Copper-Catalyzed Cascade Azidation-Cyclization of Tryptophols and Tryptamines

Panpan Zhang,^{a,b} Wangsheng Sun,^b Guofeng Li,^b Liang Hong,^{a,*} and Rui Wang ^{a,b,*}

^a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China ^b Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China

hongliang@sysu.edu.cn

wangr@lzu.edu.cn

Supporting Information

Table of Content:

I.	General remarks	S2
II.	General procedure for the reaction and characterization of products	S2-S13
III.	References	S13
IV.	¹ H NMR and ¹³ C NMR Spectra	S14-S54

I. General remarks

Most of all reactions were carried out with the reaction system open to air. All reagents and metal catalysts were obtained from commercial sources without further purification. All solvents were purified and dried according to standard methods prior to use.

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Varian instrument (300 MHz, 75 MHz and 282 MHz) spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard unless otherwise noted. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained by the ESI ionization sources. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated.

II. General Procedure for the reaction

1a-1j were prepared by the reported procedure.¹ 1k-1q were prepared by the reported procedure.²
1r were prepared by the reported procedure.³

In an ordinary vial, amixture of NaN₃ (0.6 mmol), Cu(OAc)₂·H₂O (0.08 mmol), PhI(OAc)₂ (0.2 mmol), AcOH (0.24 mmol) and DMF (2 mL) were stirred at room temperature for 30 min, and then 1 (0.2 mmol) was added, and the mixture was stirred at 60 °C for 10 h. After cooling to room temperature, the mixture was quenched with water, extracted with ethyl acetate, dried over sodium sulphate, concentrated in *vacuo* and purified by column chromatography (petroleum ether/AcOEt) to afford the product **3**.

III. Characterization of products

3a-azido-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3a)

93% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, J = 7.6 Hz, 1H), 7.23 – 7.17 (m, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 5.53 (d, J = 2.3 Hz, 1H), 4.72 (s, 1H), 4.09 – 4.03 (m, 1H), 3.72 – 3.64 (m, 1H), 2.43 – 2.32 (m, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 149.70, 130.70, 125.88, 124.30, 119.68, 109.70, 98.06, 78.01, 67.44, 39.48;

IR: $v_{max} = 3349, 2925, 2100, 1610, 1234, 1118, 1042, 747 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{10}H_{11}N_4O [M+H]^+$: 203.0927, found 203.0929.

3a-azido-4-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3b)

93% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.09 (t, J = 7.7 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.49 (d, J = 7.9 Hz, 1H), 5.65 (d, J = 2.8 Hz, 1H), 4.69 (s, 1H), 4.06 – 3.99 (m, 1H), 3.73 (td, J = 9.4, 5.6 Hz, 1H), 2.43 – 2.36 (m, 4H), 2.33–2.23 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 149.82, 135.50, 130.63, 123.57, 121.55, 107.21, 98.85, 78.75, 66.75, 38.20, 17.80;

IR: $v_{max} = 3375, 2924, 2372, 2098, 1595, 1459, 1119, 778 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{11}H_{13}N_4O [M+H]^+$: 217.1084, found 217.1089.

3a-azido-5-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3c)

85% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.08 (s, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 5.53 (d, J = 2.6 Hz, 1H), 4.58 (s, 1H), 4.09 – 4.02 (m, 1H), 3.68 (td, J = 9.3, 6.4 Hz, 1H), 2.41 – 2.35 (m, 2H), 2.30 (s, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 147.43, 131.27, 129.26, 126.15, 124.68, 109.79, 98.41, 78.11, 67.43, 39.39, 20.86;

IR: $v_{max} = 3357, 2947, 2872, 2100, 1619, 1497, 1257, 1044, 954, 812 \text{ cm}^{-1}$; HRMS (ESI) m/z calcd for $C_{11}H_{13}N_4O [M+H]^+$: 217.1084, found 217.1087.

3a-azido-6-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3d)

98% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.14 (d, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 6.49 (s, 1H), 5.51 (d, *J* = 2.3 Hz, 1H), 4.67 (s, 1H), 4.07 – 4.01 (m, 1H), 3.67 (td, *J* = 9.2, 6.3 Hz, 1H), 2.39 – 2.33 (m, 2H), 2.29 (s, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 150.01, 141.03, 123.98, 123.00, 120.57, 110.42, 98.33, 77.90, 67.49, 39.50, 21.71;

IR: $v_{max} = 3356, 2924, 2101, 1619, 1463, 1313, 1249, 1044, 802 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{11}H_{13}N_4O [M+H]^+$: 217.1084, found 217.1088.

3a-azido-7-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3e)

70% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.13 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.81 (t, *J* = 7.5 Hz, 1H), 5.56 (d, *J* = 2.7 Hz, 1H), 4.55 (s, 1H), 4.09 – 4.03 (m, 1H), 3.72 – 3.64 (m, 1H), 2.42 – 2.37 (m, 2H), 2.17 (s, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 148.34, 131.45, 125.28, 121.64, 119.92, 119.30, 98.05, 78.46, 67.46, 39.53, 16.65;

IR: $v_{max} = 3375, 2924, 2373, 1591, 1460, 1119, 782 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{11}H_{13}N_4O [M+H]^+$: 217.1084, found 217.1089.

3a-azido-6-fluoro-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3f)

89% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.19 (dd, *J* = 8.3, 5.5 Hz, 1H), 6.56 – 6.49 (m, 1H), 6.36 (dd, *J* = 9.6, 2.3 Hz, 1H), 5.56 (d, *J* = 2.1 Hz, 1H), 4.81 (s, 1H), 4.11 – 4.04 (m, 1H), 3.72 – 3.64 (m, 1H), 2.42 – 2.30 (m, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 164.95 (J = 244.5 Hz), 151.27 (J = 12.75 Hz), 125.36 (J = 11.25 Hz), 121.41 (J = 2.25 Hz), 106.23 (J = 23.25 Hz), 98.51, 97.17 (J = 26.25 Hz), 77.35, 67.58, 39.55; ¹⁹F NMR (282 MHz, CDCl₃) δ -110.66;

IR: $v_{max} = 3353, 2927, 2368, 2102, 1620, 1464, 1259, 1147, 1043, 952, 838 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{10}H_{10}FN_4O [M+H]^+$: 221.0833, found 221.0836.

3a-azido-6-chloro-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3g)

94% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.65 (d, *J* = 1.8 Hz, 1H), 5.55 (s, 1H), 4.80 (s, 1H), 4.10 – 4.04 (m, 1H), 3.71 – 3.63 (m, 1H), 2.42 – 2.29 (m, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 150.71, 136.47, 125.15, 124.37, 119.58, 109.67, 98.24, 67.51, 39.48; IR: $v_{max} = 3363, 2951, 2878, 2102, 1608, 1485, 1311, 1245, 1042, 910 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{10}H_{10}CIN_4O [M+H]^+$: 237.0538, found 237.0541.

3a-azido-5-bromo-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3h)

42% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl3) δ 7.37 (d, *J* = 2.0 Hz, 1H), 7.29 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 5.56 (d, *J* = 2.3 Hz, 1H), 4.73 (s, 1H), 4.11 – 4.05 (m, 1H), 3.72 – 3.64 (m, 1H), 2.42 – 2.34 (m, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 148.63, 133.46, 128.15, 127.30, 111.03, 98.21, 77.70, 67.44, 39.36; IR: v_{max} = 3359, 2929, 2100, 1605, 1479, 1261, 1042, 812, 748 cm⁻¹;

HRMS (ESI) m/z calcd for $C_{10}H_{10}BrN_4O [M+H]^+$: 281.0032, found 281.0034.

3a-azido-8a-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3i)

41% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, *J* = 7.4 Hz, 1H), 7.18 (td, *J* = 7.7, 1.0 Hz, 1H), 6.84 (t, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 7.9 Hz, 1H), 4.46 (s, 1H), 3.99 – 3.93 (m, 1H), 3.61 – 3.53 (m, 1H), 2.40 – 2.33 (m, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 148.96, 130.56, 126.02, 124.48, 119.44, 109.39, 103.03, 77.97, 65.60, 39.64, 22.33;

IR: $v_{max} = 3347, 2925, 2374, 2100, 1610, 1467, 1261, 1111, 746 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{11}H_{13}N_4O [M+H]^+$: 217.1084, found 217.1090.

3a-azido-8a-phenyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (3j)

80% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.61 (m, 2H), 7.45 – 7.38 (m, 3H), 7.27 – 7.22 (m, 2H), 6.88 (t, *J* = 7.3 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 4.79 (s, 1H), 4.30 – 4.24 (m, 1H), 3.83 – 3.75 (m, 1H), 2.42 (td, *J* = 5.2, 1.7 Hz, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 149.63, 139.10, 130.72, 128.87, 128.22, 127.15, 125.03, 124.71, 119.61, 109.14, 105.26, 79.97, 66.90, 39.02;

IR: $v_{max} = 3369, 2924, 2374, 2101, 1603, 1247, 1118, 746 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{16}H_{15}N_4O [M+H]^+$: 279.1240, found 279.1247.

3a-azido-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3k)

78% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.19 (m, 2H), 6.85 (td, *J* = 7.5, 0.7 Hz, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 5.21 (d, *J* = 1.0 Hz, 1H), 5.03 (s, 1H), 3.48 – 3.40 (m, 1H), 3.22 (td, *J* = 10.2, 6.1 Hz, 1H), 2.44 (s, 3H), 2.34 (dq, *J* = 12.6, 3.0 Hz, 1H), 2.10 – 2.00 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 149.47, 144.08, 135.12, 131.19, 130.00, 127.23, 124.58, 123.67, 119.86, 110.78, 83.05, 47.30, 35.89, 21.60;

IR: $v_{max} = 3387, 2925, 2373, 2102, 1611, 1470, 1246, 1160, 818, 749 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{17}H_{18}N_5O_2S$ [M+H]⁺: 356.1176, found 356.1182.

3a-azido-4-methyl-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3l)

88% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.10 (t, *J* = 7.7 Hz, 1H), 6.62 (d, *J* = 7.6 Hz, 1H), 6.53 (d, *J* = 7.9 Hz, 1H), 5.27 (s, 1H), 4.98 (s, 1H), 3.33 – 3.28 (m, 2H), 2.45 (s, 3H), 2.39 (dd, *J* = 12.4, 6.3 Hz, 1H), 2.32 (s, 3H), 2.10 – 2.00 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 149.54, 144.14, 135.15, 134.57, 131.02, 129.96, 127.49, 122.45,

121.77, 108.07, 83.71, 78.86, 46.97, 35.59, 21.61, 17.90;

IR: $v_{max} = 3385, 2925, 2374, 2100, 1599, 1464, 1343, 1240, 1161, 779 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for C₁₈H₂₀N₅O₂S [M+H]⁺: 370.1332, found 370.1338.

3a-azido-5-methyl-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3m)

81% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 1H), 7.00 (s, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 5.20 (d, *J* = 1.2 Hz, 1H), 4.87 (s, 1H), 3.48 – 3.40 (m, 1H), 3.22 (td, *J* = 10.2, 6.1 Hz, 1H), 2.45 (s, 3H), 2.36 – 2.31 (m, 1H), 2.29 (s, 3H), 2.08 – 1.98 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 147.21, 144.01, 135.19, 131.78, 129.96, 129.42, 127.24, 124.78, 124.01, 110.76, 83.34, 77.53, 47.30, 35.76, 21.59, 20.86;

IR: $v_{max} = 3387, 2924, 2103, 1619, 1496, 1342, 1245, 1161, 1094, 1046, 815 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for $C_{18}H_{20}N_5O_2S$ [M+H]⁺: 370.1332, found 370.1338.

3a-azido-6-methyl-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3n)

95% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 6.55 (s, 1H), 5.19 (s, 1H), 4.95 (s, 1H), 3.47-3.40 (m, 1H), 3.21 (td, *J* = 10.3, 6.1 Hz, 1H), 2.44 (s, 3H), 2.34 – 2.27 (m, 4H), 2.07 – 1.96 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 149.78, 144.02, 141.59, 135.22, 129.98, 127.22, 123.36, 121.73, 120.78, 111.46, 83.31, 77.37, 47.33, 35.88, 21.73, 21.58;

IR: $v_{max} = 3387, 2925, 2373, 2104, 1619, 1461, 1243, 1160, 809 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for C₁₈H₂₀N₅O₂S [M+H]⁺: 370.1332, found 370.1341.

3a-azido-7-methyl-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3o)

47% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.80 (t, *J* = 7.5 Hz, 1H), 5.26 (s, 1H), 4.78 (s, 1H), 3.50 – 3.42 (m, 1H), 3.21 (td, *J* = 10.1, 6.1 Hz, 1H), 2.45 (s, 3H), 2.33 (dq, *J* = 12.3, 3.0 Hz, 1H), 2.16 (s, 3H), 2.12 –2.02 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 148.10, 144.04, 135.30, 131.93, 129.95, 127.25, 124.03, 121.00, 120.30, 120.05, 82.97, 77.98, 47.32, 36.10, 21.59, 16.60; IR: v_{max} = 3379, 2924, 2103, 1602, 1466, 1342, 1244, 1160, 1093, 1053, 813, 749 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₂₀N₅O₂S [M+H]⁺: 370.1332, found 370.1339.

Br

3a-azido-5-bromo-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3p)

51% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.37 – 7.30 (m, 4H), 6.62 (d, *J* = 8.3 Hz, 1H), 5.22 (s, 1H), 5.05 (s, 1H), 3.47 – 3.39 (m, 1H), 3.24 (td, *J* = 10.1, 6.1 Hz, 1H), 2.46 (s, 3H), 2.30 (dq, *J* = 12.6, 3.0 Hz, 1H), 2.09 – 1.99 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 148.39, 144.26, 134.90, 133.96, 130.05, 127.22, 126.91, 126.69, 112.16, 111.29, 83.22, 77.10, 47.17, 35.82, 21.61;

IR: $v_{max} = 3383, 2925, 2100, 1601, 1477, 1339, 1246, 1160, 1044, 812, 753 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for C₁₇H₁₇BrN₅O₂S [M+H]⁺: 434.0281, found 434.0289.

3a-azido-6-chloro-1-tosyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (3q)

79% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.70 (d, *J* = 1.6 Hz, 1H), 5.23 (s, 1H), 5.13 (s, 1H), 3.47 – 3.40 (m, 1H), 3.22 (td, *J* = 10.1, 6.1 Hz, 1H), 2.45 (s, 3H), 2.30 (dq, *J* = 12.9, 3.0 Hz, 1H), 2.10 – 2.00 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 150.48, 144.25, 136.97, 134.99, 130.05, 127.21, 124.55, 123.21, 119.84, 110.83, 83.26, 76.88, 47.22, 35.95, 21.60;

IR: $v_{max} = 3385, 2925, 2103, 1607, 1485, 1449, 1340, 1243, 1160, 1044, 812 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for C₁₇H₁₇ClN₅O₂S [M+H]⁺: 390.0786, found 390.0783.

ethyl 3a-azido-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)- carboxylate (3r)

93% yield;

colorless gummy liquid;

¹H NMR (300 MHz, CDCl₃) δ 7.24 (m, 2H), 6.86 (m, 1H), 6.71 (s, 0.53H), 6.68 (s, 0.44H), 5.34 (s, 0.6H), 5.31 (s, 0.4H), 5.25 (s, 0.56H), 4.82 (s, 0.39H), 4.26 – 4.08 (m, 2H), 3.84 – 3.78 (m, 0.43H), 3.74 – 3.67 (m, 0.61H), 3.18 – 3.09 (m, 1H), 2.47 – 2.30 (m, 2H), 1.33 (t, *J* = 7.1 Hz, 1.3H), 1.25 (t, *J* = 7.1 Hz, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 155.02, (154.12), 149.82, (149.49), 130.99, 124.89, 123.80, (123.86),
119.43, (119.74), 110.49, (110.32), 80.69, (80.25), 76.21, (77.30), 61.42, (61.68), 45.49, (45.73),
35.12, (35.00), 14.64, (14.83);

IR: $v_{max} = 3355, 2926, 2374, 2101, 1689, 1611, 1423, 1199, 1116, 746 \text{ cm}^{-1}$; HRMS (ESI) m/z calcd for C₁₃H₁₆N₅O₂ [M+H]⁺: 274.1299, found 274.1304. ethyl 3a-amino-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (4)⁴

Triethylamine (315 μ L, 2.34 mmol, 6.23 equiv) was added via syringe to a solution of azide **3r** (98 mg, 0.359 mmol, 1 equiv) and dithiothreitol (328 mg, 2.13 mmol, 5.93 equiv) in methanol (4 mL) at room temperature. After 10 h, the reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed with aqueous saturated sodium bicarbonate solution (10 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, and filtered. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography (DCM/MeOH) on silica gel to give amine **4** as a colorless liquid.

96% yield;

¹H NMR (300 MHz, CDCl₃) δ 7.25 (s, 0.48H), 7.23 (s, 0.51H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.84 – 6.78 (m, 1H), 6.65 (s, 0.54H), 6.62 (s, 0.45H), 5.15 (s, 0.55H), 5.08 (s, 0.61H), 5.06 (s, 0.41H), 4.71 (s, 0.38H), 4.25 – 4.05 (m, 2H), 3.80 – 3.64 (m, 1H), 3.17 – 3.07 (m, 1H), 2.41 – 2.32 (m, 1H), 2.27 – 2.16 (m, 1H), 2.09 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 2H);

¹³C NMR (75 MHz, CDCl₃) δ 155.32, (154.48), 149.03, (148.69), 129.46, (131.51), 123.12, 119.22, (119.47), 109.95, (109.77), 83.27, (82.92), 77.38, 69.36, (70.44), 61.19, (61.40), 45.49, (45.76), 37.58, (37.47), 14.67, (14.88);

IR: $v_{max} = 3352, 2977, 2927, 2369, 1687, 1611, 1483, 1468, 1425, 1381, 1350, 1327, 1200, 1112, 1047, 895, 746 cm⁻¹;$

HRMS (ESI) m/z calcd for C₁₃H₁₇N₃O₂ [M+H]⁺: 248.1394, found 248.1402.

3a-(4-phenyl-1H-1,2,3-triazol-1-yl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (5)

The reaction of 3a-azido-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole **3a** (40.5 mg, 0.2 mmol), ethynylbenzene **4** (26 mg, 0.25 mmol), CuSO4 \cdot 5H2O (5.0mg, 0.02 mmol) and Cu powder (56 mg, 0.8 mmol) were placed in a flame-dried Schlenk tube under air, followed by the addition of DMSO (1.0 mL). The reaction was conducted at rt for 3 h in dark place. After that, 2.5 mL water was added and the reaction was extracted by ethyl acetate. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 4: 1) to afford the product **5** as colorless solid.

85% yield;

¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.75 (m, 2H), 7.56 (s, 1H), 7.41 – 7.36 (m, 2H), 7.31 (dt, *J* = 5.1, 2.1 Hz, 1H), 7.28 – 7.27 (m, 1H), 7.25 – 7.24 (m, 1H), 6.88 (td, *J* = 7.5, 0.8 Hz, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 5.76 (s, 1H), 4.85 (s, 1H), 4.35 – 4.29 (m, 1H), 3.92 – 3.84 (m, 1H), 3.67 – 3.57 (m, 1H), 2.76 – 2.70 (m, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 149.89, 147.85, 131.23, 130.34, 128.79, 128.22, 126.07, 125.70, 124.86, 120.16, 119.05, 110.16, 98.39, 78.48, 67.82, 38.94;

IR: $v_{max} = 3346, 2925, 2395, 1763, 1610, 1379, 1156, 1041, 825, 757 \text{ cm}^{-1}$;

HRMS (ESI) m/z calcd for C₁₈H₁₆N₄O [M+H]⁺: 305.1397, found 305.1398.

IV. References:

(1) Liu, C.; Zhang W.; Dai L.-X.; You S.-L. Org. Lett. 2012, 14, 4525.

- (2) (a) Hara, T.; Durell, S. R.; Myers, M. C.; Appella, D. H. J. Am. Chem. Soc. 2006, 128, 1995. (b) Guo, X. K.;
- Yang, Q.; Xu, J.; Zhang, L.; Chu, H. X.; Yu, P.; Zhu, Y. Y.; Wei, J. L.; Chen, W. L.; Zhang, Y. Z.; Zhang, X. J.;
- Sun, H. P.; Tang, Y. Q.; You, Q. D. Bioorg. Med. Chem. 2013, 21, 6466.
- (3) Jenkins, P. R.; Wilson, J.; Emmerson, D.; Garcia, M. D.; Smith, M. R.; Gray, S. J.; Britton, R. G.; Mahale, S.; Chaudhuri, B. *Bioorg. Med. Chem.* 2008,16, 7728.
- (4) Movassaghi, M.; Ahmad, O. K.; Lathrop S. P. J. Am. Chem. Soc. 2011, 133, 13002.

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm
								F		N H H								
1990	163.3	151.1		125.4	125.2		98.5	6.96 /	- 77 - 4 - 77 - 4	76.0								

7.263 7.155 6.829 6.823 6.823 6.823 6.823 6.823 6.823 6.651 6.651

7.373 7.367 7.310 7.303 7.282 7.282 7.263	6.569 6.541	5.553	4.726	4.107 4.0857 4.0857 4.0854 4.068 3.724 3.724 3.693 3.675 3.671 3.671 3.671 3.671 3.671 3.671 3.671 3.671	2.447 2.447 2.413 2.413 2.401 2.383 2.3500 2.35000 2.35000 2.35000 2.35000000000000000000000000000000000000
	$\backslash /$	\forall			

Polyetrinol work with	the second second second second	har y mindage the year of the of a graph	Managine (Malapata)	na felijen angeleksje hege yndag	Neilerstyren andersterstyret	Manual Internet States	at My March Million Million	eff de lit afte goet ag faar het de	Manuf de Santa de La Manuel de Santa de Santa	al and a state of the state of	hiting distant angle vy diraway	n an bail à Line ann an stàirtean Stàirean Regionn an Stàirean Ann an	erile single south and the single sector of the sector	Lydvogol yn alffad yw argendau	na militar for an approximation	etti istoja ligovi i si

79.97

130.71 128.87 128.87 128.22 127.15 127.15 124.71 124.71 119.61

- 109.14 - 105.26

- 149.63

- 139.10

39.02

150	140	130	 120	110	100	90	80	70	60	50	40	30	20	10	0	ppm
of of fail to a finite fail to the	hyperbolice of the state of the			Superior Vi Handy Back Ha		ng dan se singular (ng dina ng palific kap		Landberg Mar at Lands M		Negerer (Kasarga ganga gang	n fel un fürfeld gang in Palaya			ng tangan life da a managa manga manga Ng tangan life da a manga ma		11-sec Fingles (1970)-1-1-
								∕_N _{`Ts}								
149.46	144.08		123.67	110.77			83.05 83.05	76.64		47.30			21.60			

5.221 5.049

1

155.32	149.03	131.51 129.46	 109.95	83.27 82.92 77.60 77.60 77.18 77.18	70.44	61.40	45.76	37.58	14.88
				H-N					

