)
C(24)	29(1)	22(1)	16(1)	2(1)	2(1)	0(1)
C(25)	44(1)	24(1)	20(1)	-1(1)	1(1)	7(1)
C(26)	15(1)	14(1)	14(1) 38	1(1)	1(1)	-1(1)

C(27)	18(1)	15(1)	16(1)	0(1)	2(1)	0(1)
C(28)	38(1)	31(1)	43(1)	23(1)	-9(1)	-10(1)
C(29)	15(1)	14(1)	14(1)	0(1)	2(1)	-1(1)
C(30)	17(1)	19(1)	15(1)	1(1)	2(1)	0(1)
C(31)	22(1)	36(1)	38(1)	-14(1)	11(1)	1(1)
C(32)	21(1)	28(1)	29(1)	-3(1)	4(1)	5(1)
C(33)	19(1)	43(1)	45(1)	-8(1)	10(1)	-2(1)
C(34)	17(1)	18(1)	18(1)	1(1)	0(1)	0(1)
C(35)	16(1)	24(1)	24(1)	0(1)	-2(1)	2(1)
C(36)	21(1)	22(1)	28(1)	5(1)	-3(1)	5(1)
C(37)	22(1)	16(1)	27(1)	2(1)	0(1)	3(1)

Table 5. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for compound **3a**.

Atom	Х	у	Z	U(eq)
H(39)	2278	8664	11437	30
H(38)	946	7739	11866	37
H(40A)	2111	4782	7707	52
H(40B)	1240	4205	8104	52
H(40C)	2572	4414	8405	52
H(1A)	-18	6112	8365	53
H(1B)	-424	5281	8099	53
H(1C)	531	5782	7682	53
H(8A)	1393	10359	10516	26
H(8B)	2498	10048	10995	26
H(10)	-1168	7868	11688	43
H(11A)	1638	4888	9494	39
H(11B)	284	4692 39	9217	39

H(11C)	613	5547	9459	39
H(15)	1592	8970	8357	22
H(16)	-504	8676	8217	27
H(17)	-1434	7801	8930	29
H(18)	-318	7201	9809	25
H(23A)	4938	6109	11246	44
H(23B)	4550	5731	11945	44
H(23C)	4506	6644	11852	44
H(24A)	2316	6646	12184	33
H(24B)	2261	5729	12247	33
H(24C)	1319	6169	11754	33
H(25A)	1994	5318	10826	44
H(25B)	3105	4915	11230	44
H(25C)	3362	5383	10553	44
H(26)	5443	9346	9153	17
H(28A)	4798	10905	7527	56
H(28B)	6166	11152	7742	56
H(28C)	5023	11472	8151	56
H(29)	4031	8609	8098	17
H(31A)	7104	7806	7157	48
H(31B)	6900	6932	7377	48
H(31C)	7666	7502	7858	48
H(32)	-640	9871	10713	31
H(33)	-1964	8938	11142	43
H(34)	6278	8347	9751	21
H(35)	7523	7499	10389	26
H(36)	7082	6193	10404	29
H(37)	5436	5681	9765	26

Table 6. Torsion angles [deg] for compound **3a**.

C(9)-C(39)-C(38)-C(10)	0.3(2)
C(3)-O(1)-C(2)-C(11)	60.54(16)
C(3)-O(1)-C(2)-C(1)	177.88(12)
C(3)-O(1)-C(2)-C(40)	-64.24(16)
C(2)-O(1)-C(3)-O(6)	5.2(2)
C(2)-O(1)-C(3)-N(1)	-172.59(10)
C(4)-N(1)-C(3)-O(6)	172.11(12)
C(12)-N(1)-C(3)-O(6)	-12.99(19)
C(4)-N(1)-C(3)-O(1)	-9.91(17)
C(12)-N(1)-C(3)-O(1)	164.99(11)
C(3)-N(1)-C(4)-O(7)	-21.9(2)
C(12)-N(1)-C(4)-O(7)	162.58(12)
C(3)-N(1)-C(4)-C(5)	159.50(11)
C(12)-N(1)-C(4)-C(5)	-16.02(12)
O(7)-C(4)-C(5)-C(13)	-160.90(12)
N(1)-C(4)-C(5)-C(13)	17.73(11)
O(7)-C(4)-C(5)-C(29)	-35.14(16)
N(1)-C(4)-C(5)-C(29)	143.48(10)
O(7)-C(4)-C(5)-C(6)	78.38(14)
N(1)-C(4)-C(5)-C(6)	-103.00(11)
C(7)-N(2)-C(6)-C(14)	66.91(15)
C(26)-N(2)-C(6)-C(14)	-117.23(11)
C(7)-N(2)-C(6)-C(20)	-50.23(15)
C(26)-N(2)-C(6)-C(20)	125.63(11)
C(7)-N(2)-C(6)-C(5)	-166.76(11)
C(26)-N(2)-C(6)-C(5)	9.09(13)
C(13)-C(5)-C(6)-N(2)	98.63(11)
C(29)-C(5)-C(6)-N(2)	-27.06(11)
C(4)-C(5)-C(6)-N(2)	-147.42(9)

C(13)-C(5)-C(6)-C(14)	-135.02(10)
C(29)-C(5)-C(6)-C(14)	99.30(11)
C(4)-C(5)-C(6)-C(14)	-21.06(13)
C(13)-C(5)-C(6)-C(20)	-21.74(13)
C(29)-C(5)-C(6)-C(20)	-147.43(9)
C(4)-C(5)-C(6)-C(20)	92.22(11)
C(8)-O(2)-C(7)-O(5)	-12.21(19)
C(8)-O(2)-C(7)-N(2)	169.60(11)
C(6)-N(2)-C(7)-O(5)	175.71(12)
C(26)-N(2)-C(7)-O(5)	0.08(19)
C(6)-N(2)-C(7)-O(2)	-6.05(16)
C(26)-N(2)-C(7)-O(2)	178.32(10)
C(7)-O(2)-C(8)-C(9)	-170.81(11)
C(38)-C(39)-C(9)-C(32)	1.3(2)
C(38)-C(39)-C(9)-C(8)	-173.04(13)
O(2)-C(8)-C(9)-C(32)	-104.28(14)
O(2)-C(8)-C(9)-C(39)	69.88(15)
C(39)-C(38)-C(10)-C(33)	-1.9(2)
C(3)-N(1)-C(12)-C(37)	12.4(2)
C(4)-N(1)-C(12)-C(37)	-171.92(12)
C(3)-N(1)-C(12)-C(13)	-168.15(11)
C(4)-N(1)-C(12)-C(13)	7.48(13)
C(37)-C(12)-C(13)-C(34)	1.31(19)
N(1)-C(12)-C(13)-C(34)	-178.15(11)
C(37)-C(12)-C(13)-C(5)	-175.91(11)
N(1)-C(12)-C(13)-C(5)	4.63(13)
C(29)-C(5)-C(13)-C(34)	45.81(17)
C(4)-C(5)-C(13)-C(34)	169.52(12)
C(6)-C(5)-C(13)-C(34)	-71.99(16)
C(29)-C(5)-C(13)-C(12)	-137.33(11)

C(4)-C(5)-C(13)-C(12)	-13.61(12)
C(6)-C(5)-C(13)-C(12)	104.87(11)
N(2)-C(6)-C(14)-C(15)	37.60(17)
C(20)-C(6)-C(14)-C(15)	161.32(12)
C(5)-C(6)-C(14)-C(15)	-81.59(15)
N(2)-C(6)-C(14)-C(19)	-137.99(10)
C(20)-C(6)-C(14)-C(19)	-14.27(12)
C(5)-C(6)-C(14)-C(19)	102.82(11)
C(19)-C(14)-C(15)-C(16)	-1.25(18)
C(6)-C(14)-C(15)-C(16)	-176.42(12)
C(14)-C(15)-C(16)-C(17)	0.3(2)
C(15)-C(16)-C(17)-C(18)	0.4(2)
C(16)-C(17)-C(18)-C(19)	-0.3(2)
C(17)-C(18)-C(19)-C(14)	-0.63(19)
C(17)-C(18)-C(19)-N(3)	173.33(12)
C(15)-C(14)-C(19)-C(18)	1.43(19)
C(6)-C(14)-C(19)-C(18)	177.49(11)
C(15)-C(14)-C(19)-N(3)	-173.60(11)
C(6)-C(14)-C(19)-N(3)	2.45(13)
C(21)-N(3)-C(19)-C(18)	17.6(2)
C(20)-N(3)-C(19)-C(18)	-162.45(13)
C(21)-N(3)-C(19)-C(14)	-167.86(11)
C(20)-N(3)-C(19)-C(14)	12.11(13)
C(21)-N(3)-C(20)-O(8)	-21.0(2)
C(19)-N(3)-C(20)-O(8)	158.98(12)
C(21)-N(3)-C(20)-C(6)	159.14(11)
C(19)-N(3)-C(20)-C(6)	-20.83(12)
N(2)-C(6)-C(20)-O(8)	-33.95(17)
C(14)-C(6)-C(20)-O(8)	-158.91(12)
C(5)-C(6)-C(20)-O(8)	78.89(14)
10	

N(2)-C(6)-C(20)-N(3)	145.86(10)	
C(14)-C(6)-C(20)-N(3)	20.89(11)	
C(5)-C(6)-C(20)-N(3)	-101.30(10)	
C(22)-O(10)-C(21)-O(9)	5.6(2)	
C(22)-O(10)-C(21)-N(3)	-171.87(10)	
C(20)-N(3)-C(21)-O(9)	174.12(12)	
C(19)-N(3)-C(21)-O(9)	-5.91(19)	
C(20)-N(3)-C(21)-O(10)	-8.25(17)	
C(19)-N(3)-C(21)-O(10)	171.72(10)	
C(21)-O(10)-C(22)-C(23)	175.32(11)	
C(21)-O(10)-C(22)-C(24)	-66.63(14)	
C(21)-O(10)-C(22)-C(25)	57.77(15)	
C(7)-N(2)-C(26)-C(27)	-53.49(15)	
C(6)-N(2)-C(26)-C(27)	130.59(11)	
C(7)-N(2)-C(26)-C(29)	-171.27(11)	
C(6)-N(2)-C(26)-C(29)	12.80(13)	
C(28)-O(12)-C(27)-O(11)	1.1(2)	
C(28)-O(12)-C(27)-C(26)	176.69(12)	
N(2)-C(26)-C(27)-O(11)	-42.01(16)	
C(29)-C(26)-C(27)-O(11)	70.77(15)	
N(2)-C(26)-C(27)-O(12)	142.39(11)	
C(29)-C(26)-C(27)-O(12)	-104.83(12)	
C(13)-C(5)-C(29)-C(30)	36.13(14)	
C(4)-C(5)-C(29)-C(30)	-81.87(12)	
C(6)-C(5)-C(29)-C(30)	159.90(10)	
C(13)-C(5)-C(29)-C(26)	-88.01(11)	
C(4)-C(5)-C(29)-C(26)	153.99(10)	
C(6)-C(5)-C(29)-C(26)	35.76(11)	
N(2)-C(26)-C(29)-C(30)	-154.34(10)	
C(27)-C(26)-C(29)-C(30)	86.67(12)	
	A A	

N(2)-C(26)-C(29)-C(5)	-30.24(11)
C(27)-C(26)-C(29)-C(5)	-149.23(10)
C(31)-O(3)-C(30)-O(4)	-2.49(19)
C(31)-O(3)-C(30)-C(29)	177.05(12)
C(5)-C(29)-C(30)-O(4)	-126.32(14)
C(26)-C(29)-C(30)-O(4)	-6.58(18)
C(5)-C(29)-C(30)-O(3)	54.14(13)
C(26)-C(29)-C(30)-O(3)	173.88(10)
C(39)-C(9)-C(32)-C(33)	-1.4(2)
C(8)-C(9)-C(32)-C(33)	172.78(13)
C(38)-C(10)-C(33)-C(32)	1.7(3)
C(9)-C(32)-C(33)-C(10)	-0.1(2)
C(12)-C(13)-C(34)-C(35)	0.01(18)
C(5)-C(13)-C(34)-C(35)	176.57(12)
C(13)-C(34)-C(35)-C(36)	-1.17(19)
C(34)-C(35)-C(36)-C(37)	1.1(2)
C(13)-C(12)-C(37)-C(36)	-1.40(19)
N(1)-C(12)-C(37)-C(36)	177.94(12)
C(35)-C(36)-C(37)-C(12)	0.2(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound **3a** [A and deg.].

D-H...A

	$d(\mathbf{U} \wedge \mathbf{A})$	$d(\mathbf{D} \cdot \mathbf{A})$	$\langle DUA \rangle$
u(D-п)	u(пА)	u(DA)	$\langle (D \Pi A) \rangle$

CCDC number: CCDC 980257

Identification code	compound 4a
Empirical formula	C24 H24 N2 O7
Formula weight	452.45
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 6.647(8) A alpha = 87.147(15) deg.
	b = 12.469(15) A beta = 79.429(16) deg.
	c = 14.173(16) A gamma = 89.310(15) deg.
Volume	1153(2) A^3
Z, Calculated density	2, 1.303 Mg/m^3
Absorption coefficient	0.097 mm^-1
F(000)	476
Crystal size	1.36 x 0.09 x 0.07 mm
Theta range for data collection	1.46 to 27.99 deg.
Limiting indices	-8<=h<=8, -16<=k<=16, -18<=l<=18
Reflections collected / unique	13439 / 5478 [R(int) = 0.1587]
Completeness to theta $= 27.99$	98.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9933 and 0.8797
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5478 / 0 / 302

Goodness-of-fit on F^2	1.079
Final R indices [I>2sigma(I)]	R1 = 0.1679, wR2 = 0.4117
R indices (all data)	R1 = 0.2708, wR2 = 0.4605
Largest diff. peak and hole	0.669 and -0.499 e.A^-3

Table 2.Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2x 10^3) for compound 4a.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	X	у	Z	U(eq)
O(1)	7631(11)	-2577(4)	8312(4)	51(2)
O(2)	10111(11)	1483(5)	5789(4)	49(2)
O(3)	11866(10)	460(5)	6748(4)	47(2)
O(4)	6603(10)	3344(5)	7970(5)	45(2)
O(5)	3802(9)	2492(4)	7669(4)	36(1)
O(6)	7805(10)	-786(5)	7215(4)	43(2)
O(7)	7132(10)	-2447(4)	9932(4)	41(2)
N(1)	7532(9)	-921(5)	8909(4)	24(1)
C(1)	5361(16)	-4111(9)	8818(13)	98(6)
C(2)	7462(13)	-3766(7)	8333(7)	39(2)
C(3)	7409(10)	-2056(6)	9121(6)	26(2)
C(4)	7728(11)	-404(6)	7991(6)	29(2)
C(5)	7799(12)	809(6)	8145(6)	30(2)
N(2)	9055(10)	1491(5)	7397(5)	32(2)
C(7)	10429(14)	1050(7)	6635(6)	36(2)
C(8)	11654(16)	1208(7)	4951(7)	48(2)
C(9)	13541(17)	1917(7)	4845(7)	48(2)
C(10)	13585(18)	2874(8)	5324(8)	56(3)
C(11)	15329(19)	3500(8)	5190(8)	61(3)
C(12)	17050(20)	3232(10) 47	4562(9)	71(3)

C(13)	6870(13)	1518(6)	7432(6)	34(2)
C(14)	5785(14)	2556(7)	7723(6)	37(2)
C(15)	2575(14)	3441(6)	7934(7)	41(2)
C(16)	9077(18)	-4288(10)	8763(12)	90(5)
C(17)	7522(10)	-131(6)	9632(5)	25(2)
C(18)	7725(10)	908(5)	9196(5)	24(2)
C(19)	7833(11)	1802(6)	9734(6)	29(2)
C(20)	7700(10)	1636(6)	10727(6)	28(2)
C(21)	7475(11)	600(6)	11150(6)	29(2)
C(22)	7398(10)	-291(6)	10635(5)	25(2)
C(23)	15307(18)	1644(9)	4200(7)	56(3)
C(24)	17040(20)	2287(10)	4041(9)	68(3)
C(6)	7730(40)	-3989(10)	7267(9)	157(11)

 Table 3.
 Bond lengths [A] and angles [deg] for compound 4a.

O(1)-C(3)	1.330(10)
O(1)-C(2)	1.486(10)
O(2)-C(7)	1.342(10)
O(2)-C(8)	1.472(12)
O(3)-C(7)	1.227(10)
O(4)-C(14)	1.224(10)
O(5)-C(14)	1.338(10)
O(5)-C(15)	1.454(10)
O(6)-C(4)	1.212(10)
O(7)-C(3)	1.209(9)
N(1)-C(4)	1.407(10)
N(1)-C(3)	1.433(10)
N(1)-C(17)	1.455(10)
10	

C(1)-C(2)	1.497(13)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(16)	1.460(14)
C(2)-C(6)	1.527(16)
C(4)-C(5)	1.542(11)
C(5)-N(2)	1.465(10)
C(5)-C(18)	1.492(11)
C(5)-C(13)	1.521(11)
N(2)-C(7)	1.410(11)
N(2)-C(13)	1.444(11)
C(8)-C(9)	1.524(14)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(23)	1.399(15)
C(9)-C(10)	1.405(14)
C(10)-C(11)	1.383(15)
C(10)-H(10)	0.9500
C(11)-C(12)	1.364(17)
C(11)-H(11)	0.9500
C(12)-C(24)	1.422(17)
C(12)-H(12)	0.9500
C(13)-C(14)	1.512(12)
C(13)-H(13)	1.0000
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800

C(16)-H(16C)	0.9800
C(17)-C(18)	1.404(10)
C(17)-C(22)	1.413(11)
C(18)-C(19)	1.391(11)
C(19)-C(20)	1.400(11)
C(19)-H(19)	0.9500
C(20)-C(21)	1.395(11)
C(20)-H(20)	0.9500
C(21)-C(22)	1.365(11)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
C(23)-C(24)	1.390(16)
C(23)-H(23)	0.9500
C(24)-H(24)	0.9500
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(3)-O(1)-C(2)	121.0(7)
C(7)-O(2)-C(8)	115.1(8)
C(14)-O(5)-C(15)	115.8(6)
C(4)-N(1)-C(3)	126.1(6)
C(4)-N(1)-C(17)	110.1(6)
C(3)-N(1)-C(17)	123.8(6)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(16)-C(2)-O(1)	111.4(8) 50

C(16)-C(2)-C(1)	112.9(11)
O(1)-C(2)-C(1)	110.2(8)
C(16)-C(2)-C(6)	110.8(13)
O(1)-C(2)-C(6)	102.4(8)
C(1)-C(2)-C(6)	108.6(13)
O(7)-C(3)-O(1)	127.0(7)
O(7)-C(3)-N(1)	122.8(7)
O(1)-C(3)-N(1)	110.2(7)
O(6)-C(4)-N(1)	129.6(7)
O(6)-C(4)-C(5)	124.3(7)
N(1)-C(4)-C(5)	106.1(6)
N(2)-C(5)-C(18)	123.9(6)
N(2)-C(5)-C(13)	57.8(5)
C(18)-C(5)-C(13)	130.3(7)
N(2)-C(5)-C(4)	118.1(7)
C(18)-C(5)-C(4)	106.0(6)
C(13)-C(5)-C(4)	114.6(6)
C(7)-N(2)-C(13)	122.6(7)
C(7)-N(2)-C(5)	121.7(7)
C(13)-N(2)-C(5)	63.0(5)
O(3)-C(7)-O(2)	125.2(8)
O(3)-C(7)-N(2)	123.8(8)
O(2)-C(7)-N(2)	110.4(8)
O(2)-C(8)-C(9)	111.3(7)
O(2)-C(8)-H(8A)	109.4
C(9)-C(8)-H(8A)	109.4
O(2)-C(8)-H(8B)	109.4
C(9)-C(8)-H(8B)	109.4
H(8A)-C(8)-H(8B)	108.0
C(23)-C(9)-C(10)	117.3(9) 51

C(23)-C(9)-C(8)	119.0(9)
C(10)-C(9)-C(8)	123.6(10)
C(11)-C(10)-C(9)	121.3(11)
C(11)-C(10)-H(10)	119.3
C(9)-C(10)-H(10)	119.3
C(12)-C(11)-C(10)	121.4(10)
C(12)-C(11)-H(11)	119.3
C(10)-C(11)-H(11)	119.3
C(11)-C(12)-C(24)	118.8(11)
C(11)-C(12)-H(12)	120.6
C(24)-C(12)-H(12)	120.6
N(2)-C(13)-C(14)	116.6(6)
N(2)-C(13)-C(5)	59.2(5)
C(14)-C(13)-C(5)	121.3(7)
N(2)-C(13)-H(13)	115.9
C(14)-C(13)-H(13)	115.9
C(5)-C(13)-H(13)	115.9
O(4)-C(14)-O(5)	124.8(8)
O(4)-C(14)-C(13)	125.0(8)
O(5)-C(14)-C(13)	110.2(6)
O(5)-C(15)-H(15A)	109.5
O(5)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
O(5)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(2)-C(16)-H(16A)	109.5
C(2)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(2)-C(16)-H(16C)	109.5

H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(18)-C(17)-C(22)	120.5(7)
C(18)-C(17)-N(1)	110.2(6)
C(22)-C(17)-N(1)	129.3(6)
C(19)-C(18)-C(17)	121.2(7)
C(19)-C(18)-C(5)	131.2(7)
C(17)-C(18)-C(5)	107.6(6)
C(18)-C(19)-C(20)	117.9(7)
C(18)-C(19)-H(19)	121.0
C(20)-C(19)-H(19)	121.0
C(21)-C(20)-C(19)	120.2(7)
C(21)-C(20)-H(20)	119.9
C(19)-C(20)-H(20)	119.9
C(22)-C(21)-C(20)	122.9(7)
C(22)-C(21)-H(21)	118.5
C(20)-C(21)-H(21)	118.5
C(21)-C(22)-C(17)	117.3(7)
C(21)-C(22)-H(22)	121.4
C(17)-C(22)-H(22)	121.4
C(24)-C(23)-C(9)	121.5(10)
C(24)-C(23)-H(23)	119.2
C(9)-C(23)-H(23)	119.2
C(23)-C(24)-C(12)	119.6(12)
C(23)-C(24)-H(24)	120.2
C(12)-C(24)-H(24)	120.2
C(2)-C(6)-H(6A)	109.5
C(2)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(2)-C(6)-H(6C)	109.5 53

H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5

Table 4. Anisotropic displacement parameters ($A^2 \times 10^3$) for compound **4a**.

The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

Atom	U11	U22	U33	U2	3	U13	U12
O(1)	95(5)	18(3)	35(4)	-7(2)	2(3)	-17(3)	
O(2)	71(5)	46(4)	29(3)	-2(3)	-9(3)	-5(3)	
O(3)	54(4)	41(4)	43(4)	3(3)	0(3)	-8(3)	
O(4)	52(4)	33(3)	57(4)	-5(3)	-25(3)	-6(3)	
O(5)	46(3)	26(3)	41(3)	-8(2)	-17(3)	-5(2)	
O(6)	64(4)	30(3)	39(4)	-5(3)	-15(3)	-12(3)	
O(7)	60(4)	28(3)	33(3)	0(3)	-8(3)	-7(3)	
N(1)	22(3)	18(3)	31(3)	-3(3)	-3(2)	-9(2)	
C(1)	30(5)	50(7)	206(17)	-49(9)	11(7)	-13(5)	
C(2)	34(4)	28(4)	54(6)	-7(4)	0(4)	-3(3)	
C(3)	12(3)	28(4)	38(5)	-5(3)	-4(3)	-8(3)	
C(4)	29(4)	24(4)	37(5)	-4(3)	-10(3)	-16(3)	
C(5)	37(4)	24(4)	32(4)	2(3)	-12(3)	-9(3)	
N(2)	43(4)	29(3)	27(4)	0(3)	-10(3)	-11(3)	
C(7)	48(5)	31(4)	28(4)	-2(4)	-6(4)	-9(4)	
C(8)	70(7)	33(5)	40(5)	-9(4)	-9(5)	-11(4)	
C(9)	74(7)	34(5)	38(5)	3(4)	-13(5)	-8(5)	
C(10)	69(7)	49(6)	46(6)	6(5)	-6(5)	-2(5)	
C(11)	91(9)	42(6)	55(7)	-9(5)	-18(6)	-17(6)	
C(12)	86(9)	70(8)	60(8)	-12(6)	-16(7)	-20(7)	

C(13)	47(5)	24(4)	34(5)	-8(3)	-18(4)	-9(3)
C(14)	49(5)	33(5)	34(5)	1(4)	-17(4)	-18(4)
C(15)	51(5)	21(4)	50(6)	-11(4)	-4(4)	-4(4)
C(16)	61(7)	59(7)	177(15)	-70(9)	-75(9)	37(6)
C(17)	9(3)	28(4)	36(4)	-2(3)	-2(3)	-5(3)
C(18)	20(3)	20(3)	35(4)	-2(3)	-10(3)	-10(3)
C(19)	19(4)	24(4)	45(5)	-8(3)	-10(3)	-8(3)
C(20)	17(3)	34(4)	33(4)	-15(3)	-6(3)	-2(3)
C(21)	18(3)	39(5)	31(4)	-6(3)	-4(3)	-2(3)
C(22)	15(3)	24(4)	33(4)	1(3)	0(3)	-6(3)
C(23)	81(8)	53(6)	35(5)	-2(5)	-10(5)	-13(6)
C(24)	77(8)	72(8)	55(7)	0(6)	-13(6)	0(6)
C(6)	380(30)	38(7)	38(7)	-4(6)	0(12)	-53(12)

Atom	Х	у	Z	U(eq)
H(1A)	5088	-3869	9477	147
H(1B)	5270	-4896	8832	147
H(1C)	4348	-3794	8463	147
H(8A)	11052	1296	4362	57
H(8B)	12061	446	5023	57
H(10)	12393	3096	5748	67
H(11)	15326	4128	5542	74
H(12)	18238	3670	4474	85
H(13)	6368	1139	6915	40
H(15A)	2601	3586	8605	61
H(15B)	1160	3317	7859	61
H(15C)	3136	4057	7517	61
H(16A)	10388	-3937	8505	136
H(16B)	9164	-5047	8611	136
H(16C)	8763	-4231	9462	136
H(19)	7992	2503	9436	34
H(20)	7764	2231	11114	33
H(21)	7370	509	11827	35
H(22)	7265	-990	10939	30
H(23)	15321	1004	3862	68
H(24)	18212	2097	3588	82
H(6A)	9052	-3709	6930	236
H(6B)	6625	-3636	6994	236
H(6C)	7679	-4765	7194	236

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3)for compound 4a.

Table 6. Torsion angles [deg] for compound	4a	l.
--	----	----

C(3)-O(1)-C(2)-C(16)	-63.8(12)
C(3)-O(1)-C(2)-C(1)	62.3(12)
C(3)-O(1)-C(2)-C(6)	177.7(12)
C(2)-O(1)-C(3)-O(7)	2.8(12)
C(2)-O(1)-C(3)-N(1)	-176.9(7)
C(4)-N(1)-C(3)-O(7)	-176.0(7)
C(17)-N(1)-C(3)-O(7)	5.7(10)
C(4)-N(1)-C(3)-O(1)	3.8(10)
C(17)-N(1)-C(3)-O(1)	-174.6(6)
C(3)-N(1)-C(4)-O(6)	1.0(13)
C(17)-N(1)-C(4)-O(6)	179.6(8)
C(3)-N(1)-C(4)-C(5)	-179.9(6)
C(17)-N(1)-C(4)-C(5)	-1.4(8)
O(6)-C(4)-C(5)-N(2)	-34.2(11)
N(1)-C(4)-C(5)-N(2)	146.7(6)
O(6)-C(4)-C(5)-C(18)	-178.4(7)
N(1)-C(4)-C(5)-C(18)	2.5(8)
O(6)-C(4)-C(5)-C(13)	31.0(11)
N(1)-C(4)-C(5)-C(13)	-148.1(7)
C(18)-C(5)-N(2)-C(7)	126.9(8)
C(13)-C(5)-N(2)-C(7)	-113.3(8)
C(4)-C(5)-N(2)-C(7)	-10.5(10)
C(18)-C(5)-N(2)-C(13)	-119.8(9)
C(4)-C(5)-N(2)-C(13)	102.8(7)
C(8)-O(2)-C(7)-O(3)	-0.2(12)
C(8)-O(2)-C(7)-N(2)	171.1(6)
C(13)-N(2)-C(7)-O(3)	-136.2(8)
C(5)-N(2)-C(7)-O(3)	-60.0(11)

C(13)-N(2)-C(7)-O(2)	52.3(9)
C(5)-N(2)-C(7)-O(2)	128.5(7)
C(7)-O(2)-C(8)-C(9)	-81.8(9)
O(2)-C(8)-C(9)-C(23)	168.4(9)
O(2)-C(8)-C(9)-C(10)	-15.2(13)
C(23)-C(9)-C(10)-C(11)	-2.4(15)
C(8)-C(9)-C(10)-C(11)	-178.9(10)
C(9)-C(10)-C(11)-C(12)	2.4(17)
C(10)-C(11)-C(12)-C(24)	-0.3(18)
C(7)-N(2)-C(13)-C(14)	-135.8(8)
C(5)-N(2)-C(13)-C(14)	112.3(8)
C(7)-N(2)-C(13)-C(5)	112.0(8)
C(18)-C(5)-C(13)-N(2)	109.3(8)
C(4)-C(5)-C(13)-N(2)	-108.9(7)
N(2)-C(5)-C(13)-C(14)	-104.2(8)
C(18)-C(5)-C(13)-C(14)	5.1(12)
C(4)-C(5)-C(13)-C(14)	146.9(7)
C(15)-O(5)-C(14)-O(4)	-0.4(12)
C(15)-O(5)-C(14)-C(13)	179.8(7)
N(2)-C(13)-C(14)-O(4)	-3.5(12)
C(5)-C(13)-C(14)-O(4)	65.0(11)
N(2)-C(13)-C(14)-O(5)	176.3(7)
C(5)-C(13)-C(14)-O(5)	-115.2(8)
C(4)-N(1)-C(17)-C(18)	-0.4(8)
C(3)-N(1)-C(17)-C(18)	178.2(6)
C(4)-N(1)-C(17)-C(22)	-178.6(7)
C(3)-N(1)-C(17)-C(22)	0.0(10)
C(22)-C(17)-C(18)-C(19)	0.8(10)
N(1)-C(17)-C(18)-C(19)	-177.6(6)
C(22)-C(17)-C(18)-C(5)	-179.6(6)

N(1)-C(17)-C(18)-C(5)	2.0(8)
N(2)-C(5)-C(18)-C(19)	35.3(12)
C(13)-C(5)-C(18)-C(19)	-39.0(13)
C(4)-C(5)-C(18)-C(19)	176.8(7)
N(2)-C(5)-C(18)-C(17)	-144.3(7)
C(13)-C(5)-C(18)-C(17)	141.5(8)
C(4)-C(5)-C(18)-C(17)	-2.8(8)
C(17)-C(18)-C(19)-C(20)	-1.0(10)
C(5)-C(18)-C(19)-C(20)	179.5(7)
C(18)-C(19)-C(20)-C(21)	0.2(10)
C(19)-C(20)-C(21)-C(22)	0.8(11)
C(20)-C(21)-C(22)-C(17)	-1.0(10)
C(18)-C(17)-C(22)-C(21)	0.2(10)
N(1)-C(17)-C(22)-C(21)	178.3(6)
C(10)-C(9)-C(23)-C(24)	0.4(15)
C(8)-C(9)-C(23)-C(24)	177.0(9)
C(9)-C(23)-C(24)-C(12)	1.6(17)
C(11)-C(12)-C(24)-C(23)	-1.7(18)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for wlx_wql_1 [A and deg.].

d(D...A)

<(DHA)

9. Selected ¹H NMR and ¹³C NMR spectra

