Supplementary Information

Experimental Section

1. Synthesis of CeO₂ octahedrons

 $Ce(NO_3)_3 \cdot 6H_2O$ (1.30 g) was dissolved in 30 mL of deionized water followed by the addition of Na₃PO₄ solutions (10 mL, 5 mM) and stirred for 30 min. Then, the mixture solution was sealed in a 50 mL teflon-lined stainless autoclave and heated at 170 °C for 24 h.

2. Synthesis of CeO₂ nanowires

 $Ce(NO_3)_3 \cdot 6H_2O$ (0.43 mg) was dissolved in 5 mL of deionized water followed by the addition of NaOH solutions (35 mL, 6.5 M) and stirred for 30 min. Then, the mixture solution was sealed in a 50 mL teflon-lined stainless autoclave and heated at 100 °C for 48 h.

3. Synthesis of CeO₂@MnO₂ nanostructures

As-prepared CeO₂ nanostructures (25 mg) were dispersed in KMnO₄ solutions (35 mL, 0.01 M). Then, the mixture solution was sealed in a 50 mL teflon-lined stainless autoclave and heated at 140 °C for 12 h.

4. Materials Characterization

The crystallographic information and chemical composition of as-prepared products were established by powder X-ray diffraction (XRD, D/max 2500, Cu Ka). The morphological and structural investigations of the CeO₂@MnO₂ nanostructures were examined by high-resolution transmission electron microscopy (HRTEM, ZEISS LIBRA 200).

5. Electrochemical measurement

A three-electrode configuration was used to measure the electrochemical properties of the structures in Na₂SO₄ (1 M) solution, where a mixture of CeO₂@MnO₂ nanostructures, acetylene black and polyvinylidene difluoride (PVDF) (7:2:1 wt%), a platinum plate and a saturated calomel electrode (SCE) were used as working, counter and reference electrodes, respectively. The electrolytic cell was obtained from Cells Electrochemistry Experiment Equipments Co., Ltd., China (www.hzcell.com). The asymmetric supercapacitor was measured with a two-electrode system, including CeO₂ nanowire@MnO₂ nanostructures as the positive electrode, a Whatman filter paper as separator, and AGO as the negative electrode.

The electrochemical performances in both three-electrode and two-electrode configurations were carried out on a CHI 660E electrochemical station. Cycle voltammetry (CV) and Galvanostatic charge–discharge experiments were enforced to reflect the electrochemical properties of the electrodes. EIS measurements were carried out by applying an AC voltage with 5 mV amplitude in a frequency range from 0.01 Hz to 100 kHz at the open potential. The discharge specific capacitance was calculated according to the following equation (1)

$$Csp = I\Delta t / (m\Delta V)$$
(1)

where I (A) is the charge–discharge current, ΔV (V) is the tested potential range, Δt (s) is the discharge time, and m (g) is the mass of single electrode. The energy density value was calculated according to Equation (2)

$$E=0.5 \text{ CV}^2/3.6$$
 (2)

where C is the capacitance (F g⁻¹) of the supcapacitor and V is its operating potential window,

respectively. The average power density value was calculated according to Equation (2) and (3):

P=3600 E/t

(3)

where t is the discharge time (s).

Fig .S1 SEM images of CeO₂ octahedrons

Fig .S2 Nyquist plots of the two kinds of nanostructures.

	C (Fg-		Testing	
samples	1)	Electrolyte	condition	references
Amorphous MnO ₂	110	2 M NaCl	5 mV s ⁻¹	1
Birnessite MnO ₂	110	0.1 M K ₂ SO ₄	2 mV s ⁻¹	2
α -MnO ₂ hollow urchins	123	0.5 M Na ₂ SO ₄	2 mV s ⁻¹	3
Ambigel MnO ₂	130	2 M NaCl	5 mV s ⁻¹	4
α -MnO ₂ nanorod	152	1 M Na ₂ SO ₄	5 mV s ⁻¹	5
MnO ₂ nanorod	168	1 M Na ₂ SO ₄	5 mV s ⁻¹	6
MnO ₂ nanowire	176	1 M Na ₂ SO ₄	5 mV s ⁻¹	7
MnO ₂ nanosheet	182	0.1 M Na ₂ SO ₄	0.1 A g ⁻¹	8
GHCS/MnO ₂	184	1 M Na ₂ SO ₄	0.1 A g ⁻¹	9
MnO ₂ microsphere	190	1 M Na ₂ SO ₄	0.5 A g ⁻¹	10
MnO ₂ /CNTs/RGO	193	1 M Na ₂ SO ₄	0.2 A g ⁻¹	11
α -MnO ₂ sphere	200	$0.25 \text{ M} \text{ Na}_2 \text{SO}_4$	1 A g ⁻¹	12
Graphene/Honeycomb MnO ₂	210	1 M Na ₂ SO ₄	0.5 A g ⁻¹	13
α -MnO ₂ nanorod	245	1 M KOH	1 A g ⁻¹	14
α - MnO ₂ spherical-like particle	258.7	1 M Na ₂ SO ₄	0.1 A g ⁻¹	15
Graphene Hydrogel/ MnO ₂	266.8	0.5 M Na ₂ SO ₄	1 A g ⁻¹	16
Mesoporous α -MnO ₂ network	283	1 M Na ₂ SO ₄	2 mV s ⁻¹	17
MnO ₂ nanowire	300	1 M Na ₂ SO ₄	5 mV s ⁻¹	18
MnO ₂ tubular nanostructure	315	1 M Na ₂ SO ₄	0.2 A g-1	19
α -MnO ₂ ultralong nanowire	345	0.5 M Na ₂ SO ₄	1 A g ⁻¹	20
MnO ₂ nanoflower	347	1 M Na ₂ SO ₄	5 mV s ⁻¹	21
MnO ₂ hollow structure	366	1 M Na ₂ SO ₄	5 mV s ⁻¹	22
Co ₃ O ₄ /MnO ₂	480	1 M LiOH	2.67 A g ⁻¹	23
CeO_2 octahedron@MnO_2 nanostructure	178.5	1 M Na ₂ SO ₄	0.25 A g ⁻¹	
CeO2 nanowire@MnO2 nanostructure	255.2	1 M Na ₂ SO ₄	0.25 A g ⁻¹	

Table S1. Comparison of specific capacitances of the reported MnO₂ electrodes and the present work. All values are measured using the three-electrode system.

By comparison, we find the CeO₂@MnO₂ nanostructure are disadvantaged based on the whole weight of the samples. However, the capacitance of CeO₂ octahedron@MnO₂ nanostructures and CeO₂ nanowire@MnO₂ nanostructures calculated are 826.4 F g⁻¹and 622.4 F g⁻¹ based on the weight of MnO₂ which is approach to the theoretical capacity of MnO₂. (The weight content of MnO₂ is calculated to be 21.6% and 41% for CeO₂ octahedron@MnO₂ nanostructures and CeO₂ nanowire@MnO₂ nanostructures respectively by treating these nanostructures in 1 M HCl solution.)

References

- 1. R. N. Reddy and R. G. Reddy, J. Power Sources, 2004, 132, 315-320.
- T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier and D. Bélanger, J. Electrochem. Soc., 2006, 153, A2171-A2180.
- 3. J.-G. Wang, Y. Yang, Z.-H. Huang and F. Kang, *Mater. Chem. Phys.*, 2013, 140, 643-650.
- 4. R. N. Reddy and R. G. Reddy, J. Power Sources, 2003, 124, 330-337.
- 5. N. Tang, X. Tian, C. Yang and Z. Pi, *Materials Research Bulletin*, 2009, 44, 2062-2067.
- 6. V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan and B. Wei, *The Journal of Physical Chemistry B*, 2005, **109**, 20207-20214.
- 7. R. Jiang, T. Huang, J. Liu, J. Zhuang and A. Yu, *Electrochim. Acta*, 2009, **54**, 3047-3052.
- 8. H. Jang, S. Suzuki and M. Miyayama, J. Electrochem. Soc., 2012, 159, A1425-A1430.
- 9. Z. Lei, J. Zhang and X. S. Zhao, J. Mater. Chem., 2012, 22, 153.
- W.-Y. Ko, L.-J. Chen, Y.-H. Chen, W.-H. Chen, K.-M. Lu, J.-R. Yang, Y.-C. Yen and K.-J. Lin, J. Phys. Chem. C, 2013, 117, 16290-16296.
- 11. Z. Lei, F. Shi and L. Lu, ACS Appl Mater Interfaces, 2012, 4, 1058-1064.
- 12. Y. Zhang, C. Sun, P. Lu, K. Li, S. Song and D. Xue, *CrystEngComm*, 2012, 14, 5892-5897.
- 13. J. Zhu and J. He, *ACS Appl Mater Interfaces*, 2012, **4**, 1770-1776.
- Z. Song, W. Liu, M. Zhao, Y. Zhang, G. Liu, C. Yu and J. Qiu, J. Alloys Compd., 2013, 560, 151-155.
- 15. Y. Zhang, G.-y. Li, Y. Lv, L.-z. Wang, A.-q. Zhang, Y.-h. Song and B.-l. Huang, *Int. J. Hydrogen Energy*, 2011, **36**, 11760-11766.
- 16. H. Gao, F. Xiao, C. B. Ching and H. Duan, ACS Appl Mater Interfaces, 2012, 4, 2801-2810.
- 17. L. L. Yu, J. J. Zhu and J. T. Zhao, *European Journal of Inorganic Chemistry*, 2013, 2013, 3719-3725.
- 18. H.-S. Nam, J.-K. Yoon, J. M. Ko and J.-D. Kim, Mater. Chem. Phys., 2010, 123, 331-336.
- J. Zhu, W. Shi, N. Xiao, X. Rui, H. Tan, X. Lu, H. H. Hng, J. Ma and Q. Yan, ACS App.l Mater. Interfaces, 2012, 4, 2769-2774.
- W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma and J. Yang, J. Mater. Chem., 2012, 22, 14864-14867.
- G. Zhu, L. Deng, J. Wang, L. Kang and Z.-H. Liu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 42-48.
- 22. Y. Gu, J. Cai, M. He, L. Kang, Z. Lei and Z.-H. Liu, J. Power Sources, 2013, 239, 347-355.
- J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong and H. J. Fan, *Adv Mater*, 2011, 23, 2076-2081.