Electronic Supplementary Information (ESI)

Graphene Quantum Dots doped Polyaniline Nanofiber as High Performance Supercapacitor Electrode Materials

Sanjoy Mondal, Utpal Rana and Sudip Malik*

Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road., Jadavpur, Kolkata – 700032, India.

Table of content

1) Synthesis of GO	S2
2) Synthesis of GQDs and GQDP composites in Table S1	S3
3) Characterization of GQD and GQDP composite	S4
4) Electrochemical experiments	S5
5) UV-vis and PL study of GQD	S6
6) XRD study of Graphite, GO and GQD	S7
7) FTIR study of GQDP composites.	S8
8) XPS study of N1s, O1s and C1s	S9
9) Powder XRD of GQDP composites	S10
10) Raman study of GQDP composites	S11
11) CV plot of GQDP10 composite with different scan rate	S12
12) Specific capacitance of GQDP composite	S13
13) Impedance study	S14
14) Literature review	S15
15) References	S16

Experimental Section

Materials

Graphite powdered (12500, 500 mesh), Ammonium persulphate [(NH₄)₂S₂O₈ (APS)] were purchased from Sigma Aldrich and used without further purification. Merck Chemicals supplied Aniline, (distilled under reduced pressure and store at 5 °C in dark place before use), H_2O_2 (30% v/v), KMnO₄ and NaNO₃. Sulphuric acid (98%) was purchased from commercial sources as analytical pure reagents. All solutions were prepared in deionised water (18 M Ω cm, Millipore Milli Q water system).

Synthesis of Graphene Oxide (GO)

Graphite oxide (GO) was synthesized by a modified Hummers method from graphite powdered. S1 Following the synthesis of GO according to our earlier report. Briefly, 1.0g of graphite powdered slowly added to a 500mL conical flask equipped with 50 mL of conc. H₂SO₄ and a magnetic bar. The conical flask placed in an ice bath (0-5 °C) with vigorous stirring while maintaining the reaction mixture fixed. After the addition, graphite powered formed well dispersed black slurry and stirring continue for 2-3h. 1.0g of NaNO₃ and 5.0g KMnO₄ was added very slowly one by one at 0-5 °C. The mixture was allowed to warm at room temperature (25 °C) and stirred for 2h. Again conical flask with reaction mixture placed in an ice-bath and 110 mL water was then added slowly while the temperature was not raised more than 90 °C with constant stirring for 30 min. The mixture was poured into 200 mL of water, after which 7 mL of 30% H₂O₂ was added through inner wall of the conical flask. Immediately the colour of the solution changed from dark brown to pale yellow. The solution was then filtered using Millipore filter paper to get pale yellow residue. The residue was redispersed in water and centrifuged at 15000 rpm washed several times with water until the

pH of the solution was neutral. The resultant solid material was dried in vacuum at 25 °C and stored in the ambient environment to get pure GO.

Synthesis of Graphene Quantum Dots (GQD)

Synthesized flake shaped GO was dispersed in water (4 mg/mL) with sonication followed by stirring. 40 mL of 30% H₂O₂ was subsequently added to 5 mL of GO suspension. The resulting mixture reacted at 90 °C with vigorous stirring for 12h. Unreacted H₂O₂ and water was removed by rotary evaporation at 60°C. Ethanol was added as a poor solvent to precipitate out and wash the GQD. Finally GQD was purified by dialysis.

Table S1: Preparation of GQD/PANI composite with different GQD weight ratio

Composites	Aniline [mmol]	GQD [wt%]	GQD:Ani (w/w)	APS [mmol]	Yield (mg)	C_s $[F/g]^*$
GQDP0	100 mg [1.1]	0 mg		250	27	205.7
GQDP5	100 mg [1.1]	5 mg	0.05: 1	250	91	332.89
GQDP10	100 mg [1.1]	10	0.1:1	250	96	1044.34
GQDP15	100 mg [1.1]	15	0.15:1	250	103	776.67
GQDP20	100 mg [1.1]	20	0.2:1	250	106	319.34

^{*} All specific capacitance are at 1 A/g current density

Characterization of GQD and GQDP composite

Surface morphology as well as over all morphology of GQDP composite were characterized by FESEM (JEOL, JSM 6700F) instrument operating at 5 kV. To reduce the surface potential, samples were coated with platinum for 90 s. TEM imaging of GODP composites carried by HRTEM (JEOL, 2010EX) instrument, an accelerating voltage of 200 kV and. Small amount of water dispersed samples were spread on a 200 mesh Cu-grid coated with a holey carbon support AFM topologies of synthesized GQDs was recorded using atomic force microscopy (Veeco, model AP0100) in noncontact mode at a tip resonance frequency of 300 kHz. The well dispersed water sample spread on freshly cleaved mica surface at ambient conditions. UV-vis spectroscopy of GQDs and GQDP composites were done by Agilent (model 8453) UV-vis spectrophotometer. Fluorescence spectra of GQDs obtain by using Horiba Jobin Yvon Fluoromax 3 instrument. The FTIR spectroscopy was carried out in a FTIR-8400S instrument (Shimadzu) using KBr pellets. Raman studies were performed using a Raman triple spectrometer (model T-64000, Horiba-Jobin Yvon) fitted with a synapse detector. The samples were excited with a 514.5 nm laser (Spectra Physics, model Stabilite 2017). Powered WXRD analysis were performed by using a Bruker AXS diffractometer (D8 advance) using CuK_{α} radiation (λ =1.54 Å), a generator voltage of 40 kV and a current of 40 mA. XPS study was performed by using a focused monochromatized A1 K_α X-ray source (1486.8 eV) in Omicron Nano-Technology 0571 XPS instrument.

Electrochemical measurements

All electrochemical experiments like cyclic voltammogram (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) study was done by a CHI6087E electrochemical workstation (CHI, USA) by a conventional three-electrode system. In present study modified glassy carbon electrode (GCE) as a working electrode, a saturated calomel electrode (SCE) as the reference electrode, Pt wire electrode as the auxiliary electrode and 0.5 M H₂SO₄ as a electrolyte were used. Prior to use the GCE (3 mm in diameter, surface area of 0.07 cm²) were carefully polished with 1, 0.3, and 0.05 μm alumina powder and sequentially washed through water and ethanol with sonication at room temperature until a mirror finish was obtained. The specific capacitance (C_s), energy density, (E) and power density (P) were calculated from the discharge curve based on equation (1), (2) and (3) respectively.

$$C_{s} = \frac{i \times \Delta t}{\Delta V \times m} \quad (F/g) \qquad \dots (1)$$

$$E = \frac{C_s \times \Delta V^2}{7.2} (\text{W h/kg}) \qquad \dots (2)$$

$$P = E \times 3600/t \text{ (W/kg)}$$
(3)

Where, 'i' = current (A); ' Δt ' = discharge time (s), ' ΔV ' = voltage windows (V) and 'm' = mass of GQDP composites (g).

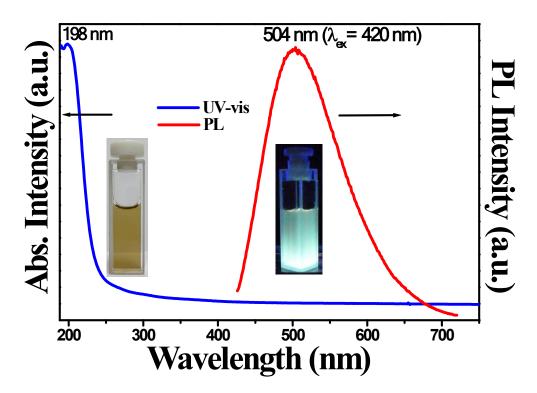


Fig.S1: UV-vis and PL spectra of water well dispersed GQD.

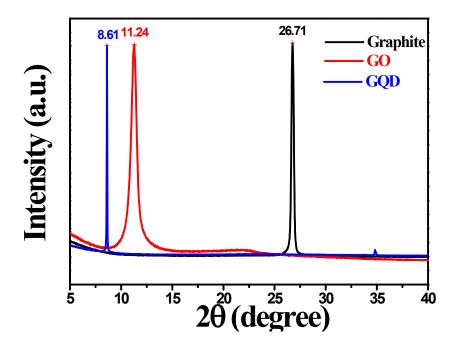


Fig.S2: XRD pattern of synthesized graphite, GO and GQDs

FTIR study

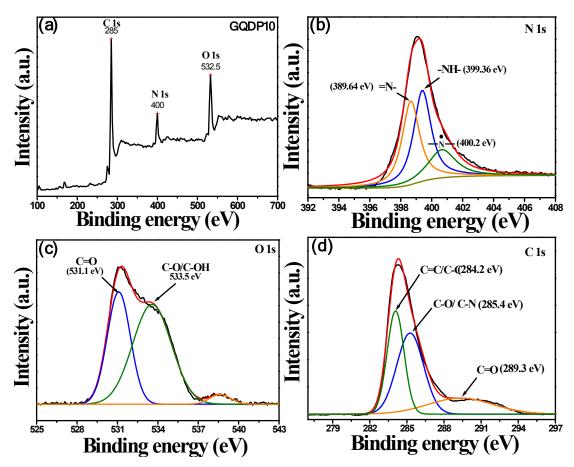



Fig.S3: FTIR spectra of synthesized GQDP composites

XPS study of GQDP composites

Fig.S4 XPS study of GQDP10 composite (a) whole scan (b) deconvolution spectra of N1s, (c) O1s and (d) C1s.

The C1s (~285 eV) peak of GQDP10 composite deconvolate into three Gaussian sub-peaks position at ~284.2 eV (C=C/C-C), 285.4 eV (C-O/C-N) and 289.3 eV (C=O) in Fig.S3. Again deconvolate N1s peak shown in Fig.S4 that contains two sub-peaks at ~531.1 eV (C=O) and 533.5 eV (C-O/C-OH).

XRD study of GQDP composites

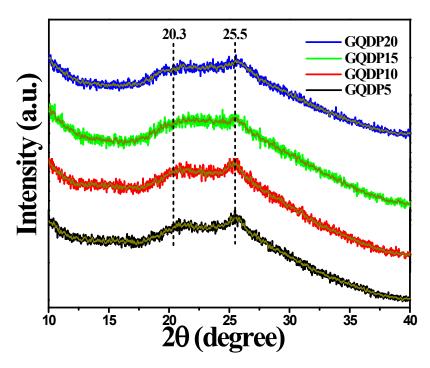


Fig.S5 Powder XRD study of synthesized GQDP composites.

Raman Study of GQDP composites

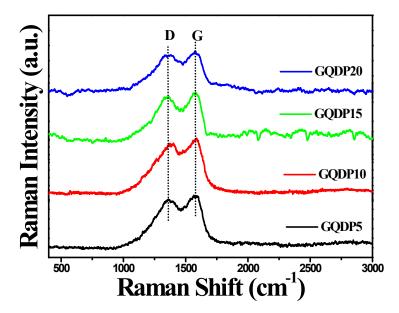
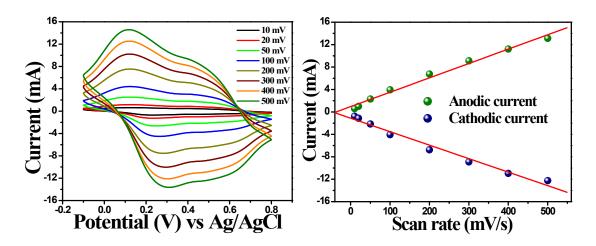



Fig.S6 Raman study of synthesized GQDP composite under 514 nm laser

Raman spectra of GQDP composites shows GQDs are involve for PANI formation as a soft doping materials. All GQDP composites have D and G band at 1355 and 1580 cm⁻¹ respectively. D band related to defects or edge areas and G band corresponds to the vibration of sp²-hybridized carbon. GQDs have some fluorescence behaviour which makes noise in region of 2000-3000cm⁻¹. In all composites have higher ID/IG ratio (<1.0) suggested that GQDs intercalation with PANI.

CV plot of GQDP10 composite with different scan rate

Fig.S7 Scan dependent CV study of GQDP10 composite in 0.5 M $\rm H_2SO_4$ electrolyte by 3 electrode cell at 25 °C

Specific capacitance of GQDP composite

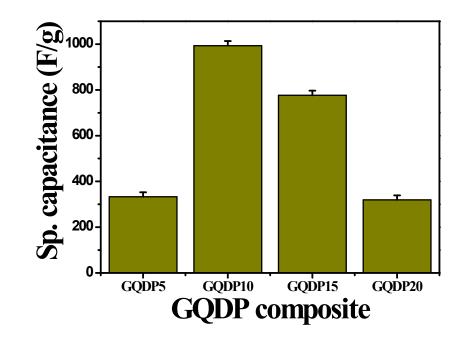


Fig.S8: Specific capacitance value of different GQDP composites.

Impedance study

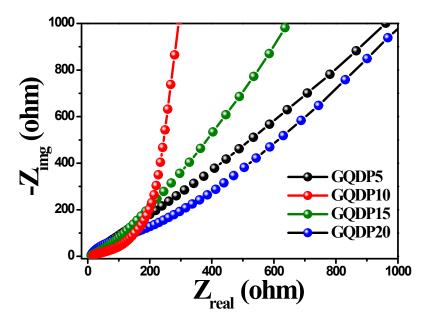


Fig.S9 Impedance study of GQDP composites.

Previous report about supercapacitor

Materials	Preparation method	Current density	C _s (F/g)	Ref	Remark
GQD/PANI	Chemical oxidative polymerization	1 A/g	1044	This work	Simple solution process to make GQD/PANI composites.
					Good Specific capacitance value with small voltage drop
rGO-PANI	Chemical oxidative polymerization	1 A/g	533	S2	Specific capacitances value comparable less
Graphene-PANI paper	Electro-polymerization	1 A/g	763	S3	Polymerization technique is different with low specific capacitance value
PANI	Chemical-Vapor-Induced in Situ Polymerization	1 A/g	2136	S4	Electrode fabrication processes is really different and laborious.
Porous nanorod PANI-graphene	Chemical oxidative polymerization	1 A/g	878.57	S5	Specific capacitances value comparable less
GQDs/PANI	Electrochemical polymerization	15.0 μA/cm ⁻²	667.5 μF/ cm ⁻	S6	Separately, PANI as positive active material and GQDs as negative active material are used

References

- S1 W. S. Hummers, R. E Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- S2. W. Chen, R. B. Rakhi and H. N. Alshareef, *Nanoscale*, 2013, 5, 4134.
- S3. H. P. Cong, X.-C. Ren, P. Wang and S.-H. Yu, *Energy Environ. Sci.*, 2013, **6**, 1185.
- S4. X. Li, L. Yang, Y. Lei, L. Gu, and D. Xiao, ACS Appl. Mater. Interfaces, 2014, 6, 19978.
- L. Hu, J. Tu, S. Jiao, J. Hou, H. Zhu and D. J. Fray, *Phys. Chem. Chem. Phys.*, 2012, 14, 15652.
- S6. W. Liu, X. Yan, J. Chen, Y. Feng and Q. Xueb, *Nanoscale*, 2013, 5, 6053.