Supporting Information for

A Fluorescent Probe for Hypochlorite Based on Modulating the Unique Rotation of N-N Single Bond in Acetohydrazide

Lingliang Long,*a Yanjun Wu, a Lin Wang, Aihua Gong, Feilong Hu, Chi Zhang,*a

^a Scientific Research Academy & School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (P. R. China).

^b School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, (P. R. China).

^c College of Chemistry and Materials, Yulin Normal University, Yulin, Guangxi 537000 (P. R. China).

Email: Longlingliang@163.com; Chizhang@ujs.edu.cn.

Table of contents

	page
Materials and Instruments	S3
Scheme S1	S4
Synthesis	S4-S6
Preparation of the test solution	S6
Determination of fluorescence quantum yield	S7
Determination of the detection limit	S7
Preparation of the Polymer Films	S7
Cell culture and fluorescence imaging	S7
Computational details	S8
Figure S1	S8
Figure S2	S9
Figure S3	S9
Figure S4	S10
Table S1	S10
Table S2	S10
Table S3	S11
Table S4	S12
Figure S5	S13
Figure S6	S13
Figure S7	S14
Figure S8	S14
Figure S9	S15
Figure S10	S15
Figure S11	S16
Figure S12	S16
Figure S13	S17
Figure S14	S17
Figure S15	S18
Figure S16	S18
Figure S17	S19
Figure S18	S19
Figure S19	S20
Figure S20	S20
Figure S21	S21
Figure S22	S21
Figure S23	S22
References	S23

Materials and Instruments: Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Solvents were purified and dried by standard methods prior to use. Twice-distilled water was used throughout all experiments. The solutions of OCI-, H₂O₂ and t-BuOOH were prepared from 5.2% NaClO, 30% H₂O₂, and 70% *t*-BuOOH respectively. ¹O₂ was chemically generated from the H₂O₂/MoO₄²⁻ system in alkaline media.^{1, 2} Hydroxyl radical was generated by Fenton reaction.^{3, 4} Nitric oxide was generated from SNP (sodium nitroferricyanide (III) dihydrate).^{5, 6} TLC analyses were performed on silica gel plates and column chromatography was conducted over silica gel (mesh 200-300), both of which were obtained from the Qingdao Ocean Chemicals. Melting points of compounds were measured on a Beijing Taike XT-4 microscopy melting point apparatus, and all melting points were uncorrected. Mass spectra were recorded on a LXQ Spectrometer (Thermo Scientific) operating on ESI. ¹H and ¹³C-NMR spectra were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz and 100 MHz respectively. The Crystallographic data were collected on a Saturn 724⁺ CCD Xray diffractometer by using graphite monochromated Mo $K\alpha$ ($\lambda = 0.71070$ Å). Elemental (C, H, N) analysis were carried out using Flash EA 1112 analyzer. Electronic absorption spectra were obtained on a SHIMADZU UV-2450 spectrometer. Fluorescence spectra were measured on a Photon Technology International (PTI) Quantamaster fluorometer with 3 nm excitation and emission slit widths. Confocal fluorescence microcopy imaging experiments were performed on a Leica TCS SP5 II laser confocal scanning microscope. The pH measurements were performed with a pH-3c digital pH-meter (Shanghai ShengCi Device Works, Shanghai, China) with a combined glass-calomel electrode.

e S1. The synthetic procedure of compound 1a, 1b, and 2.

Synthesis of ethyl 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylate (3)

A solution of 4-(diethylamino)-2-hydroxybenzaldehyde (3.86 g, 20 mmol), diethyl malonate (6.4 g, 40 mmol) and piperidine (2 mL) in 60 mL of ethanol was refluxed for 24 h. After cooling to room temperature, the solvent was evaporated under vacuum. The resulting residue was purified by column chromatography (ethyl acetate: petroleum ether = 1:4, v/v), yielding a yellow solid (4.02g, 69.5%). Mp: 75-76 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.45 (s, 1 H), 7.30 (d, *J* = 9.2 Hz, 1 H), 6.56 (dd, *J* = 2.4 Hz, 9.2 Hz, 1 H), 6.40 (d, *J* = 2.4 Hz, 1 H), 4.34 (q, *J* = 7.2 Hz, 2 H), 3.42 (q, *J* = 7.2 Hz, 4 H), 1.37 (t, *J* = 7.2 Hz, 3 H), 1.22 (t, *J* = 7.2 Hz, 6 H); MS (ESI) m/z 290.01 [M+H]⁺.

Synthesis of 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (4)

Compound **3** (2.89 g, 10 mmol) and NaOH (0.4g, 10 mmol) were suspended in 50% aqueous MeOH (40 mL) and heated to reflux for 15 min. The reaction mixture was then cooled to room temperature and neutralized with 3 M HCl carefully to pH = 2. The precipitate was then filtered and washed with H₂O and cold MeOH. After dried

over vacuum, the compound 4 was obtained as orange solid (1.88g, 71.9%). Mp: 229-233°C; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 12.38 (s, 1H), 8.67 (s, 1H), 7.47 (d, J = 9.2 Hz, 1 H), 6.73 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 3.51 (q, J = 7.2 Hz, 4H), 1.29 (t, J = 7.2 Hz, 6H); MS (ESI) m/z 260.02 [M-H]⁻.

Synthesis of 7-(diethylamino)-2-oxo-2H-chromene-3-carbonyl chloride (5)

Under nitrogen atmosphere, compound **4** (1.15 g, 4.40 mmol) was added to dry $SOCl_2$ solution (9 ml) and the suspension was stirred at room temperature for 3 hours. Then the mixture was filtered and washed with ethyl ether to afford the yellow solid **5** (1.0 g, 81.3 %), which was not purified and used for the next step reaction immediately.

Synthesis of 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide (1a)

Hydrazine monohydrate (1.5 mL, 85%) was added to a solution of compound **3** (3.0 g, 10.3 mmol) in EtOH (20 mL). The reaction mixture was stirred at room temperature for 1 hour under nitrogen atmosphere. After cooling in an ice bath for 20 min, the resulting precipitate was filtered and washed 3 times with cold ethanol (3×50 mL). Then the precipitate was further dried under vacuum to give **1a** as orange needles (1.55 g, 54.7%). Mp: 160-165 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.74 (s, 1H), 8.69 (s, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 6.67 (dd, *J* = 2.4 Hz, 8.8 Hz, 1H), 6.51 (d, *J* = 2.4 Hz, 1H), 4.15 (d, *J* = 4.8 Hz, 2H), 3.47 (q, *J* = 7.2 Hz, 4H), 1.26 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.9, 162.1, 157.6, 152.7, 148.0, 131.1, 110.0, 109.1, 108.2, 96.6, 45.1, 12.4; MS (ESI) m/z 276.07 [M+H]⁺; Elemental analysis calcd (%) for C₁₄H₁₇N₃O₃: C 61.08, H 6.22, N 15.26; found C 60.85, H 6.25, N 15.19.

Synthesis of 7-(diethylamino)-2-oxo-N'-phenyl-2H-chromene-3-carbohydrazide (1b)

Under nitrogen atmosphere, triethylamine (1 mL) was added dropwise to a solution of compound **5** (0.839g, 3.0 mmol) and phenylhydrazine (0.324g, 3.0 mmol) in dry CH₂Cl₂ (30 mL). The mixture was stirring at room temperature for 16 hours. After removed the solvent under reduced pressure, the residue was purified by column chromatography (dichloromethane: petroleum ether: methanol = 90:30:1, v/v), affording a yellow solid (0.554 g, 52.6%). Mp: 201-203 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 9.97 (s, 1H), 8.65 (s, 1H), 7.98 (s, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 7.16 (t, *J* = 8.4 Hz, 1H), 6.80 (m, 4H), 6.65 (d, *J* = 2.4 Hz, 1H), 3.49 (q, *J* = 7.2 Hz, 1Hz, 1H), 8.45 (s, 1Hz, 1Hz), 8.45 (s, 1Hz, 1Hz), 8.45 (s, 1Hz), 10.55 (s, 1Hz), 1

4H), 1.15 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 163.3, 161.8, 157.8, 153.1, 149.5, 148.4, 132.1, 129.2, 119.2, 112.8, 110.7, 109.5, 108.1, 96.4, 44.8, 12.8; MS (ESI) m/z 352.0 [M+H]⁺; Elemental analysis calcd (%) for C₂₀H₂₁N₃O₃: C 68.36, H 6.02, N 11.96; found C 68.15, H 6.05, N 11.91.

Synthesis of 1-phenylpyrazolidine (6)

The compound **6** was synthesized according to a reported procedure.⁷ Under nitrogen atmosphere, a solution of 1-phenylpyrazolidin-3-one (0.5 g, 3.1 mmol) and Lithium Aluminium Hydride (0.46 g, 12.1 mmol) in dry THF (12 mL) was refluxed for 18 hours. After cooling to room temperature, 30 mL ether and 30 mL water were added. The white solid was removed by filtration. The organic phase was collected by separation funnel and concentrated under reduced pressure to afford the compound **6** (0.376 g), which was used for the next step without further purification.

Synthesis of 7-(diethylamino)-3-(2-phenylpyrazolidine-1-carbonyl)-2H-chromen - 2-one (2)

Under nitrogen atmosphere, triethylamine (1 mL) was added dropwise to a solution of compound **5** (0.4025 g, 1.44 mmol) and compound **6** (0.133 g, 0.897 mmol) in dry CH₂Cl₂ (30 mL). The mixture was stirring at room temperature for 3 hours. After removed the solvent under reduced pressure, the resulting residue was purified by column chromatography (dichloromethane: petroleum ether: methanol = 100:25:1, v/v), affording a yellow solid (0.259 g, 73.7 %). Mp: 204-208 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.61 (s, 1H), 7.23(t, *J* = 7.2 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.93 (m, 3H), 6.50 (d, *J* = 8.0 Hz, 1H), 6.42 (s, 1H), 3.66 (t, *J* = 6.4 Hz, 2H), 3.39 (q, *J* = 7.2 Hz, 4H), 2.10 (s, 2H), 1.63 (m, 2H), 1.19 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 167.8, 159.2, 156.8, 151.1, 150.5, 141.3, 129.5, 129.1, 122.1, 115.6, 108.8, 107.5, 97.1, 54.6, 44.8, 43.1, 24.7, 12.4; MS (ESI) m/z 392.10 [M+H]⁺; Elemental analysis calcd (%) for C₂₃H₂₅N₃O₃: C 70.57, H 6.44, N 10.73; found C 70.26, H 6.47, N 10.69.

Preparation of the test solution: The stock solution of probe **1b** $(5.0 \times 10^{-4} \text{ M})$ was prepared in CH₃CN, and the stock solution of various testing species $(1 \times 10^{-3} \text{ M})$ was prepared by dissolving an appropriate amount of testing species in water. The test solution of the probe **1b** $(10 \ \mu\text{M})$ in 20 mM potassium phosphate buffer (pH 7.4, containing 20% CH₃CN as co-solvent) was prepared by placing 0.1 mL of the probe

1b stock solution, 0.9 mL CH₃CN, and an appropriate aliquot of each testing species stock into a 5 mL volumetric flask, and then diluting the solution to 5 mL with 20 mM potassium phosphate buffer (pH 7.4). The resulting solution was shaken well and incubated at room temperature for 10 min before recording the spectra.

Determination of fluorescence quantum yield: Fluorescence quantum yield was determined using the solutions of quinine sulfate ($\Phi_F = 0.546$ in 1N H₂SO₄)⁸ as a standard. The quantum yield was calculated using the following equation:⁹⁻¹¹

$$\Phi_{\mathrm{F}(\mathrm{X})} = \Phi_{\mathrm{F}(\mathrm{S})} \left(A_{\mathrm{S}} F_{\mathrm{X}} / A_{\mathrm{X}} F_{\mathrm{S}} \right) \left(n_{\mathrm{X}} / n_{\mathrm{S}} \right)^2$$

Where Φ_F is the fluorescence quantum yield, *A* is the absorbance at the excitation wavelength, *F* is the area under the corrected emission curve, and *n* is the refractive index of the solvents used. Subscripts S and X refer to the standard and to the unknown, respectively.

Determination of the detection limit: The detection limit was determined from fluorescence titration data based on a reported method.¹²⁻¹⁵ According to the result of titration experiment, the graph of $(I_{min}-I) / (I_{min}-I_{max})$ versus log [OCI⁻] was plotted, where the I is the fluorescence intensity at 468 nm, I_{min} and I_{max} are the minimum and maximum fluorescence intensity at 468 nm respectively. A linear regression curve was then fitted (Fig. S6), and the intercept of the line at x-axis was taken as detection limit.

Preparation of the Polymer Films: Poly(-methylmethacrylate) polymer (1.0 g, 99.8% (w/w)) and compound **1b** (2.0 mg, 0.2% (w/w)) were dissolved in CH_2Cl_2 . The polymer film for testing fluorescence spectra was prepared by spin-coating the mixture solution at 1000 rpm on a quartz glass. After evaporation of the solvent at room temperature, the fluorescence spectra were conducted. Then the polymer film for taking visual fluorescence color photo was prepared by pouring the mxiture solution into a glass dish. After evaporation of the solvent at room temperature, the photo was taken under a handheld 365 nm UV lamp.

Cell culture and fluorescence imaging: HepG2 cells were seeded in a 24-well plate in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal

bovine serum for 24 h. Then the cells were incubated with probe **1b** (2 μ M) in the culture medium for 30 min at 37°C. After washing with PBS three times to remove the remaining probe **1b** in culture medium, the cells were further incubated with NaClO (0 μ M, 10 μ M, 50 μ M) for 20 min at 37°C. Subsequently, fluorescent images were acquired on a Leica TCS SP5 II laser confocal scanning microscope with an objective lens (×40). The excitation wavelength was set to 405 nm and 633 nm for probe **1b** and nuclear staining (DRAQ5), respectively.

Computational details: The calculations were performed with Gaussian 09 program. The parameter referred to the previous work.¹⁶ The ground state structures of the **1a** and **1b** were optimized using density functional theory (DFT) with B3LYP functional and 6-31+G** basis set. The frontier molecular orbitals of **1a** and **1b** and the energy profiles were shown in Fig. S1. It is clear that the energy level of hydrazine or phenylhydrazine (donor) orbital is lower than that of the 7-diethylamino-coumarin fluorochrome (acceptor) orbital in **1a** and **1b**, respectively. This result demonstrates that there is no PET process in **1a** or **1b**.

Figure S1. Frontier molecular orbital energy illustrations show the relative energetic dispositions of the orbitals of **1a** (a) and **1b** (b). Calculations were performed with the

DFT method (B3LYP/6-31G**) using Gaussian 09 program.

Figure S2. The absorption spectra of 10 μ M 1a (•), 1b (•), and 2 (\blacktriangle) in toluene.

Figure S3. Packing diagram of **1a** (ball-and-stick representation); the green dash lines represent hydrogen bonds.

Figure S4. Packing diagram of **1b** (ball-and-stick representation); the green dash lines represent hydrogen bonds.

D-H	d(D-H) (Å)	d(HA) (Å)	<dha (°)<="" th=""><th>d(DA) (Å)</th><th>А</th></dha>	d(DA) (Å)	А
N2-H2	0.860	1.999	138.36	2.703	02
N3-H3A	0.919	2.109	156.53	2.975	O3 ^[a]
N3-H3B	0.932	2.122	152.84	2.981	O6 ^[b]
N5-H5	0.860	2.043	136.73	2.734	05
N6-H6B	0.914	2.158	164.14	3.047	O3 ^[c]

Table S1 Hydrogen-bond geometry of **1a**.

Symmetry codes: [a] [-x+1, -y, -z+1]; [b] [x-1, y-1, z-1]; [c] [-x+1, -y+1, -z+2].

Table S2 Hydrogen-bond geometry of **1b**.

D-H	d(D-H) (Å)	d(HA) (Å)	<dha (°)<="" th=""><th>d(DA) (Å)</th><th>А</th></dha>	d(DA) (Å)	А
N2-H2A	0.923	1.992	135.65	2.730	O2

Compound	1a
CCDC	1036454
Chemical formula	$C_{14}H_{17}N_3O_3$
formula weight	275.31
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	P-1
<i>T</i> (K)	293(2)
<i>a</i> (Å)	9.2120(18)
<i>b</i> (Å)	12.624(3)
<i>c</i> (Å)	12.927(3)
α(°)	94.78(3)
β(°)	109.99(3)
γ(°)	105.42(3)
$V(Å^3)$	1336.5(5)
Ζ	4
$D ({\rm mg/m^{-3}})$	1.368
<i>F</i> (000)	584
μ (Mo Ka)(mm ⁻¹)	0.098
θ range (°)	3.38 ~ 25.00
Goodness of fit on F ²	1.040
$R_1, wR_2 [I > 2\sigma (I)]$	0.0350, 0.0912
Reflections collected / unique	11095 / 4609 [R(int) = 0.0191]
<i>R</i> indices (all data)	0.0424, 0.0962

 Table S3. Crystallographic parameters for compound 1a

 $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, wR_2 = \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$ S11

Compound	1b
CCDC	1036457
Chemical formula	$C_{20}H_{21}N_{3}O_{3}$
formula weight	351.40
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P21/c
<i>T</i> (K)	293(2)
<i>a</i> (Å)	13.1553(7)
<i>b</i> (Å)	6.9401(4)
<i>c</i> (Å)	21.0792(14)
$\alpha(^{\circ})$	90.00
β(°)	109.629(5)
γ(°)	90.00
$V(Å^3)$	1812.67(19)
Ζ	4
$D (mg/m^{-3})$	1.288
<i>F</i> (000)	744
μ (Mo Ka)(mm ⁻¹)	0.088
θ range (°)	3.03 ~ 26.00
Goodness of fit on F ²	1.052
$R_1, wR_2 [I > 2\sigma (I)]$	0.0559, 0.1421
Reflections collected / unique	9709 / 3485 [R(int) = 0.0329]
<i>R</i> indices (all data)	0.0960, 0.1604

Table S4. Crystallographic parameters for compound 1b

 $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, wR_2 = \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$ S12

Figure S5. The fluorescence emission spectra of 10 μ M 1a (a), 1b (b), and 2 (c) in various solvents. The emissions of 1b in different solvents were significantly quenched, thus the emission of 1a in toluene was shown in (b) for comparison.

Figure S6. The fluorescence intensity of probe **1b** (10 μ M) to various amount of OCl-(0 to 20 μ M). The data were acquired after incubation of probe **1b** with OCl⁻ for 10 min in 20 mM potassium phosphate buffer (pH 7.4, containing 20% CH₃CN as co-solvent) at room temperature. Excitation was provided at 398 nm.

Figure S7. Plot of $(I_{min}$ - I) / $(I_{min}$ - $I_{max})$ versus log [OCl⁻] for probe 1b. Calculated detection limit = 3.56×10^{-7} M.

Figure S8. The variations of fluorescence intensity of probe 1b (10 μ M) in the absence (**•**) or presence (**•**) of OCl⁻ (60 μ M) as a function of pH (λ_{ex} =398 nm, λ_{em} = 468 nm).

Figure S9. Fluorescence responses of probe **1b** (10 μ M) in the presence of 60 μ M various species in 20 mM potassium phosphate buffer (pH 7.4, containing 20% CH₃CN as co-solvent) (λ_{ex} =398 nm, λ_{em} = 468 nm). Inset: visual fluorescence color changes of probe **1b** (10 μ M) in the presence of 60 μ M various species (A-G: Blank, OCl⁻, H₂O₂, •OH, ¹O₂, *t*-BuOOH, NO•.).

Figure S10. ¹H NMR spectra of the isolated product of probe 1a + NaOCl.

Figure S11. The ESI-Ms spectra of the isolated product of probe 1a + NaOCl.

Figure S12. Normalized fluorescence emission spectra of 7-(Diethylamino)coumarin -3-carboxylic acid (•) and the isolated product of probe $1b + \text{NaOCl}(\bullet) (\lambda_{ex}=398 \text{ nm})$.

Figure S13. Normalized fluorescence excitation spectra of 7-(Diethylamino)coumarin -3-carboxylic acid (•) and the isolated product of probe $1b + \text{NaOCl}(\bullet)$ ($\lambda_{em} = 468$ nm).

Figure S14. Normalized absorption spectra of 7-(Diethylamino)coumarin-3-carboxylic acid (\bullet) and the isolated product of probe 1b + NaOCl(\bullet).

Figure S15. ESI-Ms spectra of 1a.

Figure S16. ¹H NMR spectra of **1a**.

Figure S17. ¹³C NMR spectra of **1a**.

Figure S18. ESI-Ms spectra of 1b.

Figure S20. ¹³C NMR spectra of **1b**.

Figure S21. ESI-Ms spectra of 2.

Figure S22. ¹ H NMR spectra of **2**.

References:

- 1 J. M. Aubry, J. Org. Chem., 1989, 54, 726-728.
- 2 N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, *Angew. Chem. Int. Ed.*, 1999, **38**, 2899-2901.
- 3 H. H. Fenton, *Chem. News*, 1876, **33**, 190-190.
- 4 K. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, T. Nagano, *J. Biol. Chem.*, 2003, **278**, 3170-3175.
- 5 Z. Sun, F. Liu, Y. Chen, P. K. H. Tam, D. Yang, Org. Lett., 2008, 10, 2171-2174.
- 6 Y. Yang, H. J. Cho, J. Lee, I. Shin, J. Tae, Org. Lett., 2009, 11, 859-861.
- 7 M. K. Eberle, G. G. Kahle, S. M. Talati, *Tetrahedron*, 1973, **29**, 4045-4048.
- 8 J. N. Demas, G. A. Crosby, J. Phys. Chem., 1971, 75, 991-1024.
- 9 C. A. Parker, W. T. Rees, Analyst, 1960, 85, 587-600.
- 10 S. F. Forgues, D. Lavabre, J. Chem. Educ., 1999, 76, 1260-1264.
- 11 A. Ajayaghosh, P. Carol, S. Sreejith, J. Am. Chem. Soc., 2005, 127, 14962-14963.
- M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, *Anal. Chem.*, 1996, 68, 1414-1418.
- 13 A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tarraga, P. Molina, J. Veciana, *J. Am. Chem. Soc.*, 2005, **127**, 15666-15667.
- 14 W. Chen, W. Gong, Z. Ye, Y. Lin, G. Ning, *Dalton Trans.*, 2013, 42, 10093-10096.
- 15 B. Chandra, S. P. Mahanta, N. N. Pati, S. Baskaran, R. K. Kanaparthi, C. Sivasankar, P. K. Panda, *Org. Lett.*, 2013, 15, 306-309.
- 16 H. Zhu, J. Fan, J. Wang, H. Mu, X. Peng, J. Am. Chem. Soc., 2014, 136, 12820-12823.