Electronic Supplementary Information

Highly efficient and selective photocatalytic reduction of nitroarenes using Ni₂P/CdS catalyst under visible-light irradiation

Wen-Zheng Gao,^a Yong Xu,^a Yong Chen^a and Wen-Fu Fu^{a,b*}

Table of Contents

Table S1 Photocatalytic reduction of 4-nitrotoluene to corresponding amino organics.

 Table S2 ¹H NMR data of products and intermediates in CDCl₃ solutions.

Table S3 Elemental analysis data of Ni₂P(5wt %)/CdS

Fig. S1 XRD of the Ni₂P(5 wt%)/CdS hybrid material.

Fig. S2 (a) TEM image and (b) HRTEM image of the obtained Ni_2P .

Fig. S3 (a) TEM image and (b) HRTEM image of the obtained CdS.

Fig. S4 (a) TEM image and (b) HRTEM image of the Ni₂P/CdS hybrid material after the photocatalysis.

Figure S5 XPS spectra of the (a) Ni 2p, (b) P 2p, (c) Cd 3d and (d) S 2p regions in Ni_2P/CdS before and after the photocatalytic reaction.

Figure S6 XPS spectrum of the (a) C 1s region and (b) survey spectrum in Ni_2P/CdS before and after the photocatalytic reaction.

Fig. S7 Recyclability test for the photocatalytic reduction of 4-nitrotoluene

Fig. S8 1 H NMR of photocatalytic reduction product of 4-nitrotoluene in CDCl₃ after 1 h irradiation.

Fig. S9 ¹H NMR of photocatalytic reduction product of 4-nitrotoluene in $CDCl_3$ after 6 h irradiation.

Fig. S10 ESI-MS spectrum of photocatalytic reduction product of 4-nitrotoluene after 6 h irradiation.

Fig. S11 ¹H NMR of photocatalytic reduction product of 4-nitrotoluene in DMSO after 12 h irradiation.

Fig. S12 ¹H NMR of photocatalytic reduction product of diazobenzene after 48 h irradiation.

Fig. S13 MS-ESI spectrum of photocatalytic reduction product of diazobenzene after 48 h irradiation.

Experimental Procedure

1. Chemicals and methods

All materials were of analytical grade and used without further purification. CdCl₂•2.5H₂O was purchased from Jinke chemical research institute, (Tinjin, China);

NiCl₂·6H₂O] were obtained from Xilong Chemical Co. Ltd., (Guangdong, China). Na₂S·9H₂O and NaOH were obtained from Aladdin Reagent Co. Ltd., (Shanghai, China). Powder X-ray diffraction (XRD) pattern was recorded on a Bruker AXS D8 X-ray diffractometer with Cu K α (λ = 1.54056 Å). The size and lattice fringes measurements were analyzed on a transmission electron microscope (TEM) (JEM 2100F) with an accelerating voltage of 200 kV. Elemental analysis data of CdS and Ni₂P were collected by inductively coupled plasma-atomic emission spectrometry (ICP-AES, Varian 710-OES, USA). X-ray photoelectron spectroscopy was determined in a PHI 5300 ESCA system. And the source was an Al K α X-ray source with a power of 250 W. The charge effect was calibrated with the binding energy of C1s.

2. Material Synthesis

2.1 Synthesis of CdS

In a typical process, an aqueous solution of Na₂S was added slowly to CdCl₂ solution under vigorous stirring with the molar ratio 1.2:1. The resulting yellow mixture was stirred for 24 h and kept for an additional 24 h during the ion exchange process in the next stage. The resulting yellow slurry was filtered. The wet solid was suspended in deionized water (60 mL) and transferred to a Teflon lined stainless steel autoclave (100 mL) and heated at 200 °C for 24 h (hydrothermal treatment). After that, the yellow solid was filtered, washed with water and ethanol successively, filtered again, and then held under vacuum at 80 °C for 24 h.

2.2 Synthesis of Ni₂P

In a typical process, the cocatalyst precursor was prepared via a mechanical mixing method. NiCl₂ and NaOH in aqueous solution were reacted under stirring for 30 min to obtain Ni(OH)₂. NaH₂PO₂ and Ni(OH)₂ in the ratio 5:1 was mechanically mixed in a quartz boat at room temperature. The mixture was directly heated to 270 °C and kept for 2 h in a flowing N₂. Following cooling to room temperature in continued N₂ flow, the obtained product was washed with diluted hydrochloric acid, then the raw Ni₂P was centrifugalized followed with washing by water and ethanol successively, then dried under vacuum at 80 °C for 24 h.

3. Photocatalytic activity measurement

Typically, 5 mL of solution containing the substrate (20 mg), the sacrificial reagents Na₂S (0.25 M) and Na₂SO₃ (0.3 M), the photocatalyst Ni₂P/CdS (2 mg) in a 15 mL quartz cuvette was irradiated with 30 × 3 W LED light (λ > 420 nm) under nitrogen condition. After irradiation, the raw products were extracted thoroughly with dichloromethane three times, dried with anhydrous MgSO₄ and quantified using ¹H NMR spectroscopy. The reaction rate = n(consumed nitro)/[m(cat) × h)]

	Ni ₂ P	/CdS, Na ₂ S,Na ₂ SO ₃		
		visble light		
Entry	Weight % of Ni_2P^{b}	Weight [mg] ^c	t [h] ^d	Conversion [%] ^e
1	0	2	12	64
2	1	2	12	76
3	2.5	2	12	94
4	5	2	12	98
5	7.5	2	12	88
6	10	2	12	78
7	100	2	12	1.7
8	5	0	12	0
9	5	1	12	69
10	5	2	12	98
11	5	4	12	99
12	5	6	12	99
13	5	8	12	100
14	5	2	0	0
15	5	2	1	0
16	5	2	4	16
17	5	2	8	87
18	5	2	12	99
19 ^f	5	2	12	2.3
20 ^g	5	2	12	0
21 ^h	5	2	12	0
22	5	10	5	76
23 ⁱ	5	10	5	43
24 ^j	5	10	5	67

Table S1 Photocatalytic reduction of 4-nitrotoluene to corresponding amino organics.^a

^a Reaction condition: 4-nitrotoluene: 20 mg; H₂O: 5 mL; room temperature; Na₂S (0.25 M) and Na₂SO₃ (0.3 M) as sacrificial reagent; LED ($\lambda > 420$ nm, 3W × 30). ^b Weight % of Ni₂P in hybrid catalysts. ^c Total weight of hybrid catalysts. ^d Irradiation time. ^e Determined by ¹H NMR. ^f Using acetonitrile as solvent under H₂ atmosphere. ^g No irradiation. ^h No sacrificial reagents. ⁱ CdS and Ni₂P were added separately. ^j CdS and Ni₂P were added separately, and the system were treated with ultrasonic for 1h before irradiation.

Compounds	δ (ppm) ª			
	2.46 (s, 3H), 7.29 (d, 2H, <i>J</i> =8.4), 8.11 (d, 2H, <i>J</i> =8.4)			
NO	2.44 (s, 3H), 7.27 (d, 2H, <i>J</i> =8.4), 8.17 (d, 2H, <i>J</i> =8.4)			
— Мнон	2.41 (s, 3H), 7.27 (d, 2H, <i>J</i> =8.4), 8.10 (d, 2H, <i>J</i> =8.4)			
	2.43 (s, 6H), 7.29 (d, 4H, J=8.4), 7.80 (d, 4H, J=8.4)			
	2.30 (s, 6H), 4.70 (s, 2H), 6.77 (d, 4H, <i>J</i> =8.0), 7.08 (d, 4H, <i>J</i> =8.0)			
	2.24 (s, 3H), 3.52 (s, 2H) , 6.60 (d, 2H, <i>J</i> =8.0), 6.95 (d, 2H, <i>J</i> =8.0)			

Table S2 ¹H NMR data of products and intermediates in $CDCl_3$ solutions.

^a The hydrogen number of each compound was determined by assuming that the number of methyl hydrogen is 3 or 6.

,,,						
	Ni	Cd	Ni₂P	CdS		
Concentration (%)	3.74	73.50	4.73	94.47		

Table S3 Elemental analysis data of Ni₂P(5wt %)/CdS

Fig. S1 XRD of the Ni_2P(5 wt%)/CdS hybrid material.

Fig. S2 (a) TEM image and (b) HRTEM image of the obtained Ni_2P .

Fig. S3 (a) TEM image and (b) HRTEM image of the obtained CdS

Fig. S4 (a) TEM image and (b) HRTEM image of the Ni_2P/CdS hybrid material after the photocatalytic reaction.

Figure S5 XPS spectra of the (a) Ni 2p, (b) P 2p, (c) Cd 3d and (d)S 2p regions in Ni_2P/CdS before and after the photocatalytic reaction.

Figure S6 XPS spectrum of the (a) C 1s region and (b) survey spectrum in Ni_2P/CdS before and after the photocatalytic reaction.

Fig. S7 Recyclability test for the photocatalytic reduction of 4-nitrotoluene.

Fig. S8 ¹H NMR of photocatalytic reduction product of 4-nitrotoluene in $CDCl_3$ after 1 h irradiation.

Fig. S9 ¹H NMR of photocatalytic reduction product of 4-nitrotoluene in $CDCl_3$ after 6 h irradiation.

Fig. S10 ESI-MS spectrum of photocatalytic reduction product of 4-nitrotoluene after 6 h irradiation.

Fig. S11 ¹H NMR of photocatalytic reduction product of 4-nitrotoluene in DMSO after 12 h irradiation.

Fig. S12 ¹H NMR of photocatalytic reduction product of diazobenzene after 48 h irradiation.

Fig. S13 MS-ESI spectrum of photocatalytic reduction product of diazobenzene after 48 h irradiation.