**Supporting Information** 

## Logic Gates Operated by Bipolar Photoelectrochemical Water Splitting

Gabriel Loget,\* Gaozeng Li and Bruno Fabre\*

Institut des Sciences Chimiques de Rennes, UMR 6226 (MaCSE) CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

E-mail: gabriel.loget@univ-rennes1.fr; bruno.fabre@univ-rennes1.fr

## Experimental

All solutions were prepared with ultra-pure deionized water (resistivity: 18.2 M $\Omega$  cm). The chemicals used for cleaning and etching of silicon wafer pieces were of semiconductor grade: 96-97% H<sub>2</sub>SO<sub>4</sub> (from BASF) 30% H<sub>2</sub>O<sub>2</sub> and 50% HF (both from Sigma Aldrich). Acetone (MOS electronic grade) and anhydrous ethanol (RSE electronic grade) were purchased from Carlo Erba. The In-Ga eutectic (99.99%) and the Pt wires (99.95%) were purchased from Alfa-Aesar. The p-type silicon (100) wafers (boron doped, 1-5  $\Omega$  cm, double side polished) were purchased from Siltronix. 1.5 x 1.2 cm<sup>2</sup> silicon pieces were cut and degreased by sonication (10 min) in acetone, ethanol and ultra-pure water. The surfaces were then cleaned in 3/1 v/v concentrated  $H_2SO_4/30\%$   $H_2O_2$  at 100 °C for 30 min, followed by copious rinsing with ultrapure water. (*Caution*: The concentrated aqueous  $H_2SO_4/H_2O_2$  (piranha) solution is very dangerous, particularly in contact with organic materials, and should be handled extremely carefully.) The surfaces were etched with ca. 10% ag HF for 2 min in order to remove the oxide layer and generate the hydrogen-terminated surface (p-SiH), and then dried under an argon flow. p-SiH was electrically connected to a copper wire by applying a drop of In-Ga eutectic and silver paste (Electron Microscopy Sciences). After drying of the silver paste, the copper wire and the silver paste were covered with an epoxy-based resin (Loctite 9492, Henkel). The electrolyte was 50 mM H<sub>2</sub>SO<sub>4</sub> in water. The electrochemical experiments were performed with an Autolab potentiostat/galvanostat PGSTAT 302N (from Eco Chemie B.V.) in an O-ring cell with a p-SiH or a Pt foil acting as the working electrode (0.79 cm<sup>2</sup>). The counter electrode was a Pt ring and a KCl saturated calomel electrode (SCE) was used as the reference electrode. The bipolar electrochemical experiments were performed in an open-top 4.7 x 3.5 cm<sup>2</sup> transparent rectangular cell in which two Pt wires (2 cm long, 1 mm diameter) were positioned at the ends (separated by 4.6 cm). Prior to use, the silicon surface was immersed in 5/1 v/v 50% ultrapure water/HF for 2 min and dried under an Ar flow. The split BE composed of p-SiH and the Pt wire (1.5 cm long, 1 mm diameter) was connected outside the cell to the ammeter (Agilent U1253B), connected to a computer. The light was delivered by a halogen lamp placed 5 cm above the silicon surface (170 mW cm<sup>-2</sup>), and the illumination was manually switched. The current vs time profiles were acquired on the computer using the Keysight Handheld Meter Logger software (Agilent).



**Fig. S1**. Evolution of the ratio  $I_{be}$  light /  $I_{be}$  dark as a function of  $E_{app}$  for a) 1.9 cm-long and b) 3.2 cm-long BE, when a current flows through the bipolar electrode.



**Fig. S2**. a-c) Time-dependent profiles of the applied input signals: a) InI (InI = 0 for  $E_{app} = 7$  V and InI = 1 for  $E_{app} = 10$  V), b) In2 (In2 = 0 in the dark and In2 = 1 under illumination) and the corresponding output signal  $I_{be}$  measured for a 3.2 cm-long BE with two Pt wires. The red line indicates the threshold current 1.5 mA.

|     | AND |        |               |               |          |
|-----|-----|--------|---------------|---------------|----------|
| In1 | In2 | Output | Itot (mA)     | Ibe (mA)      | Ibe/Itot |
| 0   | 0   | 0      | 37.750 ±0.860 | 0.004 ±0.003  | 0.000    |
| 0   | 1   | 0      | 38.600 ±0.977 | 0.113 ±0.035  | 0.003    |
| 1   | 0   | 0      | 60.400 ±1.190 | 0.140 ±0.024  | 0.002    |
| 1   | 1   | 1      | 61.310 ±0.927 | 3.345 ±0.284  | 0.055    |
|     | OR  |        |               |               |          |
| 0   | 0   | 0      | 40.630 ±1.700 | 0.088 ±0.239  | 0.002    |
| 0   | 1   | 1      | 43.250 ±1.370 | 3.264 ±0.460  | 0.075    |
| 1   | 0   | 1      | 64.410 ±1.380 | 5.845 ±0.776  | 0.091    |
| 1   | 1   | 1      | 66.520 ±0.244 | 14.760 ±0.746 | 0.222    |

**Table S1.** Values of the total delivered current  $I_{tot}$ , current flowing through the BE  $I_{be}$  and  $I_{be}/I_{tot}$  ratio for the AND and OR gates.