Materials and Instruments. Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without further purification. All solvents were dried before use following standard procedures. Column chromatography was carried out with silica gel (300-400 mesh), and thin-layer chromatography (TLC) was performed on precoated silica gel plates (0.4-0.5 mm thick, GF254, Huanghai, China) and observed under UV light. The ¹H NMR spectra were recorded on 400 MHz and ¹³C NMR were recorded on 100 MHz spectrometers in the indicated solvents at room temperature (298 K). Chemical shifts were reported in parts per million (δ) using residual solvent protons as the internal standard. High resolution mass spectra (ESI, EI, MALDI) were obtained on microTOF II (Bruker), Thermo Fisher Scientific LTQ FT Ultra and Waters Micromass GCT Premier spectrometers. Fluorescence spectra were recorded in a 10- or 1-mm guartz cell on a Cary Eclipse (VARIAN) spectrophotometer. UV-vis and Circular dichroism (CD) spectra were measured in a 1-cm quartz cell on a Lambda 750 S (Perkin Elmer) spectrophotometer and a MOS-450 spectropolarimeter, respectively. Scanning electron microscopy (SEM) was performed on Ultra55 (Zeiss) and Pro X (Phenom). Transmission electron microscopy (TEM) images were obtained on CM200FEG (Philips). Rheological characterisation of organogels was performed on HAAKE MARS III (Thermo Fisher, America).

Methods for the preparation of gels. A typical procedure for the gel formation is as follows: a known weight of the oligomer to be tested and a measured volume of the selected solvent were placed in a sealed test tube. The system was heated at 75 °C until the solid was completely dissolved, then the solution was allowed to cool down to room temperature under ultrasound aged for 1.5 min and finally a partly transparent gel was formed.

Compound 4. In a 50-mL three-necked round-bottomed flask, a mixture of 2-methyl-4-(3bromophenyl)-3-butyn-2-ol (3.01 g, 12.6 mmol) and diisopropylamine (30 mL) was degassed and back-filled three times with N₂. Bis(triphenylphosphine)palladium (II) dichloride (0.34 g, 0.5 mmol) and copper (I) iodide (0.05 g, 0.3 mmol) were then added to the flask. The mixture was subjected to more vacuum/N₂ cycles. After stirring for 30 minutes, 1,3-diethynylbenzene (0.78 mL, 6.0 mmol) was introduced into the flask via a syringe. The resulting mixture was stirred at 70 °C for 18 hours and filtered. The filtrate

was concentrated by rotary evaporation and the residue was purified by column chromatography (ethyl acetate/hexane = 1/5) to give **4** as a white solid (1.34 g, 51%). Mp. 148°C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (t, J = 1.2Hz, 1H), 7.61 (t, J = 1.2Hz, 2H), 7.49-7.45 (m, 4H), 7.39 (dt, J = 7.6, 1.2Hz, 2H), 7.36-7.28 (m, 3H), 1.63 (s, 12H), 1.61 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 134.68, 134.58, 131.46, 131.42, 131.26, 128.50, 128.38, 123.34, 123.18, 123.09, 94.46, 89.10, 88.98, 81.24, 65.55, 31.38. HRMS (ESI): *m*/*z* Calcd for C₃₂H₂₆NaO₂ [M+Na]⁺: 465.1830. Found: 465.1814.

Compound 5. To a solution of **4** (0.22 g, 0.5mmol) in toluene (10 mL) was added ground NaOH (0.02 g, 0.5 mmol) and the mixture was heated at 110 °C. After being stirred for 3 hours, the reaction mixture was filtered and evaporated. The residue was chromatographed on silica gel (ethyl acetate/hexane = 1/20 to 1/1) to afford the titled compound **5** as a yellow solid (0.09 g, 45%). Mp. 146-148 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (t, *J* = 1.2Hz, 1H), 7.67 (t, *J* = 1.2Hz, 1H), 7.61 (t, *J* = 1.2Hz, 1H), 7.52-7.45 (m, 5H), 7.39 (dt, *J* = 8, 1.2Hz, 1H), 7.37-7.28 (m, 3H), 3.10 (s, 1H), 1.65 (s, 1H), 1.63 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 135.12, 134.72, 134.64, 131.98, 131.86, 131.50, 131.31, 128.54, 128.47, 128.41, 123.39, 123.33, 123.23, 123.12, 122.51, 94.43, 89.13, 88.99, 88.95, 82.69, 81.29, 77.87, 65.60, 31.42. HRMS (ESI): *m*/*z* Calcd for C₂₉H₂₀NaO [M+Na]⁺: 407.1412. Found: 407.1398.

Compound 6. In a 100-mL three-necked round-bottomed flask, a mixture of **5** (0.48 g, 1.3 mmol), 1-bromopyrene (0.37 g, 1.3 mmol) and diisopropylamine (50 mL) was degassed and back-filled three times with N₂. Bis(triphenylphosphine)palladium(II) dichloride (0.04 g, 0.05 mmol) and copper(I) iodide (0.006 g, 0.03 mmol) were then added to the flask. The mixture was subjected to more vacuum/N₂cycles and stirred at 80 °C for 48 hours and filtered. The filtrate was concentrated by rotary evaporation and the residue was purified by column chromatography (ethyl acetate/hexane = 1/8 to 1/4) to give **6** as a yellow solid (0.28 g, 38%). Mp. 156-158 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, *J* = 9.2Hz, 1H), 8.26-8.03 (m, 8H), 7.92 (t, *J* = 1.2Hz, 1H), 7.75 (t, *J* = 1.2Hz, 1H), 7.70 (dt, *J* = 7.6, 1.2Hz, 1H), 7.62 (t, *J* = 1.2Hz, 1H), 7.57-7.35 (m, 7H), 7.31 (t, *J* = 8Hz, 1H), 1.63 (s, 6H), 1.62 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 134.74, 134.70, 132.00, 131.51, 131.42, 131.33, 131.25, 131.07, 129.65, 128.65, 128.45, 128.42, 128.28, 127.23, 126.26, 125.71, 125.65, 125.46, 124.53, 124.31, 123.98, 123.49, 123.45, 123.28, 123.15, 117.43, 94.46, 94.18, 89.38, 89.27, 89.16, 89.05, 81.31, 65.60, 31.44. HRMS (ESI): *m/z* Calcd for C₄₅H₂₈NaO [M+Na]⁺: 607.2038. Found: 607.2045.

Compound 1d. The titled compound was prepared according to the procedure similar to that described for the preparation of **5** except that **6** (0.27 g, 0.5mmol) was used in place of **4** to give **1d** as a yellow solid (0.20 g, 82%). Mp. 154-156 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.67 (d, J = 9.2 Hz, 1H), 8.26-8.02 (m, 8H), 7.92 (s, 1H), 7.76 (s, 1H), 7.71-7.69 (m, 2H),7.57-7.31 (m, 8H), 3.11 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 135.15, 134.71, 131.99, 131.88, 131.55, 131.42, 131.25, 131.08, 129.65, 128.64, 128.56, 128.47, 128.27, 127.23, 126.26, 125.70, 125.64, 125.47, 124.53, 124.32, 123.99, 123.49, 123.39, 122.55, 117.44, 94.18, 89.38, 89.28, 89.18, 88.99, 82.72, 77.86. HRMS (MALDI-DHB): *m/z* Calcd for C₄₂H₂₂[M]⁺: 526.1722. Found: 526.1715.

Compound 7. In a 250-mL three-necked round-bottomed flask, a mixture of 1bromopyrene (3.93 g, 14.0 mmol) and diisopropylamine (180 mL) was degassed and backfilled three times with N₂. Bis(triphenylphosphine)palladium(II) dichloride (0.49 g, 0.7 mmol) and copper(I) iodide (0.13 g, 0.7 mmol) were then added to the flask. The mixture was subjected to more vacuum/N₂cycles. After stirring for 30 minutes. trimethylsilylacetylene (20.00 mL, 0.14 mol) was introduced into the flask via a syringe. The resulting mixture was stirred at room temperature for 24 hours and filtered. The filtrate was concentrated by rotary evaporation and the residue was purified by column using hexane as the eluent to give 7 as a yellow solid (4.50 g, 99%). ¹H NMR (400 MHz, CDCl₃): δ 8.57 (d, J = 8Hz, 1H), 8.24-8.01 (m, 8H), 0.40 (s, 9H). HRMS (EI): m/z Calcd for C₂₁H₁₈Si [M]⁺: 298.1178. Found: 298.1173.

Compound 1a. To a solution of 7 (2.98 g, 10.0 mmol) in tetrahydrofuran (120 mL) and methanol (50 mL) was added K₂CO₃ (4.14 g, 30.0 mmol). The resulting mixture was filtered and evaporated after being stirred at room temperature for 12 hours. The residue was dissolved in dichloromethane (150 mL) and the solution was washed with H₂O (2 × 50 mL), brine (50 mL) and finally dried over anhydrous Na₂SO₄ to afford the titled compound **1a** as a white solid (2.22 g, 99%). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, *J* = 8Hz, 1H), 8.25-8.02 (m, 8H), 3.63 (s, 1H). HRMS (EI): *m/z* Calcd for C₁₈H₁₀ [M]⁺: 226.0783. Found: 226.0787.

Compound 8. The titled compound was prepared according to the procedure similar to that described for the preparation of **6** except that **1a** (7.81 g, 34.5 mmol) and 1-bromo-3-trimethylsilylethynylbenzene (9.17 g, 36.2 mmol) were used in place of **5** and 1-bromopyrene, respectively, to give **8** as a bright yellow solid (4.82 g, 35%). ¹H NMR (400 MHz, CDCl₃): δ 8.65 (d, J = 9.2 Hz, 1H), 8.26-8.03 (m, 8H), 7.84 (t, J = 1.6 Hz, 1H), 7.66 (dt, J = 8, 1.2 Hz, 1H), 7.49 (dt, J = 7.6, 1.6 Hz, 1H), 7.37 (t, J = 8 Hz, 1H), 0.29 (s, 9H). HRMS (EI): m/z Calcd for C₂₉H₂₂Si [M]⁺: 398.1491. Found: 398.1487.

Compound 1b. The titled compound was prepared according to the procedure similar to that described for the preparation of **1a** except that **8** (1.00 g, 2.5 mmol) was used in place of **7** to give **1b** as a yellow solid (0.81 g, 99%). ¹H NMR (400 MHz, CDCl₃): δ 8.65 (d, J = 9.2Hz, 1H), 8.25-8.02 (m, 8H), 7.86 (t, J = 1.6Hz, 1H), 7.70 (dt, J = 8, 1.2 Hz, 1H), 7.52 (dt, J = 7.6, 1.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 3.15 (s, 1H). HRMS (EI): m/z Calcd for C₂₆H₁₄[M]⁺: 326.1096. Found: 326.1102.

Compound 9. In a 250-mL three-necked round-bottomed flask, a mixture of **1b** (4.19 g, 1-bromo-3-trimethylsilylethynylbenzene (3.41)12.8 mmol), g, 13.5 mmol), diisopropylamine (140 mL) and tetrahydrofuran (20 mL) was degassed and back-filled three times with N₂. Bis(triphenylphosphine)palladium(II) dichloride (0.45 g, 0.6 mmol) and copper(I) iodide (0.12 g, 0.6 mmol) were then added to the flask. The mixture was subjected to more vacuum/N2 cycles and stirred at 80 °C for 48 hours and filtered. The filtrate was concentrated by rotary evaporation and the residue was purified by column chromatography (ethyl acetate/hexane = 1/20 to 1/12) to give 9 as a bright yellow solid (4.67 g, 73%). Mp. 141 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, J = 9.2 Hz, 1H), 8.25-8.02 (m, 8H), 7.90 (t, J = 1.2 Hz, 1H), 7.72 (t, J = 1.6 Hz, 1H), 7.70 (dt, J = 8, 1.6 Hz, 1H), 7.55-7.51 (m, 2H), 7.46 (dt, J = 7.6, 1.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.6Hz, 1H), 0.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 135.10, 134.64, 131.92, 131.76, 131.52, 131.48, 131.35, 131.17, 130.99, 129.58, 128.60, 128.38, 128.21, 127.17, 126.20, 125.65, 125.59, 125.39, 124.47, 124.40, 124.22, 123.93, 123.53, 123.46, 123.24, 117.36, 104.09, 95.08, 94.15, 89.37, 89.16, 0.08. HRMS (EI): m/z Calcd for C₃₇H₂₆Si [M]⁺: 498.1804. Found: 498.1809.

Compound 1c. The titled compound was prepared according to the procedure similar to that described for the preparation of **1a** except that **9** (3.49 g, 7.0 mmol) was used in place of **7** to give **1c** as a yellow solid (2.95 g, 99%). Mp. 139-141°C. ¹H NMR (400 MHz, CDCl₃): δ 8.67 (d, J = 9.2 Hz, 1H), 8.26-8.03 (m, 8H), 7.91 (t, J = 1.2 Hz, 1H), 7.71-7.69 (m, 2H), 7.56-7.54 (m, 2H), 7.48 (dt, J = 8, 1.6 Hz, 1H), 7.43 (t, J = 8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 3.12 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 135.17, 134.67, 131.99, 131.90, 131.56, 131.41, 131.23, 131.05, 129.64, 128.64, 128.49, 128.44, 128.27, 127.22, 126.26, 125.70, 125.64, 125.44, 124.53, 124.47, 124.29, 123.96, 123.41, 122.54, 117.40, 94.15, 89.38, 89.29, 89.01, 82.73, 77.88. HRMS (EI): *m/z* Calcd for C₃₄H₁₈ [M]⁺: 426.1409. Found: 426.1414.

Compound 2c. The titled compound was prepared according to the procedure similar to that described for the preparation of **9** except that **1c** (0.85 g, 2.0 mmol) and iodobenzene (0.42 g, 2.0 mmol) were used in place of **1b** and 1-bromo-3-trimethylsilylethynylbenzene, respectively, to give **2c** as a yellow solid (0.80 g, 80%). Mp. 154-155 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.67 (d, J = 9.2 Hz, 1H), 8.25-8.02 (m, 8H), 7.92 (t, J = 1.6 Hz, 1H), 7.78 (t, J = 1.6 Hz, 1H), 7.70 (dt, J = 8, 1.6 Hz, 1H), 7.57-7.52 (m, 5H), 7.44 (t, J = 8 Hz, 1H), 7.39-7.35 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 134.66, 131.92, 131.65, 131.47, 131.36, 131.31, 131.17, 130.99, 129.58, 128.60, 128.50, 128.44, 128.37, 128.20, 127.17, 126.19, 125.64, 125.58, 125.39, 124.47, 124.40, 124.22, 123.94, 123.69, 123.48, 123.36, 122.97, 117.36, 94.16, 90.08, 89.39, 89.25, 89.20, 88.51. HRMS (EI): *m/z* Calcd for C₄₀H₂₂ [M]⁺: 502.1722. Found: 502.1718.

Compound 2a. The titled compound was prepared according to the procedure similar to that described for the preparation of **6** except that ethynylbenzene (0.40 mL, 3.5 mmol) was used in place of **5** to give **2a** as a light green solid (0.73 g, 69%). ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, J = 9.2 Hz, 1H), 8.25-8.02 (m, 8H), 7.75-7.73 (m, 2H), 7.47-7.39 (m, 3H). HRMS (EI): m/z Calcd for C₂₄H₁₄ [M]⁺: 302.1096. Found: 302.1091.

Compound 2b. The titled compound was prepared according to the procedure similar to that described for the preparation of **9** except that iodobenzene (0.51 g, 2.5 mmol) was used in place of 1-bromo-3-trimethylsilylethynylbenzene to give **2b** as a yellow solid (0.75 g, 75%). Mp. 136-137 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.67 (d, *J* = 9.2 Hz, 1H), 8.26-8.03 (m, 8H), 7.92 (t, *J* = 1.6 Hz, 1H), 7.69 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.60-7.55 (m, 3H), 7.43 (t, *J* = 8 Hz, 1H), 7.40-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 134.64, 131.98, 131.69, 131.39, 131.34, 131.24, 131.07, 129.64, 128.60, 128.47, 128.41, 128.25, 127.23, 126.25, 125.69, 125.62, 125.47, 124.52, 124.31, 123.91, 123.79, 123.04, 117.47, 94.26, 90.10, 89.28, 88.60. HRMS (EI): *m/z* Calcd for C₃₂H₁₈ [M]⁺: 402.1409. Found: 402.1406.

Compound 10. The titled compound was prepared according to the procedure similar to that described for the preparation of **6** except that phenylacetylene (6.13 g, 60.0 mmol) and 1-bromo-3-trimethylsilylethynylbenzene (15.19 g, 60.0 mmol) were used in place of **5** and 1-bromopyrene, respectively, to give **10** as a colourless oil (13.18 g, 80%). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 1H), 7.53-7.51 (m, 2H), 7.47 (dt, *J* = 8, 1.5 Hz, 1H), 7.42 (dt, *J* = 8, 1.6 Hz, 1H), 7.36-7.34 (m, 3H), 7.28 (t, *J* = 8 Hz, 1H), 0.26 (s, 9H). HRMS (EI): *m/z* Calcd for C₁₉H₁₈Si [M]⁺: 274.1178. Found: 274.1179.

Compound 11. The titled compound was prepared according to the procedure similar to that described for the preparation of **1a** except that **10** (10.97 g, 40.0 mmol) was used in place of **7** to give **11** as a colourless oil (8.09 g, 99%). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (s, 1H), 7.55-7.45 (m, 4H), 7.37-7.29 (m, 4H), 3.10 (s, 1H). HRMS (EI): *m/z* Calcd for C₁₆H₁₀ [M]⁺: 202.0783. Found: 202.0782.

Compound 12. The titled compound was prepared according to the procedure similar to that described for the preparation of **6** except that **11** (8.05 g, 39.8 mmol) and 1-bromo-3-trimethylsilylethynylbenzene (10.07 g, 39.8 mmol) were used in place of **5** and 1-bromopyrene, respectively, to give **12** as a white solid (11.47 g, 77%). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (s, 1H), 7.67 (s, 1H), 7.55-7.42 (m, 6H), 7.38-7.28 (m, 5H), 0.26 (s, 9H). HRMS (EI): *m/z* Calcd for C₂₇H₁₂Si [M]⁺: 374.1491. Found: 374.1486.

Compound 13.The titled compound was prepared according to the procedure similar to that described for the preparation of **4** except that **12** (7.13 g, 19.0 mmol) was used in place of **7** to give **13** as a white solid (5.75 g, 99%). ¹H NMR (400 MHz, CDCl₃): δ 7.70 (s, 1H), 7.66 (s, 1H), 7.56-7.46 (m, 6H), 7.38-7.30 (m, 5H), 3.11 (s, 1H). HRMS (EI): *m/z* Calcd for C₂₄H₁₄ [M]⁺: 302.1096. Found: 302.1090.

Compound 3. The titled compound was prepared according to the procedure similar to that described for the preparation of **4** except that **13** (0.36 g, 1.2 mmol) and iodobenzene (0.24 g, 1.2 mmol) were used in place of 1,3-diethynylbenzene and 1-bromo-3-trimethyl-silylethynylbenzene, respectively, to give **3** as a bright green solid (0.33 g, 73%). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 2H), 7.56-7.49 (m, 8H), 7.40-7.33 (m, 8H). HRMS (EI): *m/z* Calcd for C₃₀H₁₈ [M]⁺: 378.1409. Found: 378.1404.

Display Report

Analysis Info

 Analysis Name
 D:\Data\MS\\zt\0902\cyy0402701_RA5_01_9719.d

 Method
 tune_200-800_hcoona-pos.m

 Sample Name
 cyy0402701

 Comment
 cyy0402701

Acquisition Date 9/2/2013 3:37:05 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Fig. S3 High resolution mass spectra of 4.

Fig. S5 ¹³C NMR spectrum (100 MHz) of 5 in CDCl₃.

Display Report

Analysis Info

Analysis Name Method Sample Name Comment

me D:\Data\MS\lzt\0902\cyy00402901_RA6_01_9720.d tune_200-800_hcoona-pos.m me cyy00402901

Acquisition Date 9/2/2013 3:39:40 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Acquisition Parameter								
Ion Polarity	Positive	Set Nebulizer	0.6 Bar					
		Set Dry Heater	180 °C					
Set Capillary	4000 V	Set Dry Gas	6.0 l/min					
Set End Plate Offset	-500 V	Set Divert Valve	Waste					
	Ion Polarity Set Capillary Set End Plate Offset	Ion Polarity Positive Set Capillary 4000 V Set End Plate Offset -500 V	Ion Polarity Positive Set Nebulizer Set Capillary 4000 V Set Dry Heater Set End Plate Offset -500 V Set Divert Valve					

Fig. S6 High resolution mass spectra of 5.

Fig. S8 13 C NMR spectrum (100 MHz) of **6** in CDCl₃.

Display Report

Analysis Info

Analysis Name Method Sample Name Comment

Name D:\Data\MS\LZT\0617\CYY0512101_BA8_01_114.d tune_200-800_hcoona-pos-2.5min.m lame CYY0512101 Acquisition Date 6/18/2014 7:51:17 AM

Operator gftang Instrument / Ser# micrOTOF II 10257

Acquisition Parameter							
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	1.0 Bar 180 °C		
Scan Begin Scan End	50 m/z 1000 m/z	Set Capillary Set End Plate Offset	4000 V -500 V	Set Dry Gas Set Divert Valve	6.0 I/min Waste		

Fig. S9 High resolution mass spectra of 6.

125 110 95 85 75 65 55 45 35 25 15 5 0 f1 (ppm)

Fig. S11 ¹³C NMR spectrum (100 MHz) of 1d in CDCl₃.

140

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M150675

Sample Serial Number: CYY0607501

Operator : HUAQIN Date: 2015/03/11

Operation Mode: MALDI_DHB

Elemental composition search on mass 526.17

m/z= 521.	17-531.17			
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
526.1715	526.1716	-0.23	32.0	C 42 H 22
	526.1721	-1.20	19.5	C 28 H 24 O 6 N 5
	526.1708	1.34	14.5	C ₂₇ H ₂₈ O ₁₀ N
	526.1708	1.35	20.0	C 26 H 22 O 5 N 8
	526.1734	-3.74	24.5	C 29 H 20 O 2 N 9
	526.1735	-3.75	19.0	C 30 H 26 O 7 N 2
	526.1694	3.90	15.0	C 25 H 26 O 9 N 4

Fig. S13 ¹H NMR spectrum (400 MHz) of 7 in CDCl₃.

2Ms

C18 H10 C10 H14 N2 O2 S

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report

Ionisation Mode: EI+ Electron Energy: 70eV Instrument: Waters Micromass GCT Premier

Card Serial N	lumber:	GCT-P-T15-01-04	459						
Sample Serial	Number:	CYY0608501			~~				
Operator:	Li			Ĺ					
Date:	2014/01/26								
				-	-				
Elemental Con	position Repo	ort							
Single Mass A Tolerance = 5 Element predi	Analysis 5.0 PPM / .ction: Off	DBE: min = -1.5	, max = 50.0						
Monoisotopic 223 formula(e Elements Used	Mass, Odd and) evaluated v 1:	d Even Electron with 2 results w	Ions ithin limits	(all result:	s (up to 1000	0) foi	c each	n mas	ss)
C: 0-50 H: Minimum:	0-80 N:	0-2 0: 0-6	Si: 0-1	S: 0-1 -1.5					
Maximum:		2.0	5.0	50.0					
Mass (Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ıla		
226.0787	26.0783	0.4	1.8	14.0	0.2	C18	H10	10	02
	26.0776	1.1	4.9	5.0	1/3.1	C10	HI4	NZ	02

Ionisation Mode: EI+ Instrument: Waters Micromass GCT Premier Electron Energy: 70eV Card Serial Number: GCT-P-T15-01-0460 Sample Serial Number: CYY0609901 TMS Operator: Li 2014/01/26 Date: Elemental Composition Report Single Mass Analysis Tolerance = 5.0 PPM / Element prediction: Off DBE: min = -1.5, max = 50.0Monoisotopic Mass, Odd and Even Electron Ions 399 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: H: 0-80 N: 0-2 S: 0-1 0: 0-6 Si: 0-1 C: 0-50 Minimum: -1.5 50.0 5.0 2.0 Maximum: Calc. Mass 398.1484 398.1491 mDa 0.3 -0.4 0.9 PPM 0.8 -1.0 2.3 Formula C21 H26 C29 H22 C21 H22 DBE 11.0 i-FIT Mass 3903.1 24.2 398.1487 N2 02 Si S 20.0 Si N2 13068.9 06 398.1478

S

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report

Electron Energy: 70eV Instrument: Waters Micromass GCT Premier Ionisation Mode: EI+ GCT-P-T15-01-0461 Card Serial Number: CYY0610301 Sample Serial Number: Operator: Li 2014/01/26 Date: Elemental Composition Report Single Mass Analysis Tolerance = 5.0 PPM / Element prediction: Off DBE: min = -1.5, max = 50.0Monoisotopic Mass, Odd and Even Electron Ions 327 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: H: 0-80 N: 0-2 O: 0-6 S: 0-1 C: 0-50 Minimum: Si: 0-1 -1.5 2.0 5.0 Maximum: i-FIT 45.1 7945.5 2228.1 Calc. Mass 326.1096 326.1094 DBE Formula mDa PPM Mass C26 H14 C11 H24 C18 H18 0.6 1.8 2.5 326.1102 20.0 N 06 Si N2 02 S N2 03 Si 1.5 1.3 11.0 326.1089 4.0 4.6 1206.3 C17 H18 326.1087

¹H NMR spectrum (400 MHz) of **9** in CDCl₃. **Fig. S21**

-0.004

20

8.685 8.662 8.662 7.8.662 7.918 7.7.695 7.7.695 7.7.695 7.7.695 7.7.409 7.7.402 7.7.402 7.7.402 7.7.402 7.7.402 7.7.402 7.7.402 7.7.402 7.7.402 7.7.402 7.7.374

-0.005

Fig. S33 ¹³C NMR spectrum (100 MHz) of 2b in CDCl₃.

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report

Instrument: Waters Micromass GCT Premier Ionisation Mode: EI+ Electron Energy: 70eV

Card Serial Number:		GCT-P-T15-04-1362			
Sample Serial	Number:	CYY0611501			
Operator:	Li				
Date:	2014/04/09				

Single Mass Analysis Tolerance = 5.0 PPM / Element prediction: Off DBE: min = -1.5, max = 50.0

653 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-80 N: 0-2 O: 0-6 S: 0-1 Cl: 0-1 I: 0-1	
Elements Used: C: 0-50 H: 0-80 N: 0-2 O: 0-6 S: 0-1 Cl: 0-1 I: 0-1	
C: 0-50 H: 0-80 N: 0-2 O: 0-6 S: 0-1 Cl: 0-1 I: 0-1	
Minimum: -1.5	
Maximum: 2.0 5.0 50.0	
Mass Calc. Mass mDa PPM DBE i-FIT Formula	
402.1406 402.1409 -0.3 -0.7 24.0 5546025.5 C32 H18	
402.1402 0.4 1.0 15.0 5546025.5 C24 H22 N2 O2	S
402.1420 -1.4 -3.5 4.0 5546025.5 C19 H31 O I	
402.1420 -1.4 -3.5 10.0 5546025.0 C23 H27 O2 S	Cl
402 1387 1.9 4.7 15.0 5546025.0 C26 H23 O2 C1	
402.1425 -1.9 -4.7 -0.5 5546025.0 C16 H34 N C1	I

Fig. S34 High resolution mass spectra of 2b.

Instrument: Waters Micromass GCT Premier Ionisation Mode: EI+ Electron Energy: 70eV Card Serial Number: GCT-P-T15-04-1661 Sample Serial Number: CYY07000301 Operator: Li 2014/04/29 Date: `TMS Elemental Composition Report Single Mass Analysis Tolerance = 5.0 PPM / Element prediction: Off DBE: min = -1.5, max = 50.0Monoisotopic Mass, Odd and Even Electron Ions 394 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-45 H: 0-80 N: 0-2 O: 0-4 S: 0-1 Cl: 0-1 Si: 0-1 Minimum: -1.5 50.0 DBE 2.0 mDa 0.1 0.8 5.0 Maximum: Calc. Mass 274.1178 274.1171 Mass 274.1179 PPM i-FIT Formula 12.0 3.0 0.4 2.9 13.6 1539.8 C19 H18 C11 H22 Si N2 O2 S Si

SWS

Instrument: Waters Micromass GCT Premier Ionisation Mode: El+ Electron Energy: 70eV

Card Serial N	Number:	GCT-P-T15-04-1	660				۰.
Sample Seria	l Number:	CYY07000501					
Operator:	Li						
Date:	2014/04/29			~			
					ſ		
				~			
Elemental Cor	mosition Popo	·					
Bremencar con	aposicion Repo	LL					
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off							
Monoisotopic Mass, Odd and Even Electron Ions 291 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used:							
C: 0-45 H:	: 0-80 N: 0	-2 O: 0-4	S: 0-1	Cl: 0-1 Si	: 0-1		
Minimum: Maximum: Mass 0 202.0782	Calc. Mass	2.0 mDa -0.1	5.0 PPM -0.5	-1.5 50.0 DBE 12.0	i-FIT 14.4	Formula C16 H10	
, 2	202.0774	0.8	4.0	3.0	1555.8	C8 H14 N2 O2 C7 H14 N2 O3	S Si

Fig. S41 High resolution mass spectra of 12.

Fig. S43 High resolution mass spectra of 13.

Fig. S45 High resolution mass spectra of **3**.

Fig. S46 ¹H NMR spectrum (500 MHz) of 2c in benzene- d_6 .

Fig. S47 ¹H-¹H COSY spectrum (500 MHz) of 2c in benzene- d_6 at 10 mM.

Fig. S48 NOESY spectrum (500 MHz) of 2c in benzene- d_6 at 10 mM.

Fig. S49 a) Bar diagram showing the gel-sol transition temperatures (T_{gel}) of the gels of 1b (black), 1d (red), 2b (blue) and 2c (green) at their respective critical gelation concentrations (CGCs) in different solvents. b) Plot of T_{gel} versus concentration of 2c in cyclohexane. T_{gel} was tested using the "stable-to-inversion of a test tube" method.

Fig. S50 SEM (a and c) and TEM (b and d) images of air-dried organogels formed in cyclohexane by **1b** (a,b), **1d** (c,d).

Fig. S51 Frequency-dependent storage modulus (G') and loss modulus (G'') for the organogels formed in cyclohexane by 1d and 2c (20 °C, $\gamma = 0.001$). The concentration for 1d and 2c was 7.0 mM.

Fig. S52 UV-vis absorption spectra of 3 in cyclohexane at different concentrations.

Fig. S53 UV-vis absorption spectra of pyrene in cyclohexane at different concentrations.

Fig. S54 Emission spectra of 3 in cyclohexane at different concentration.

Fig. S55 Emission spectra of a) 1b, b) 1c and c) 1d in cyclohexane with increasing concentration from 1×10^{-6} M to 1×10^{-3} M.

Fig. S56 Emission spectra of a) **2a**, b) **2b** in cyclohexane with increasing concentration from 1×10^{-6} M to 1×10^{-3} M.