Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Visible Light Promoted Hydration of Alkynes Catalyzed by Rhodium(III) Porphyrins

Xu Liu, Lianghui Liu, Zikuan Wang and Xuefeng Fu*

Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials
Chemistry and Applications, Peking University, Beijing, 100871, China. Fax: +86 10 6275 1708; Tel:
+86 10 6275 6035; E-mail: fuxf@pku.edu.cn

Contents

- 1. General consideration
- 2. Preparation of Na₃[(TSPP)Rh^{III}(D₂O)₂]
- 3. Synthesize the key intermediate([(TSPP)Rh-CH₂COPh]⁴-) in situ
- 4. Independent synthesis of [(TSPP)Rh-CH₂COPh]⁴⁻
- 5. The decomposition experiments of [(TSPP)Rh-CH₂COPh]⁴
- 6. General Procedure for Rh-Catalyzed hydration of alkynes
- 7. The UV-vis absorption of the key intermediate([(TSPP)Rh-CH₂COPh]⁴⁻)

1. General considerations

D₂O, CD₃OD and CDCl₃ were purchased from Cambridge Isotope Laboratory Inc.; tetra p-sulfonatophenyl porphyrin from Tokyo Chemical Industry (TCI); (Rh(CO)₂Cl)₂ from Strem Chemicals Inc.; and all other chemicals were purchased from Alfa Aesar or J&K Scientific Ltd. Unless otherwise noted and used as received. ¹H NMR spectra were recorded on a Bruker AVII-400 spectrometer at ambient temperature. GC-MS results were obtained by the Agilent 7980A/5975C GC/MSD system equipped with the DB-17MS (30m, 0.25mm, 0.25 μm) column. GC results were obtained by the Agilent 7980A system equipped with the DB-5MS UI (30 m, 0.25 mm, 0.50 μm) column. ESI-MS results were obtained by a Bruker Apex IV FTMS. Visible light in the irradiation experiments was provided by a 500W high-pressure mercury lamp (CHF-XM35-500W, Beijing Trusttech Co., Ltd.,) equipped with a 420-780nm filter and the glass vessel was positioned about 25.0 cm away from the light source.

2. Preparation of Na₃[(TSPP)Rh^{III}(D₂O)₂]

 $Na_3[(TSPP)Rh^{III}(H_2O)_2]$ was synthesized by following literature methods of Ashley.¹ The equilibrium distribution of $[(TSPP)Rh^{III}(D_2O)_2]^{-3}$, $[(TSPP)Rh^{III}(D_2O)(OD)]^{-4}$ and $[(TSPP)Rh^{III}(OD)_2]^{-5}$ were reported in the previously published paper.² ¹HNMR (D₂O, 400 MHz) δ (ppm): 9.15 (s, 8H,

pyrrole), 8.44 (d, 8H, o-phenyl, J_{H-H} =8 Hz), 8.25 (d, m-phenyl, J_{H-H} =8 Hz). The stock solution of (TPPS)Rh^{III} was prepared in H₂O solution.

3. Synthesize the key intermediate([(TSPP)Rh-CH₂COPh]⁴⁻) in situ

Phenylacetylene (0.2 mmol), hydrochloric acid (6 μl, 0.12M) and (TSPP)Rh^{III}(H₂O)₂ (2 μmol) were mixed in 0.4 ml CD₃OD in a J. Young Valve NMR tube. The sample was degassed by three freeze-pump-thaw cycles. No ketones or [(TSPP)Rh-CH₂COPh]⁴⁻ was formed at room temperature (Figure 1S-A). The reaction solution was heated at 60°C in an oil bath over 12 hours, ¹H NMR spectra was showed that a new signal formed at 8.70 ppm indicating [(TSPP)Rh-CH₂COPh]⁴⁻ was formed(Figure 1S-B). After removal the solvent by rot-vap, 0.4 ml CD₃OD was added. From the ¹HNMR spectroscopy(Figure 1S-C), the resonances at 8.70 ppm (s, 8H); 8.30-8.10 ppm (m, 16H), 7.16 ppm (m, 1H), 6.67 ppm (m, 2H), 4.67 ppm (m, 2H), which are the same as those of independently synthesized [(TSPP)Rh-CH₂COPh]⁴⁻. After heated the CD₃OD solution of [(TSPP)Rh-CH₂COPh]⁴⁻ for 3 days, the resonance at 8.70 ppm was disappeared along with the formation of acetophenone (Figure 1S-D).

$$\begin{array}{c} Rh^{|||} + \\ \hline \\ CH3OH \\ \hline \\ Rh^{|||} \end{array}$$

$$\begin{array}{c} CH3OH \\ Rh^{|||} \\ \hline \\ Rh^{|||} \end{array}$$

$$\begin{array}{c} CD3OD \\ \hline \\ Rh^{|||} \end{array}$$

$$\begin{array}{c} CD3OD \\ \hline \\ Rh^{|||} \end{array}$$

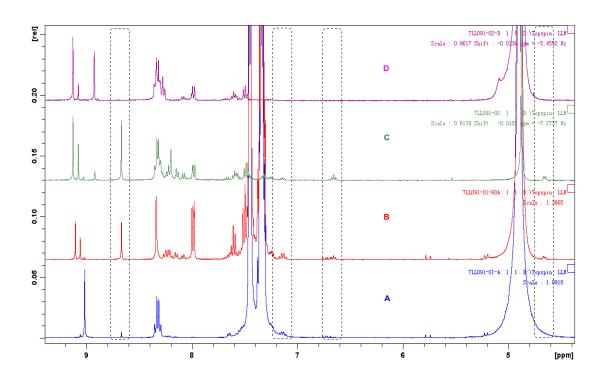
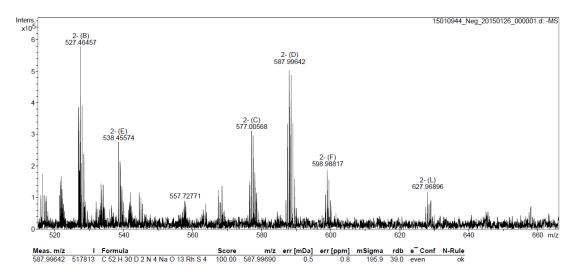
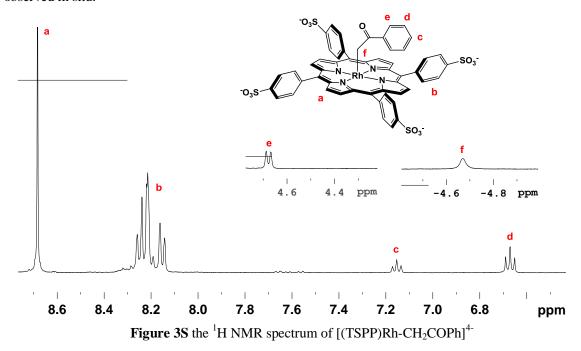
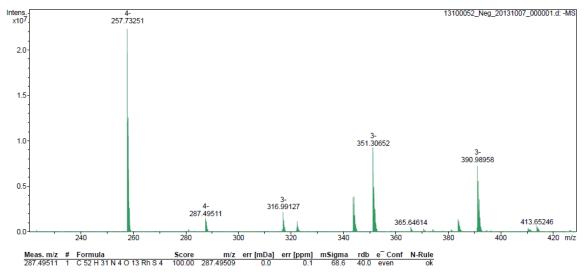


Figure 1S the reaction process of hydration of alkynes recorded by ¹H NMR spectra




Figure 2S ESI-MS of anion [(TSPP)Rh-CD₂COPh]⁴⁻


(ESI-MS: 1175.99284 and Exact Mass: 1175.99489)

4. Independent synthesis of [(TSPP)Rh-CH₂COPh]⁴⁻

Triethylamine($10\mu l\ 0.072mmol$) and (TSPP)Rh^{III}(H_2O)₂ ($2\ \mu mol$) were mixed in $0.4\ ml\ CD_3OD$ in a J. Young Valve NMR tube. The sample was degassed by three freeze-pump-thaw cycles. (TSPP)Rh^I was formed after 1 hour at room temperature.³ The solvent was removed under vacuum

condition, the 2-bronoacetophenone was added, and in glove box the mixture was dissolved in the CD₃OD. The color was turned from brown to dark red indicating (TSPP)Rh-CH₂COPh]⁴⁻ was formed. The ¹H NMR spectroscopy showed that the resonances at 8.70 (s, 8H); 8.30-8.10 (m, 16H), 7.16 (m, 1H), 6.67 (m, 2H), 4.67 (m, 2H), -4.68 (s, 2H), were the same as that of [(TSPP)Rh-CH₂COPh]⁴⁻ observed in situ.

Figure 4S ESI-MS of anion [(TSPP)Rh-CH₂COPh]⁴- (ESI-MS: 1149.98044 and Exact Mass: 1149.98255)

5. The dissociation of [(TSPP)Rh-CH₂COPh]⁴⁻

Table 1S Measurement of the rate constant of the dissociation of $[(TSPP)Rh-CH_2COPh]^{4-}$ under visible light, $pH\sim1.2$, 298 K

entry	t/s	Intergration values of pyrrole ¹ H NMR of (TSPP)RhCH ₂ COPh	Intergration values of pyrrole ¹ H NMR of (TSPP)Rh-OH	[(TSPP)RhCH ₂ - COPh] ⁴⁻ mM	In[(TSPP)RhCH ₂ - COPh] ⁴⁻	k /s
1	0	8	0	0.0033	-5.71383	0.0497
2	7	8	5.93	0.00189	-6.2690	0.0497
3	14	8	10.81	0.0014	-6.56934	0.0497
4	21	8	17.02	0.00105	-6.85463	0.0497
5	28	8	25.64	0.000783	-7.15067	0.0497
6	35	8	43.84	0.000509	-7.58311	0.0497
7	42	8	57.92	0.000400	-7.82339	0.0497
8	49	8	98.5	0.000248	-8.3031	0.0497

Table 2S Measurement of the rate constant of the dissociation of [(TSPP)Rh-CH₂COPh]⁴⁻ under visible light, pH~3.5, 298 K (The external standard was benzaldehyde dissolved in CDCl₃)

entry	t/s	Intergration values of aldehyde ¹ H NMR of external standard	Intergration values of pyrrole ¹ H NMR of (TSPP)RhCH ₂ COPh	[(TSPP)RhCH ₂ - COPh] ⁴⁻ mM	In[(TSPP)RhCH ₂ - COPh] ⁴⁻	k/s
1	0	1	11.63	0.0025	-5.99146	0.00239
2	7	1	11.27	0.00242	-6.02399	0.00239
3	12	1	10.82	0.00233	-6.06189	0.00239
4	17	1	10.63	0.00233	-6.06189	0.00239
5	25	1	10.54	0.00227	-6.08798	0.00239
6	32	1	10.08	0.00217	-6.13303	0.00239
7	92	1	8.93	0.00192	-6.25543	0.00239
8	182	1	7.00	0.0015	-6.50229	0.00239
9	272	1	5.78	0.00124	-6.69264	0.00239
10	392	1	4.41	0.00095	-6.95905	0.00239
11	512	1	3.37	0.00072	-7.23626	0.00239

Table 3S Measurement of the rate constant of the dissociation of [(TSPP)Rh-CH₂COPh]⁴⁻ under visible light, pH~4.5, 298 K (The external standard was benzaldehyde dissolved in CDCl₃)

entry	t/s	Intergration values of aldehyde ¹ H NMR of external standard	Intergration values of pyrrole ¹ H NMR of (TSPP)RhCH ₂ COPh	[(TSPP)RhCH ₂ - COPh] ⁴⁻ mM	In[(TSPP)RhCH ₂ - COPh] ⁴⁻	k/s
1	0	1	9.52	0.0025	-5.99146	0.00172
2	20	1	9.45	0.00248	-5.9995	0.00172
3	50	1	8.44	0.00222	-6.11025	0.00172
4	80	1	7.78	0.00204	-6.19481	0.00172
5	130	1	6.75	0.00177	-6.33678	0.00172
6	200	1	5.90	0.00155	-6.4695	0.00172
7	320	1	4.99	0.00131	-6.63773	0.00172
8	440	1	3.98	0.00105	-6.85897	0.00172
9	560	1	3.30	0.00087	-7.04702	0.00172
10	780	1	2.59	0.00068	-7.29342	0.00172

Table 4S Measurement of the rate constant of the dissociation of $[(TSPP)Rh-CH_2COPh]^{4-}$ under visible light, pH~6.5, 298 K (The external standard was benzaldehyde dissolved in CDCl₃)

entry	t/s	Intergration values of aldehyde ¹ H NMR o external standard	Intergration values f of pyrrole ¹ H NMR of (TSPP)RhCH ₂ COPh	[(TSPP)RhCH ₂ - COPh] ⁴⁻ mM	In[(TSPP)RhCH ₂ - COPh] ⁴⁻	k/s
1	0	1	6.53	0.0025	-5.99146	0.00143
2	120	1	5.6	0.00214	-6.14695	0.00143
3	270	1	4.20	0.00161	-6.43152	0.00143
4	420	1	3.61	0.00138	-6.58567	0.00143
5	520	1	3.13	0.00120	-6.72543	0.00143
6	640	1	2.55	0.00098	-6.92796	0.00143
7	760	1	2.19	0.00084	-7.08211	0.00143
8	966	1	1.65	0.00063	-7.36979	0.00143

Table 5S Measurement of the rate constant of the dissociation of [(TSPP)Rh-CH₂COPh]⁴⁻ in dark, pH~1.2, 298 K (The external standard was benzaldehyde dissolved in CDCl₃)

entry	t / min	Intergration values of aldehyde ¹ H NMR of external standard	Intergration values of pyrrole ¹ H NMR of (TSPP)RhCH ₂ COPh	[(TSPP)RhCH ₂ - COPh] ⁴⁻ mM	In[(TSPP)RhCH ₂ -COPh] ⁴⁻	k /h
1	0	1	13.027	0.0033	-5.71383	0.28581
2	32	1	8.856	0.00261	-5.94723	0.28581
3	78	1	6.079	0.00198	-6.22501	0.28581
4	122	1	4.58	0.00158	-6.45312	0.28581
5	205	1	2.859	0.00107	-6.83656	0.28581
6	294	1	1.652	0.000699	-7.26581	0.28581
7	454	1	0.737	0.000359	-7.93089	0.28581
8	478	1	0.665	0.0003143	-8.06503	0.28581

All of these reactions showed first-order kinetics.

The photo-cleavage of Rh-C bonds in $[(TSPP)Rh-CH_2COPh]^{4-}$ produces $(TSPP)Rh^{II}$ and CH_2COPh radical, which was trapped by TEMPO(TEMPO=2,2,6,6-Tetramethylpiperidine-1-piperidinyloxy) to form $TEMPO-CH_2COPh$ (**Figure 5S**). **And the** $(TSPP)Rh^{II}$ reacts with $HOCH_3$ to form (TSPP)Rh-H and $(TSPP)Rh-OCH_3$.

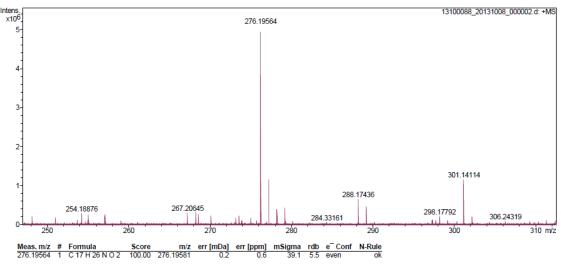


Figure 5S ESI-MS of TMEPOCH2COPh

(ESI-MS: 275.1877 and Exact Mass: 275.1885)

6. General Procedure for Rh-Catalyzed hydration of alkynes

To a 25 mL Schlenk flask sealed with a Teflon cap, 0.20 mmol alkynes, 2 μ mol (TSPP)Rh^{III} and 1.0 ml methanol solution of trifluoromethanesulfonimide (0.06M) was added. After degassed by three freeze-pump-thaw cycles, the solution was stirred at room temperature under visible light irradiation for 12 hours. (500 W Hg lamp, 420-780 nm filter, 25 cm distance, 27 mW/cm²)

7. The UV-vis absorption of the key intermediate([(TSPP)Rh-CH₂COPh]⁴⁻)

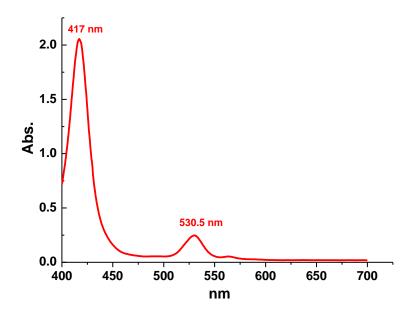


Figure 6S The UV-vis absorption of [(TSPP)Rh-CH2COPh]4-

The UV-vis absorption of [(TSPP)Rh-CH₂COPh]⁴⁻ shows absorption bands that peak at 417.0 nm (Soret band) and 530.5 nm (Q band), which match well with the emission lines of our Hg lamp in the visible region (420, 430, 500, 520 and 550 nm).

Reference

- (1) K. R. Ashley, S. B. Shyu and J. G. Leipoldt, *Inorg. Chem.*, 1980, 19, 1613;
- (2) X. Fu and B. B. Wayland, J. Am. Chem. Soc., 2004, 126, 2623;
- (3) Z. Ling, L. Yun, L. Liu, B and X. Fu, Chem. Commun., 2013, 49, 4214;
- (4) S. Li, W. Cui and B. B. Wayland, Chem. Commun. 2007, 4024.