Supporting Information

Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril

E. Prigorchenko,^a M. Öeren,^a S. Kaabel,^a M. Fomitšenko,^a I. Reile,^b I. Järving,^a T. Tamm,^a F. Topić,^c K. Rissanen^c and R. Aav^a*

^{h.} Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.

b. National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.

^c University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box. 35, FI-40014 Jyvaskyla, Finland.

* riina.aav@ttu.ee

Table of Contents

1	Ge	eneral Information	S2
2	Ex	perimental Procedures and Compound Characterization Data	S4
	2.1	Synthetic procedures	S4
	2.	1.1 Screening the conditions for the synthesis of cycHC[8] from cycHC[6]	S4
	2.	1.2 ¹³ C labelling	S7
	2.	1.3 Screening the conditions for the synthesis of cycHC[8] starting from (<i>R</i> , <i>R</i> , <i>N</i> , <i>N</i> ')-cyclohex-1,2-diylurea	S11
	2.	1.4 Screening the conditions for the synthesis of cycHC[8] or cycHC[6] from oligomers or homologues	using
	di	fferent templates	S13
	2.2	Chromatoaraphic and mass-spectrometric procedures	S14
3	Q	ualitative mass-spectrometric analysis of intermediates	S14
4	Ki	netics studies	\$16
5	Cr	ystal structure data	S19
	5.1	Crystallization procedure	S19
	5.2	Crystal data	S19
6	Di	iffusion NMR analysis and evaluation of association constants K _a	S21
	6.1	Sample preparation	S21
	6.2	DOSY spectra	S21
	6.3	Diffusion coefficients and calculation of association constants	S26
7	Co	omputational Details	S27
	7.1	Equilibrium Between cycHC[6] and cycHC[8]	S27
	7.2	Equilibrium Between cycHC[6] and cycHC[8]	S29
	7.3	Geometries for equilibrium of the remacrocyclization reaction	S32
8	Re	eferences	\$59

1 General Information

Unless otherwise stated, <u>all reagents</u> were purchased from commercial suppliers and used as received. Solvents used for flash chromatography were reagent grade, which were dried and distilled prior to use according to standard procedures. (R,R,N,N')-cyclohex-1,2-diylurea **1a** was synthesized¹ starting from (R,R)-1,2-cylohexanediammonium tartaric salt. The salt was obtained via crystallization² from 1,2-cyclohexanediamine *cis-/trans-* and *meso-* mixture with L-(+)-tartaric acid.

Flash chromatography was run over Thomar CC Silica Gel 60 (0.04-0.063 mm) stationary phase. Infrared spectra were obtained on a Bruker Tensor 27 FT-IR spectrometer and are reported in wavenumbers. Intensities of the peaks are reported using the following abbreviations: vs-very strong, s- strong, w-weak. Elemental analysis was performed on an Elementar vario MICRO cube instrument in CHNS mode. Optical rotation was measured with an Anton Paar MCP 500 polarimeter. HPLC based reaction rate monitoring was performed on an Agilent 1200 Series HPLC system with a Kinetex C18 column (2.1x100 mm, 2.6 μ m) and UV-detection at 210 nm.³ Identification of reaction products and traces was performed by RP-HPLC-HRMS on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS spectrometer with a Zorbax Eclipse Plus C18 column (2.1x150 mm, 1.8 μ m) and AJ-ESI ionization. 1D ¹H and ¹³C NMR spectra were acquired on a Bruker Avance III 400 MHz spectrometer. *J* values are given in Hz. Chemical shifts were referenced to the residual solvent signal.

<u>¹H diffusion NMR</u> and reaction kinetics experiments were performed on a Bruker Avance III 800 MHz spectrometer using a Bruker PADUL probe equipped with a z-gradient coil and regular 5 mm NMR tubes. Probe temperature was set to 288 K and each sample was allowed to thermally equilibrate in the probe for at least 20 min prior to diffusion measurements. ¹H diffusion NMR experiments utilized the standard convection compensated pulse program dstebpgp3s with bipolar rectangular gradient pulses with 1 ms pulse duration, 150 ms diffusion time, 5 ms LED delay and 3 spoil gradients.

¹⁹F Diffusion NMR experiments were performed on a Bruker Avance III 400 MHz spectrometer using a Bruker BBO probe equipped with a z-gradient coil and Shigemi tubes. Probe temperature was set to 296 K and each sample was allowed to thermally equilibrate in the probe for at least 20 min prior to diffusion measurements. ¹⁹F diffusion NMR experiments utilized the standard pulse program stebpgp1s with rectangular gradient pulses with 0.7 ms pulse duration, 100 ms diffusion time and 1 spoil gradient.

In all diffusion NMR experiments the gradient was varied from 5% to 95% of maximum power linearly in 32 steps. 4 dummy scans and 16 scans were collected at each gradient step. All 32 rows of diffusion datasets were phase and baseline corrected, diffusion coefficients D were calculated with the Bruker TopSpin T1/T2 module and the D dimension of all datasets normalized according to residual solvent peaks. 2D DOSY spectra were generated with Bruker TopSpin DOSY module.

<u>Single crystal X-ray diffraction</u> data was collected on a Rigaku Compact HomeLab diffractometer, equipped with a Saturn 944 HG CCD detector and Oxford Cryostream cooling system, at T = 200.0(1) K using monochromatic Cu-*Ka* radiation (1.54178Å) from a MicroMaxTM-003 sealed tube microfocus X-ray source. The strategy of data collection was calculated using Rigaku *CollectionStrategy*⁴, the

program package XDS^5 was used for data integration, reduction and for applying empirical absorption corrections. The structure was solved using $SHELXD^6$; and refined against F^2 with $SHELXL-2013^6$ through $OLEX2^7$ program package. All non-hydrogen atoms were refined anisotropically, hydrogen atoms were treated as riding on their parent carbon and oxygen atoms, with $U_{iso}(H) = 1.2U_{iso}(C)$ for CH and $CH_{2;} U_{iso}(H) = 1.5U_{iso}(C)$ for CH_3 and OH. The contribution of the diffuse solvent to the structure factors was calculated with SQUEEZE procedure⁸ of *PLATON*⁹, and accounted for in the final refinement cycles.

2 Experimental Procedures and Compound Characterization Data

2.1 Synthetic procedures

Acetonitrile or other co-solvent was added to a solution of (*all-R*)-cycHC[6] HCl¹⁰ complex in a carboxylic acid. The resulting 0.04 M solution was stirred at rt or at 100°C for 2 to 72 hours, according to specific conditions, as outlined in Table S1. Reaction progress and cycHC[8]:cycHC[6] ratios were monitored by HPLC-UV and TLC.

No	cycHC[6] (mg)	Acid (eq.)/ co-solvent	Time (h)	Mixture	Temp. (°C)	Ratio of cycHC[8] to cycHC[6]
1	5	HCOOH (10)/ CH ₃ CN	24	heterogeneous	rt	No reaction
2	5	HCOOH (10)/ CHCl ₃	24	homogeneous	rt	50:50
3	20	НСООН	24	homogeneous	rt	83:17
4	20	НСООН	24	homogeneous	100	Oligomers
5	20	HCOOH (300)/ H ₂ O	24	heterogeneous	rt	No reaction
6	20	HCOOH (300)/	24	homogeneous	rt	60:40
0	20	CHCl ₃	48	homogeneous	rt	80:20
7	20	HCOOH (300)/ CH ₃ CN	24	homogeneous	rt	90:10
8	5	CF ₃ COOH (300)/ CHCl ₃	24	homogeneous	rt	75:25
9	20	CH ₃ COOH (300)/ CH ₃ CN	72	homogeneous	rt	Oligomers and cycHC[6]
10	5	CH ₃ COOH (300)/ CHCl ₃	48	homogeneous	rt	Oligomers and cycHC[6]
11	5	H ₂ SO ₄ (300)/ CH ₃ CN	2	homogeneous, yellow	rt	polymerization of CH ₃ CN
12	5	H ₂ SO ₄ (300)/ CH ₃ COOH	2	homogeneous, yellowish film	rt	decomposition of starting material
13	5	H ₂ SO ₄ (50)/ CH ₃ COOH/ CH ₃ CN	24	homogeneous, yellow	rt	50:50 and oligomers
14	10	NaPF ₆ (50)/ CH ₃ COOH/ CH ₃ CN	24	heterogeneous	rt	99:1

Table S1. Screening the reaction conditions for the transformation of cycHC[6] to cycHC[8].

a) Synthesis of cycHC[8] from cycHC[6] with formic acid

To a solution of (*all-R*)-cycHC[6] HCl complex (1.58 g, 1.66 mmol) in HCOOH (20 mL) acetonitrile (20 mL) was added. The resulting clear solution was stirred at rt for 24 hours. Reaction progress was

monitored by HPLC (final cycHC[8]:cycHC[6] ratio 90:10) and TLC. The reaction was quenched by the addition of H₂O (120 mL) and the resulting suspension, was filtered, washed with 3 \pm 10 mL of H₂O and dried in open air at rt for 2 days. The resulting residue was purified by recrystallization from CH₂Cl₂/acetonitrile mixture (3 mL of CH₂Cl₂, 10 mL of acetonitrile, 20 min. ice bath).

HRMS analysis of reaction mixture showed oligomers with hydrogens on both ends (1b-h) and with a methyleneformate group on one end of the oligomers (4b-h).

(*all-R*)-cycHC[8] was isolated by crystallization as a white solid (885 mg first crop, >99% purity, 56%), the mother liquor was used for a second crystallization, which gave cycHC[8] in a mixture with cycHC[6] (218 mg, 9:1, respectively, by HPLC). The remaining mother liquor contained cycHC[8] and cycHC[6] in a ratio of ~6:4. Overall yield is 71%. Mp 255-260 °C. $[\alpha]_D^{25}$ -78.5° (c 0.59, CHCl₃). (Found: C, 62.74; N, 7.95; H, 18.26 for C₆₄H₉₆N₁₆O₈: C, 63.13; N, 7.95; H, 18.41%). IR (KBr, cm⁻¹) 3502 w, 2936 s, 2858 s, 1711 (CO) vs, 1435 s, 1359 vs, 1332 s, 1232 vs, 1134 w, 1058 w, 1014 w, 988 w, 919 w, 830 w, 774 s, 667 w, 628 w, 532 w, 516 w, 476 w. ¹H NMR (400 MHz, CDCl₃) δ 1.18–1.05 (1H, m, H4ax), 1.23 (1H, qd, *J* = 11.0, 2.9, H3ax), 1.29 (1H, qd, *J* = 11.3, 3.3, H6ax), 1.47–1.35 (1H, m, H5ax), 1.73 (1H, bd, *J* = 12.7, H5eq), 1.82 (1H, bd, *J* = 12.5, H4eq), 2.30 (1H, dd, *J* = 11.5, 2.7, H6eq), 2.49 (1H, td, *J* = 11.0, 2.9, H2), 2.62 (1H, dd, *J* = 11.6, 2.7, H3eq), 2.83 (1H, td, *J* = 11.1, 3.1, H1), 4.59 (1H, s, H8), 4.77 (1H, s, H9). ¹³C NMR (101 MHz, CDCl₃) δ = 161.77 (C7), 64.86 (C1), 59.68 (C2), 55.83 (C8), 46.69 (C9), 28.76 (C6), 27.63 (C3), 24.48 (C5), 24.19 (C4). Analytical data is consistent with ref. 3.

b) Synthesis of cycHC[8] from cycHC[6] with trifluoroacetic acid

To a solution of (*all-R*)-cycHC[6] HCl complex (108 mg, 0.11 mmol) in CF₃COOH (1.5 mL) acetonitrile (1.5 mL) was added. The resulting clear solution was stirred at rt 2 hours. Reaction progress was monitored by HPLC (final cycHC[8]:cycHC[6] ratio 95:5) and TLC. Reaction was quenched by the addition of H₂O (10 mL) and the resulting suspension, filtered, washed 3 times á 2 mL of H₂O and dried in open air at rt for 2 days. The resulting residue was purified by flash chromatography (1-5% gradient MeOH/CH₂Cl₂).

HRMS analysis of the reaction mixture showed no oligomers. Compound (*all-R*)-cycHC[8] was obtained as a white solid (74 mg, 71%).

c) Synthesis of cycHC[8] from cycHC[6] with sodium hexafluorophosphate (NaPF₆)

To a solution of (*all-R*)-cycHC[6] HCl complex (15 mg, 0.016 mmol) in CH₃COOH (0.17 mL) and acetonitrile (0.17 mL) NaPF₆ (134 mg, 0.8 mmol, 50 eq.) was added. Heterogeneous solution was stirred 24 hours at rt. Reaction progress was controlled by HPLC (final cycHC[8]:cycHC[6] ratio from reaction mixture 99:1) and TLC. Reaction was quenched by addition of H₂O (2 mL). Then, the resulting suspension was filtered and washed 3 times á 1 mL of H₂O and dried in open air at rt for 2 days. The resulting residue was purified by flash chromatography (1-5% gradient MeOH/CH₂Cl₂).

HRMS analysis of reaction mixture showed no oligomers. Compound (*all-R*)-cycHC[8] was obtained after purification as a white solid (13 mg, 90%). Isolated cycHC[8] did not contained PF_6 anion, according to ¹⁹F-NMR analysis.

2.1.2 ¹³C labelling

We introduced ¹³C label to methylene bridges of cycHC[6]¹⁰.

To a mixture of (*R*,*R*,*N*,*N'*)-cyclohex-1,2-diylurea **1a** (250 mg, 1.8 mmol, 1eq.) and parafolmaldehyde-¹³C (54 mg, 1.8 mmol, 1 eq.) 4M acid aqueous solution was added (7 mL), reaction mixture was stirred 24 hours at 70° C. Then, the resulting suspension was filtered, washed 3 á 1 ml of H₂O and dried in open air at rt for 2 days. Compound ¹³C-labelled (*all-R*)-cycHC[6] HCl was obtained as a white solid (173 mg, 61%).

¹³C-labelled cycHC[6] HCl (5 mg, 5 μ mol) and non-labelled cycHC[6] HCl (5 mg, 5 μ mol) as an equimolar mixture were dissolved in NMR sample tube in DCO₂D (300 μ L) and CD3CN (300 μ L) to produce ¹³C-labelled cycHC[8]. Reaction mixture was analyzed by ¹H and ¹³C NMR and MS.

Figure S2. ¹H-NMR spectrum recorded at 30 min. from the beginning of the reaction (page S7) in DCO₂D and D₃CCN, mixture contains ¹³C-labeled cycHC[6] (methylene bridges - peaks number 1, 2, 5, 6) and non-labelled cycHC[6] (methylene bridges - peaks number 3, 4) and minor amount of formed cycHC[8].

Figure S3. ¹H-NMR spectrum recorded at 20h 30 min. from the beginning of the reaction page S7 in DCO₂D and D₃CCN, mixture contains ¹³C-labelled cycHC[8] in majority and cycHC[6] in minor amount.

Figure S4. MS spectrum of cycHC[6] (calculated m/z for non-labelled [cycHC[6]+Na]⁺ is 935) and cycHC[8] (calculated m/z for non-labelled [cycHC[8]+Na]⁺ is 1240) from labelling experiment in page S7.

2.1.3 <u>Screening the conditions for the synthesis of cycHC[8] starting from (*R*,*R*,*N*,*N'*)-cyclohex-1,2-<u>diylurea</u></u>

Acetonitrile or other co-solvents were added to a mixture of (R,R,N,N')-cyclohex-1,2-diylurea **1a** and paraformaldehyde (1 eq) in a carboxylic acid. The resulting 0.25 M reaction mixture was stirred for 1.5 - 120 h at specific conditions, as outlined in Table S2. Reaction progress and cycHC[8]:cycHC[6] ratios were monitored by HPLC and TLC.

No	1a (mg)	Acid (eq.)/ co-solvent	Mixture	Time (h)	Temp. (°C)	Ratio of cycHC[8]: cycHC[6]
1	20	HCOOH (300)/ HCl	heterogeneous	24	70	Unidentified by- product
2	20	НСООН	heterogeneous	24 70		oligomers
3	50	HCOOH (300)/ CH ₃ CN	00)/ heterogeneous 24		RT	92:8 and oligomers
4	50	CH ₃ COOH	heterogeneous	48	RT	oligomers
5	20	CH ₃ COOH (300)/ CH ₃ CN	heterogeneous	120	RT	oligomers
6	20	H ₂ SO ₄ (300)/ CH ₃ CN	homogeneous, yellow	2	RT	Polymerization of CH ₃ CN
7	157	CF ₃ COOH (300)/ CH ₃ CN	heterogeneous	2	RT	96:4

Table S2. Screening of reaction conditions for the synthesis of cycHC[8] from 1a

a) Synthesis of cycHC[8] from 1a with HCOOH

To a mixture of (R,R,N,N')-cyclohex-1,2-diylurea **1a** (200 mg, 1.4 mmol) and paraformaldehyde (43 mg, 1.4 mmol, 1 eq.), HCOOH (2.7 mL) and acetonitrile (2.7 mL) were added, heterogeneous reaction mixture was stirred 24 hours at rt. Reaction progress was followed by HPLC (cycHC[8]:cycHC[6] ratio from reaction mixture is 92:8) and TLC. To the resulting clear solution H₂O (6 mL) was added and stirred at ice bath 30 min. The crystals were filtered, washed 3 times á 1 mL of H₂O and dried in

open air at rt for 2 days. Purification by flash chromatography was performed (1-5% gradient MeOH/ CH_2Cl_2).

For HPLC-MS analysis reaction mixture was diluted in methanol, which gave oligomers **7a-j** and **8a-j**, which were formed from the corresponding iminium oligomers **3a-j** in reaction with methanol. When another aliquot was diluted in acetonitrile and injected directly to the MS, intermediates **1a-g**, **2a-e**, **4a-g**, **5a-g**, **7a-g** and **8a-d** were detected.

Compound (*all-R*)-cycHC[8] was obtained as a white solid (15 mg, 7 %), along with mixture of oligomers (29 mg, 14%).

b) Synthesis of cycHC[8] from 1a with CF₃COOH

To a mixture of (R,R,N,N')-cyclohex-1,2-diylurea **1a** (1654 mg, 11.8 mmol) and paraformaldehyde (354 mg, 11.8 mmol, 1 eq.), CF₃COOH (22 mL) and acetonitrile (22 mL) were added, heterogeneous reaction mixture was stirred 2 hours at rt. Reaction progress was followed by TLC. To the resulting clear solution H₂O (60 mL) was added and stirred at ice bath 30 min. The crystals were filtered, washed 3 \pm 10 mL of H₂O and dried in open air at rt for 2 days. Purification by flash chromatography was performed (1-5% gradient MeOH/CH₂Cl₂).

Mass spectrometric analysis of reaction mixture diluted with methanol revealed oligomers **1a-g** and **7a-g** and **8a-g**.

Compound (all-R)-cycHC[8] was obtained as a white solid (1303 mg, 73 %).

c) Synthesis of cycHC[8] from 1a with NaPF₆

To a mixture of (*R*,*R*,*N*,*N'*)-cyclohex-1,2-diylurea **1a** (10 mg, 0.07 mmol) and paraformaldehyde (2 mg, 0.07 mmol, 1 eq.), CH₃COOH (0.140 mL), acetonitrile (0.140 mL) and NaPF₆ (75 mg, 0.45 mmol, 50 eq. towards cycHC[8]) were added. Reaction mixture was stirred 24 hours at rt. Reaction progress was followed by HPLC (cycHC[8]:cycHC[6] ratio from reaction mixture is 95:5) and TLC. To the resulting heterogeneous solution H₂O (1 mL) was added and stirred at ice bath 30 min. The crystals were filtered and washed 3 times á 1 mL of H₂O and dried in open air at rt for 2 days. Purification by flash chromatography was performed (1-5 % gradient MeOH/CH₂Cl₂).

HRMS analysis of reaction mixture showed no oligomers. Compound (*all-R*)-cycHC[8] was obtained as a white solid (6 mg, 55 %). Isolated cycHC[8] did not contained PF₆ anion, according to ¹⁹F-NMR analysis. Mixture of oligomers (2 mg, 3-10 unit long oligomers) was isolated as the major by-products.

Oligomers were obtained from synthesis of cycHC[8] from 1a in formic acid (Table S2, entry 3) and separated by flash chromatography. For mass spectrometric analysis the oligomers were dissolved in a chloroform/methanol mixture (1:4) and injected directly to ESI-MS, which showed oligomeric intermediates up to decamers (1a-j, 2a-j, 6b-j, 7a-j and 8a-j).

2.1.4 <u>Screening the conditions for the synthesis of cycHC[8] or cycHC[6] from oligomers or homologues using different templates</u>

Table S3	. Reaction co	nditions for th	ne synthesis 6-	and 8-membered	l homologues	of cycHC[n] s	starting
from olig	omers or cycI	HC[8].					

No	Starting	Acid (eq.)/	Mixture	Time	Temp.	Ratio of
	material	co-solvent		(h)	(°C)	cycHC[8]:c
	(mg)					ycHC[6]
1	Oligomers	HCOOH (300)/	homogeneous	24	RT	85:15
	(8)	CH ₃ CN				
2	Oligomers	4M HCl _{aq}	heterogeneous	24	70	0:100
	(20)					
3	cycHC[8]	4M HCl _{aq}	heterogeneous	24	70	0:100
	(25)					
4	cycHC[8]	HCOOH (3000)/	homogeneous	120	RT	70:30
	(1)	CH ₃ CN				

a) Synthesis of cycHC[6] from cycHC[8] with HCl

Heterogeneous mixture of (*all-R*)-cycHC[8] (50 mg, 0.04 mmol) in 4M HCl_{aq.} (1.3 mL) was stirred 24 hours at 70 °C. Reaction progress was followed by TLC and HPLC-UV (fanal cycHC[6]:cycHC[8] ratio of reaction mixture is 95:5). The resulting heterogeneous solution was cooled to rt, filtered and washed 3 \pm 1 mL of H₂O and dried in open air at rt for 2 days.

(*all-R*)-cycHC[6] HCl complex was obtained as a white solid (37 mg, 71%). Product was identical with previously reported in ref. 10.

b) Synthesis of cycHC[6] from cycHC[8] with NaCl

To a mixture of (*all-R*)-cycHC[8] (65 mg, 0.05 mmol) and NaCl (145 mg, 2.50 mmol, 50 eq) acetic acid (1.7 mL) was added. Heterogeneous reaction mixture was stirred 72 hours at 70 °C. Reaction progress was followed by TLC and HPLC-UV (final cycHC[6]:cycHC[8] ratio of reaction mixture is 60:40). To the resulting heterogeneous solution H_2O (2 mL) was added and stirred at ice bath for 30 min. Then, the resulting suspension was filtered and washed 3 á 1 mL of H_2O and dried in open air at rt for 2 days. Purification by flash chromatography (MeOH:CH₂Cl₂ 1-10 % gradient)

Compound (*all-R*)-cycHC[6] HCl complex was obtained as a white solid (6 mg, purity >99%, 9% and 33 mg mixture of cycHC[8] and cycHC[6] with ratio 75:25, overall yield of cycHC[6] 21%). Product was identical with previously reported in ref. 10.

2.2 Chromatographic and mass-spectrometric procedures

For chromatographic analysis 10 μ L of reaction mixtures was taken and dissolved in 100 μ L chloroform (or acetic acid) and diluted in 400 μ L acetonitrile or methanol depending on reaction mixture solubility.

Separation by HPLC-UV was performed with eluents A (acetonitrile) and B (water) in gradient mode from 50A/50B to 100A/0B within 10 min. Column temperature was set at 30°C, flow rate to 0.25 mL/min and injection volume was 5 μ L. HPLC-MS analysis was performed using the same gradient mode with eluents C (acetonitrile with 0.1 % formic acid and 1 % water) and D (water with 0.1 % formic acid). Flow rate was 0.4 mL/min, temperature 30 °C and injection volume was varied depending on the concentration of analytes.

3 Qualitative mass-spectrometric analysis of intermediates

Calculated m/z values of different oligomers and averaged experimental values of samples along with standard deviations are listed in Table S4. All mass-to-charge ratios are presented for $[M+Na]^+$ adducts (most abundant).

Comp.	Calc. <i>m/z</i>	Exp. <i>m/z</i> ± deviation*	Comp.	Calc. m/z	Exp. <i>m/z</i> ± deviation*
1a	163.0842	$\frac{163.0839 \pm 0.0003}{(n=3)}$	6b	375.2003	375.2005 (<i>n</i> = 1)
1b	315.1791	315.1795 ± 0.0005 (n = 4)	6c	527.2952	527.2956 (<i>n</i> = 1)
1c	467.2741	467.2746 ± 0.0005 (n = 4)	6d	679.3902	679.3905 (<i>n</i> = 1)
1d	619.3691	619.3696 ± 0.0002 (n = 4)	6e	815.4903	815.4910 (<i>n</i> =1)
1e	771.4640	771.4654 ± 0.0006 $(n = 4)$	6f	983.5801	983.5809 (<i>n</i> = 1)
1f	923.5590	923.5598 ± 0.0005 (n = 4)	6g	1135.6751	1135.6750 (<i>n</i> = 1)
1g	1075.6540	1075.654 ± 0.001 (n = 4)	6h	1287.7701	1287.7700 (<i>n</i> = 1)
1h	1227.7489	1227.744 ± 0.004 (<i>n</i> = 2)	6i	1439.8650	1439.8630 (<i>n</i> = 1)
1i	1379.8439	1379.844 (<i>n</i> = 1)	6j	1591.9600	1591.9580 (<i>n</i> = 1)
1j	1531.9389	1531.938 (<i>n</i> = 1)	7a	207.1104	207.1103 ± 0.0002 (n = 4)
2a	193.0947	193.0946 ± 0.0003	7b	359.2054	359.2057 ± 0.0001

Table S4. Experimental and theoretical m/z values of oligometric intermediates

		(n=2)			(n=4)
2b	345.1897	345.1899 ± 0.0000 (<i>n</i> = 2)	7c	511.3003	511.3004 ± 0.0003 (<i>n</i> = 4)
2c	497.2847	497.2849 ± 0.0005 (<i>n</i> = 2)	7d	663.3953	663.3955 ± 0.0003 (n = 4)
2d	649.3796	649.380 ± 0.001 (n = 2)	7e	815.4903	815.4913 ± 0.0005 (n = 4)
2e	801.4746	$801.474 \pm 0.002 (n = 2)$	7f	967.5852	967.585 \pm 0.001 (n = 4)
2f	953.5696	953.5702 (<i>n</i> = 1)	7g	1119.6802	$ \begin{array}{r} 1119.679 \pm 0.001 \\ (n = 4) \end{array} $
2g	1105.6645	1105.665 (<i>n</i> = 1)	7h	1271.7751	$ \begin{array}{r} 1271.773 \pm 0.004 \\ (n=2) \end{array} $
2h	1257.7595	1257.76 (<i>n</i> = 1)	7i	1423.8701	$ \begin{array}{r} 1423.873 \pm 0.004 \\ (n=2) \end{array} $
2i	1409.8545	1409.855 (<i>n</i> = 1)	7j	1575.9651	$ \begin{array}{r} 1575.966 \pm 0.002 \\ (n=2) \end{array} $
2j	1561.9494	1561.95 (<i>n</i> = 1)	8a	251.1366	251.1363 ± 0.0008 (n = 4)
4a	221.0897	221.0899 (<i>n</i> = 1)	8b	403.2316	$403.232 \pm 0.002 \\ (n = 4)$
4b	373.1846	$373.187 \pm 0.002 (n = 2)$	8c	555.3265	$555.326 \pm 0.002 \\ (n = 4)$
4c	525.2796	525.2802 ± 0.0001 $(n=2)$	8d	707.4215	707.421 ± 0.003 (<i>n</i> = 4)
4d	677.3746	677.3754 ± 0.0003 $(n=2)$	8e	859.5165	$859.518 \pm 0.002 \\ (n = 3)$
4e	829.4695	829.469 ± 0.001 (<i>n</i> = 2)	8f	1011.6114	$ \begin{array}{r} 1011.6110 \pm 0.0007 \\ (n = 3) \end{array} $
4f	981.5645	981.5645 ± 0.0001 $(n=2)$	8g	1163.7064	$ \begin{array}{r} 1163.707 \pm 0.005 \\ (n=3) \end{array} $
4g	1133.6594	$ \begin{array}{r} 1133.6590 \pm 0.0007 \\ (n=2) \end{array} $	8h	1315.8014	$ \begin{array}{r} 1315.799 \pm 0.004 \\ (n=2) \end{array} $
4h	1285.7544	1285.7400 (<i>n</i> = 1)	8i	1467.8963	$ \begin{array}{r} 1467.89 \pm 0.01 \\ (n=2) \end{array} $
5a	279.0951	279.0955 (<i>n</i> = 1)	8j	1619.9913	$ \begin{array}{r} 1619.98 \pm 0.01 \\ (n=2) \end{array} $
5b	431.1901	431.1905 (<i>n</i> = 1)	8e	859.5165	$859.518 \pm 0.002 \\ (n = 3)$
5c	583.2851	583.2856 (<i>n</i> = 1)	8f	1011.6114	$ \begin{array}{c} 1011.6110 \pm 0.0007 \\ (n = 3) \end{array} $
5d	735.3800	735.3807 (<i>n</i> = 1)	8g	1163.7064	$ \begin{array}{c} 1163.707 \pm 0.005 \\ (n = 3) \end{array} $

5e	887.4750	887.4757 (<i>n</i> = 1)	8h	1315.8014	1315.799 ± 0.004 (n = 2)
5f	1039.5700	1039.5710 (<i>n</i> = 1)	8 i	1467.8963	1467.89 ± 0.01 (<i>n</i> = 2)
5g	1191.6649	1191.6660 (<i>n</i> = 1)	8j	1619.9913	1619.98 ± 0.01 (<i>n</i> = 2)

**n* is number of samples

4 Kinetics studies

Data was obtained by ¹H NMR from a sample consisting of 20 mg of (*all-R*)-cycHC[6] dissolved in 0.3 mL of DCOOD and 0.3 mL of CD₃CN. The residual CH₂Cl₂ signal was used as internal reference for analyte signal integration and mass balance. No intermediates were detected during the transformation of cycHC[6] to cycHC[8] in the NMR time scale. Data was analyzed with Sigmaplot 11^{TM} .

Figure S5. Stacked ¹H-NMR spectra recorded during cycHC[6] transformation to cycHC[8]. CH₂Cl₂ (5.5 ppm) integral was used as internal reference and bridge methylene peaks (4.6 ppm for cycHC[6] and 4.8 ppm for cycHC[8]) integrals were used for the collection of kinetic data (see Table S5).

Reaction		¹ H-NMR integra	ls	Conc. (mol/L)	(Conc. (mass%)	
time	CH ₂ Cl ₂ 5.5 ppm*	cycHC[6] (6H) 4.6 ppm	cycHC[8] (8H) 4.8 ppm	cycHC[6]	cycHC[8]	cycHC[6]	cycHC[8]	Sum of mass%.
0				0.0351	0	100	0	100
00:20:46	1.00	5.18	0.27	0.0334	0.0014	95	5	100
01:13:01	1.00	3.01	0.76	0.0194	0.0038	55	14	69
01:31:57	1.00	3.76	1.25	0.0242	0.0063	69	23	92
02:21:17	1.00	2.81	1.63	0.0181	0.0082	52	30	81
03:14:55	1.00	2.36	2.11	0.0152	0.0106	43	39	82
04:03:52	1.00	2.07	2.52	0.0133	0.0127	38	46	84
05:26:44	1.00	1.63	3.02	0.0105	0.0152	30	55	85
06:46:18	1.00	1.35	3.32	0.0087	0.0167	25	61	86
08:05:50	1.00	1.11	3.54	0.0071	0.0178	20	65	85
10:25:54	1.00	0.87	3.84	0.0056	0.0193	16	70	86
12:45:57	1.00	0.68	4.03	0.0044	0.0203	12	74	86
14:53:11	1.00	0.60	4.14	0.0039	0.0208	11	76	87
17:05:09	1.00	0.54	4.63	0.0035	0.0233	10	85	95
19:12:23	1.00	0.48	4.50	0.0031	0.0226	9	83	91
21:37:35	1.00	0.41	4.77	0.0026	0.0240	8	88	95

 Table S5. ¹H-NMR integrals and the concentrations of cycHC[8] and cycHC[6] during cycHC[6] transformation to cycHC[8].

*CH₂Cl₂ was used as internal reference.

Figure S6. Kinetics plot of cycHC[6] (filled circles) and cycHC[8] (empty circles).

cycHC[6] concentration curve was fitted with the following equation:

$$f = y_0 + a \times e^{-b \times x}$$

where y_0 is the residual concentration (mol/L) of cycHC[6], *a* is cycHC[6] concentration (mol/L) at t_0 , *b* is cycHC[6] consumption reaction rate constant and *x* is time (h).

For $f = 0.0037(\pm 0.0008) + 0.031(\pm 0.001) \times e^{-0.30(\pm 0.03) \times x}$ the R^2 of fitting was 0.975.

cycHC[8] concentration rise was fitted to the following equation:

 $f = a(1 - e^{-b \times x})$

where *a* is maximum concentration (mol/L) of cycHC[8], *b* is cycHC[8] concentration rise rate constant per hour and *x* is time (h).

For $f = 0.0234(\pm 0.0004)(1 - e^{-0.191(\pm 0.009) \times x})$ the R^2 of fitting was 0.994. The equilibrium between cycHC[6] and cycHC[8] was studied by evaluating the equilibrium constant (K_{eq}) from experimental data and computationally (page S27). $4 cycHC[6] \Rightarrow 3 cycHC[8]$

 K_{eq} is calculated at equilibrium, where concentrations of cycHC[8] and cycHC[6] were 0.0240M and 0.0026M, respectively, by the following equation

$$K_{eq} = \frac{[cycHC[8]]^3}{[cycHC[6]]^4} = 3.0 \times 10^5,$$

corresponding to a difference in Gibbs free energies (ΔG) of -31 kJ/mol in favour of cycHC[8].

5 Crystal structure data

5.1 Crystallization procedure

Single crystals of the (*all-R*)-cycHC[8]·6.75(CH₄O)·H₂O were obtained from a (1:1) solution of (*all-R*)-cycHC[8] and (*S*)-Mosher acid in MeOH by slow evaporation method. The small colorless needle-like crystals lose solvent quite quickly when removed from mother liquor resulting in crystal deterioration. The compound was found to crystallize in a non-centrosymmetric space group $P2_1$, with two molecules of (*all-R*)-cycHC[8] and a number of solvent molecules in the asymmetric unit. (*S*)-Mosher acid was not incorporated in the crystal structure. Nine methanol molecules (s.o.f ≥ 0.5 , $U_{iso} < 0.15$) and one water molecule were found in the asymmetric unit. Restraints were applied to the geometry of the solvent molecules. The structure also contained some diffuse solvent.

5.2 Crystal data

2(C₆₄H₉₆N₁₆O₈)·6.75(CH₄O)·H₂O, $M_r = 2669.42$, Monoclinic, $P2_1$, a = 16.510(4) Å, b = 27.312(3) Å, c = 17.957(3) Å, $\beta = 96.33(3)^\circ$, V = 8048(3) Å³, Z = 2, Cu-*Ka* radiation ($\lambda = 1.54178$ Å) at T = 200.0(1) K, 84720 reflections measured, of which 27756 unique (23872 with $I > 2\sigma(I)$), $R_{int} = 0.033$, $R_I[F^2 > 2\sigma(F^2)] = 0.059$, wR_2 (all data) = 0.167, S = 1.02, Flack x = 0.05(6); absolute structure determined by anomalous diffraction effects using 10228 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$. The crystallographic data is deposited with the Cambridge Crystallographic Data Centre (CCDC 1053111 and can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Figure S7. Two symmetrically independent molecules of (*all-R*)-cycHC[8] engage in hydrogen bonding with solvent (methanol, water) molecules, forming either **a**) discrete or **b**) continuous motifs. Hydrogen bonds are shown as dashed green lines.

Figure S8. Two symmetrically independent molecules of (*all-R*)-cycHC[8] stack in a side-totop manner, assisted by hydrogen bonded methanol molecules included in the portals of both moieties. Hydrogen bonds are shown as dashed green lines.

Figure S9. Molecules of (all-R)-cycHC[8] pack in columns, whereas the solvent molecules can be seen as being accommodated in the thus formed channels. This might also explain the fast deterioration of the crystals upon removal from mother liquor.

6 Diffusion NMR analysis and evaluation of association constants K_a

6.1 Sample preparation

Diffusion NMR samples were prepared by adding 1 molar equivalent of the appropriate low MW guest compound (as a solution in 0.1 ml of $CDCl_3$) to a solution of (*all-R*)-cycHC[8] (5 mg, 0.004 mmol) in $CDCl_3$ (0.5 ml). Samples were subsequently stored in 5 mm NMR tubes and sealed with tube caps and parafilm to avoid solvent evaporation before and during analysis.

6.2 DOSY spectra

The following 2D DOSY plots illustrate the change in the diffusion coefficient of various tested guest molecules in the presence of cycHC[8] compared to the diffusion coefficient in neat CDCl₃. D_{Free} denotes the diffusion coefficient of the free undisturbed guest molecule in neat solvent and D_{Obs} denotes the observed guest molecule's diffusion coefficient in the presence of macrocyclic host compound. D_{Bound} denotes the diffusion coefficient of the macrocyclic host and is equal to the diffusion coefficient of the bound guest compound (binding of the low MW guest has a negligible effect on the hosts's diffusion coefficient).

Figure S10. DOSY spectra of HCOOH in pure CDCl₃ (red) and in the presence of cycHC[8] (black).

Figure S11. DOSY spectra of CH_3COOH in pure $CDCl_3$ (red) and in the presence of cycHC[8] (black).

Figure S12. A: ¹⁹F DOSY spectra of CF₃COOH in pure CDCl₃ (red) and in the presence of cycHC[8] (black); B: ¹H-DOSY of cycHC[8]

Figure S13. DOSY spectra of (*R/S*)-MPA in pure $CDCl_3$ (cyan), (*S*)-MPA (red) and (*R*)-MPA (black) in the presence of cycHC[8].

Figure S14. DOSY spectra of (R/S)-Mosher acid in pure CDCl₃ (cyan), (S)-Mosher acid ((S)-MTPA) (red) and (R)-Mosher acid ((R)-MTPA) (black) in the presence of cycHC[8].

Figure S15. ¹⁹F DOSY spectra of CF_3COOH in pure $CDCl_3$ (red) and in the presence of cycHC[6] (black).

Figure S16. DOSY spectra of HCOOH in pure CDCl₃ (red) and in the presence of cycHC[6] (black).

6.3 Diffusion coefficients and calculation of association constants

Each diffusion coefficient D results from the fit of 32 data points (peak areas). In order to avoid D value distortion by signal overlap, a single peak with clear baseline separation from all other signals was selected for diffusion coefficient assignment for each compound. Errors given are standard errors estimated by the fitting procedure.

Fraction of complexed molecules, p, was calculated by

$$p = \frac{D_{free} - D_{obs}}{D_{free} - D_{bound}}$$

where D_{free} denotes the diffusion coefficient of free guest in CDCl₃, D_{obs} denotes the diffusion coefficient of guest in the presence of cycHC[8] and D_{bound} denotes the diffusion coefficient of bound guest. The latter was experimentally proven to be equal to the diffusion coefficient of cycHC[8].

Association constants K_a were calculated by

$$K_a = \frac{p}{(1-p)(C_1 - C_{guest})},$$

where C_1 denotes the concentration of cycHC[8] and C_{guest} denotes the concentration of the guest molecule. For more detailed information about the association constants calculation the reader is referred to Rymden *et al.*¹¹

 Table S7. Diffusion coefficients of the free and bound guest molecules and association constants with cycHC[8]

Creat	D _{free}	Dobs	D_1, D_{bound}	-	<i>Ka</i> ,
Guest	$(10^{-10} \text{ m}^2 \text{s}^{-1})$	$(10^{-10} \text{ m}^2 \text{s}^{-1})$	$(10^{-10} \text{ m}^2 \text{s}^{-1})$	p	M-1
CH ₃ COOH	17.85 (±0.06)	16.55 (±0.03)	4.26 (±0.01)	0.10 (±0.01)	17 (±2)
НСООН	22.55 (±0.02)	17.72 (±0.01)	4.35 (±0.01)	0.27 (±0.01)	72.6 (±0.5)
^a CF ₃ COOH	18.60 (±0.07)	13.57 (±0.08)	13.20 (±0.03)	0.93 (±0.02)	29 (±1)×10 ³
(<i>R</i>)-MPA	11.23 (±0.01)	10.30 (±0.01)	4.39 (±0.01)	0.14 (±0.01)	29 (±3)
(S)-MPA	11.34 (±0.05)	9.82 (±0.01)	4.35 (±0.01)	0.21 (±0.01)	50 (±3)
(R)-MTPA	11.15 (±0.07)	7.491 (±0.001)	4.106 (±0.003)	0.52 (±0.01)	3.3 (±0.1)×10 ²
(S)-MTPA	11.02(±0.07)	7.581 (±0.002)	4.064 (±0.003)	0.51 (±0.01)	$3.0 (\pm 0.1) \times 10^2$

^aDue to technical limitations, the diffusion coefficients of CF₃COOH were measured by ¹⁹F spectroscopy on a different spectrometer, at a slightly higher temperature, with a different pulse program and in a Shigemi tube. It is known that the same compound/solvent can display different diffusion behavior in NMR tubes of different geometry and temperature¹² which explains the discrepancy in *D* values when compared to other entries. This does not affect the relative diffusion rates of dissolved species.

Guest	$\frac{D_{\rm free}}{(10^{-10} {\rm m}^2 {\rm s}^{-1})}$	D_{obs} (10 ⁻¹⁰ m ² s ⁻¹)	D ₁ , D _{bound} (10 ⁻¹⁰ m ² s ⁻¹)	р	К _а , М ⁻¹
НСООН	23.11 (±0.03)	12.47 (±0.02)	5.00 (±0.06)	0.53 (±0.01)	353 (±3)
^a CF ₃ COOH	19.0 (±0.1)	14.99 (±0.1)	16.07 (±0.07)	0,92	21 (±3)×10 ³

Table S8. Diffusion coefficients of the free and bound guest molecules and association constants with cycHC[6]

^a See comment under Table S7.

7 Computational details

7.1 Equilibrium between cycHC[6] and cycHC[8]

The equilibrium between cycHC[6] and cycHC[8] was studied by evaluating the equilibrium constant (K_{eq}) from experimental data (page S18) and computationally. It is suggested that the equilibrium is thermodynamically controlled due to the broad spectrum of observed oligomers during the transformation reaction. Despite the large number, there were no prevailing oligomers in the reaction mixture, thus it is presumed that the equilibria between intermediates do not dictate the equilibrium between cycHC[6] and cycHC[8]. The Jacobson–Stockmayer theory states that the macrocycles produced under thermodynamic control are strainless¹³ and their desired size is obtained by the aid of template molecules.¹⁴ We have shown previously that the formate anion can be encapsulated inside cycHC[6] and the formic acid can be bound outside of cycHC[6].¹⁵ To study whether the encapsulation drives the reaction towards cycHC[8], density functional theory calculations were used.

Geometry optimizations for local minima were carried out using the dispersion corrected B97-D functional,¹⁶ along with the def2-SV(P)¹⁷ basis set. Vibrational analysis was performed to ensure that all chosen geometries were at local minima. Additionally a single point calculation at the B97-D¹⁶/def2-TZVPD¹⁷ level of theory was performed for every stationary point, with inclusion of the solvation model COSMO ($\varepsilon = 51, 1 - \text{formic acid}$), to refine the energies. The total energies were calculated using the single point energies from the solvent phase calculation and adding the Gibbs free energy correction from the vibrational part of the gas phase calculation¹⁸. Gibbs free energy was estimated using the temperature 293.15 K and the pressure 0.1 MPa. The calculations were performed using the program package Turbomole 6.5.¹⁹

Complexation studies (Table 3 from the main text) have shown that cycHC[8] acts as a host for carboxylic acids. According to DFT calculations, the guest location preferences for cycHC[8] remained the same as for cycHC[6]¹⁵. Therefore the theoretical ΔG was calculated for a reaction involving inclusion complex with the formate anion,

The computationally derived ΔG is -177 kJ/mol in favour of cycHC[8], indicating that the complexation with formate anion induces a preference towards the formation of cycHC[8]. The calculation gives a qualitative explanation for the equilibrium preference of the system. Based on these findings, it can be proposed that complexation with formate anion may govern

the overall equilibrium between the 6- and 8-membered cycHCs and drive the aforementioned reaction towards the formation of cycHC[8].

Name	Energy	Gibbs Corr.	Total
cycHC[6]	-2980.157550ª	1.109313	-2979.048237
HCOO ⁻ @ cycHC[6]	-3169.461130 ^b	1.127793	-3168.333337
[HCOOH+cycHC[6]]	-3169.948819 ^b	1.137799	-3168.811021
cycHC[8]	-3973.535695ª	1.474656	-3972.061039
HCOO ⁻ @cycHC[8]	-4162.866502 ^b	1.495944	-4161.370558
HCOO ⁻ @cycHC[8]	-4162.788348ª	1.495944	-4161.292404
[HCOO ⁻⁺ cycHC[8]]	-4162.748669ª	1.491423	-4161.257246
HCOOH@cycHC[8]	-4163.339071 ^b	1.507781	-4161.831289
HCOOH@cycHC[8]	-4163.292729ª	1.507781	-4161.784948
[HCOOH+cycHC[8]]	-4163.289851ª	1.503302	-4161.786549
HCOO-	-189.284877 ^b	-0.004220	-189.289100

Table S9. Calculated energies (in Hartrees) of the studied geometries.

a – calculated energies are in gas phase due to unsuitability of the continuum model for the guest-less cavity b – COSMO solvation model is included

The energy differences of cycHC[6] and cycHC[8] per monomer were compared to confirm that the Jacobson–Stockmayer theory applies. The difference of ΔGs is 1 kJ/mol in favour of cycHC[6] affirms that both macrocycles are strainless. Formic acid favours to be bound outside the cycHC[8] by 4 kJ/mol as can be seen on Figure S17. Formate anion favours to be bound inside the cycHC[8] by 92 kJ/mol.

The results do not include a basis set superposition error (BSSE) correction due to incompatibility between the continuum solvation model (COSMO) and the counterpoise (CP) approach to BSSE correction. In the CP workflow, COSMO energies of fragments with different cavities would be added, which would lead to physically meaningless results.

Figure S17. Geometries used in equilibrium calculations: a) cycHC[6], b) HCOO⁻@cycHC[6] (the anion bound outside the cycHC[6] is unfavoured – ref 15), c) [HCOOH+cycHC[6]] (the formic acid bound inside the cycHC[6] is unfavoured – ref 15), d) cycHC[8], e) HCOO⁻@cycHC[8], f) [HCOO⁻@+cycHC[8]], g) HCOOH@cycHC[8] and h) [HCOOH+cycHC[8]]. Image was created using Jmol²⁰.

7.2 Equilibrium between cycHC[6] and cycHC[8]

To gain detailed insight into the reaction pathways of the transformation of cycHC[6] to cycHC[8], a computational study with model structures was performed. Irrespective of the vast number of possible reaction routes leading to the transformation of cycHC[6] to cycHC[8], they can be conceptually reduced to two basic steps: chain depropagation and chain propagation.

Because of its high efficiency, the density functional BP86²¹ in combination with the def2-SV(P)¹⁷ basis set was used to model the reaction pathways. Vibrational analysis was performed to ensure that all chosen geometries were at local minima or at first order saddle points, as appropriate. The transition states were verified using intrinsic reaction coordinate calculations. To refine the energies, a single point calculation at the B97-D/def2-TZVPD^{16,17} level of theory was performed for every stationary point, with inclusion of the solvation model COSMO ($\varepsilon = 51, 1 - \text{formic acid}$). The total energies were calculated using the single point energies from the solvent phase calculation and adding the Gibbs free energy correction from vibrational part of the gas phase calculation¹⁸. Gibbs free energy was estimated using the temperature 293.15 K and the pressure 0.1 MPa. The calculations were performed using the program package Turbomole 6.5.¹⁹

Figure S18 shows the relative energies and structures of the intermediates and transition states in the depropagation and propagation reaction. Due to the zig-zag orientation of the monomers in a macrocycle, there are two different types of methylene bridges and thus four different locations for the proton in $cycHC[n] + H^+$. As we have shown in our previous work¹⁵, the protonation from inside of the macrocycle is energetically most favoured.¹⁵ The geometry of the dimer **1bH**⁺, protonated at the position corresponding to the inner protonation site, was chosen as starting geometry for computational depropagation and propagation studies. After the protonation, the chain depropagation can advance through two different reaction paths, differentiated on the reaction coordinate diagram in Figure S18 by continuous and dotted lines, respectively. The dissociation of the C-N bond (TS2a - continuous line) has lower transition state energy (64 kJ/mol) compared to substitution reaction (80 kJ/mol) (TS2b - dotted line). The product of dissociation is an iminium cation **3a**, which can be attacked by a formate anion, yielding the formyl-terminated 4a. The second possible reaction path involves a nucleophilic attack on the methylene bridge by the formate (**TS2b** – dotted line). The energy of transition state of this substitution reaction is higher and the reaction path produces the formyl compound 4a directly. Considering that the substitution reaction is energetically more demanding, one can suppose that the formation of formylated compounds proceeds through the iminium ion 3a. All reactions can proceed also in the reverse direction, starting from the right hand side of the energy diagram (Figure S18). In addition, compound 4a can be converted to iminium 3a through protonation of the formyl group and subsequent fragmentation where formic acid leaves.

Figure S18. Propagation and depropagation reaction coordinate of the model structures.

Table S10. Calculated energies for the model system. Energies are in Hartrees (except for the last column which has the relative energies in kJ/mol).

Name	Energy	Gibbs	Total energy	Energy
		correction		difference
1b	-955.298024	0.340361	-954.957662	0
TS1	-	-	-	96*
1bH+	-955.728298	0.352470	-955.375828	85
TS2a	-955.709673	0.349975	-955.359698	149
TS2b	-1145.006708	0.366083	-1144.640625	165
3a	-497.104069	0.171000	-496.933069	66
4 a	-686.430878	0.191754	-686.239124	22

* - Energy obtained using the Eyring equation

Eyring equation

$$\Delta G = -\ln\left(\frac{kh}{k_BT}\right)RT$$

$$\Delta G - \text{Gibbs free energy}$$

$$k - \text{reaction rate constant } (5 \cdot 10^{-5} \text{ s}^{-1})$$

$$h - \text{Planck's constant}$$

$$k_{\text{B}} - \text{Boltzmann constant}$$

$$T - \text{Temperature } (293.15 \text{ K})$$

$$R - \text{Gas Constant}$$

7.3 Geometries for equilibrium of the remacrocyclization reaction

cycHC[6] 138

38	

С	0.5786423	3.6327210	-1.7019190
С	0.1129478	4.1543326	-3.0603004
С	0.1216769	2.9437357	-4.0304662
С	1.4610767	2.1625684	-4.0528719
С	1.9720961	1.7732599	-2.6403673
С	1.9930386	3.0605499	-1.8212270
N	0 7355883	4 5497916	-0 5743914
c	1 7620692	4 0781818	0 2588286
N	2 4161228	3 0510774	-0 4275389
$\overline{0}$	2.4101220	1 /016528	1 3707042
c	2.0402030	2 5627670	0.0451142
c	2 9525462	2.3027079	2 0016255
0	2.0525402	-0.0939079	3.9910233
	2.3901772	0.0007041	3.9990444
	2.3947440	1.2332224	2.5821198
C	3.9639593	-1.3466301	3.0084426
C	3.6220320	-0.7417973	1.6480315
С	3.5930608	0.7848113	1.7508083
Ν	3.7145456	1.1685843	0.3512050
Ν	4.5171157	-0.9350080	0.5077049
С	4.7525698	-2.2639348	-0.0366429
С	4.4298845	0.1834265	-0.3352476
0	4.8986392	0.2843782	-1.4643778
С	-0.5750296	2.9308645	4.0138337
С	-1.7628882	1.9345256	4.0392565
С	-2.1964762	1.4552393	2.6287296
С	-0.7632876	4.1168052	3.0315282
С	-1.1305043	3.5131141	1.6771209
С	-2.4299237	2.7145927	1.8003467
Ν	-2.8452659	2.6239650	0.4073851
Ν	-1.4337660	4.3812823	0.5400604
С	-0.4129705	5.2525738	-0.0218983
С	-2.3681365	3.7394342	-0.2873614
0	-2.7110676	4.0919988	-1.4112329
С	-2.6757765	0.1793272	-4.0047766
С	-2.6917427	-1.3711189	-3.9863007
С	-3.7179562	-1.9812130	-2.9955082
С	-2.5605945	0.8112829	-2.5927527
С	-3.6718765	0.1895557	-1.7518716
С	-3.4666798	-1.3226951	-1.6407064
N	-4 3167678	-1 6434607	-0 4947684
N	-3 8426764	0 5586957	-0 3531694
С	-4 0656664	1 9369315	0 0355791
c	-4 3959339	-0 5201457	0 3427520
0	-4.8675019	-0.4851913	1.4747792
C	-2 1685380	-1 9827865	4 0516836
C	-0 7155111	-2 5243636	4 0506614
c	-0 1091892	-2 6612595	2 6285462
c	-3 1234752	-2 7333994	3 0865687
c	-2 4424128	-2 7517167	1 7189281
c	-1 1023645	-3 4854784	1 8149296
N	-0 8446614	-3 7944396	0.4151311
N	-3 0674453	-3 4434774	0 5925932
С	-4 3427037	-2 9901663	0.0570860
C.	-2 0626823	-3 9310073	-0 2567455
0	-2 2205060	-4 3994527	-1 3796904
c.	1 1012382	-2 4007559	-4 0352394
č	2 4484526	-1 6319980	-4 0374097
c	3,5099332	-2.2128267	-3.0662886
-	.		

С	0.5217071	-2.6245057	-2.6135593
C	1.6335636	-3.2735249	-1.7935948
C	2.8382114	-2.3344298	-1.6994731
N	3 5637849	-2 9130343	-0 5698525
N	1 4256039	-3 6136334	-0.3928185
c	0.3542244	-4 5019229	0.0121043
c	2 6400233	-3.5520205	0.2810814
0	2.0430233	2 00/1/21	1 4061000
	2.0701900	-3.9041421	1.4001090
	-0.1033025	2.0027744	-1.3996020
н	0.8079422	4.9482894	-3.4083464
н	-0.9082332	4.5743556	-2.9923560
н	-0.1268766	3.2828327	-5.0573651
н	-0.6859683	2.2546466	-3.7169130
н	1.3484193	1.2519152	-4.6770460
Н	2.2399247	2.7888898	-4.5399776
Н	1.2911629	1.0375345	-2.1601263
Н	2.9795243	1.3162688	-2.6939304
Н	2.6264343	3.7979956	-2.3741634
Н	3.0987344	-1.2332594	5.0189358
н	1.9163115	-1.4083813	3.7002821
н	3.4674691	1.1473382	4.4668627
н	1.7165825	0.8612777	4.6343085
н	1.4581959	0.8506944	2.1216674
н	2.3267850	2.3381953	2.6221750
н	4,9591995	-0.9772284	3.3350593
н	3 9895792	-2 4508969	2 9534411
н	2 5987313	-1 0855554	1 3656694
н	1 5153238	1 1206670	2 2867813
 Ц	4.0100200	2 3854870	2.2007013
н Ц	0.3393330	2.3034079	5.7100520
	-0.3939237	1 0606275	4 6709951
	-1.4967299	1.0000375	4.0700001
	-2.0300241	2.4229410	4.5204113
	-1.4009431	0.0393010	2.1500329
н	-3.114/513	0.8378301	2.0838341
н	-1.5812405	4.7886568	3.3685583
н	0.1752883	4.6983899	2.9629042
н	-0.3197151	2.8055943	1.3838007
н	-3.1784247	3.3401562	2.3476765
Н	-3.6154982	0.5480881	-4.4712064
н	-1.8418214	0.5330243	-4.6462596
н	-2.8861545	-1.7517301	-5.0104669
Н	-1.6866370	-1.7330497	-3.6943727
Н	-4.7590480	-1.7699283	-3.3203796
Н	-3.5752050	-3.0761381	-2.9334897
Н	-1.5743642	0.5830773	-2.1333420
н	-2.6640379	1.9129374	-2.6410390
Н	-4.6377929	0.3768249	-2.2831602
н	-2.4019767	-1.5044636	-1.3619684
н	-2.1513552	-0.9182533	3.7476768
н	-2.5758029	-2.0151240	5.0835394
н	-0.0741027	-1.8659672	4.6720642
н	-0.7012496	-3.5278864	4.5288588
н	0 8830568	-3 1524468	2 6648824
н	0.0219745	-1 6638210	2 1551911
н	-4 0953024	-2 2079213	3 0358613
н	-3 2037112	-3 7773385	3 4262726
Ц	-0.2001110	-1.6060272	1 1022120
н U	1 26/1200	-1.0500272	1.4200100
п	-1.2041200	-4.4461801	2.3013499
н	0.3039275	-1.85/6643	-4.0019098
н	1.2485575	-3.396/480	-4.50/3165
H	2.2590169	-0.5824309	-3.7400005
Н	2.8575493	-1.6046297	-5.0684511
н	4.3843943	-1.5369602	-3.0174766

Н	3.8477385	-3.2168367	-3.4004128
Н	-0.3785135	-3.2689396	-2.6477132
Н	0.2290797	-1.6591188	-2.1469886
Н	1.9505262	-4.1995228	-2.3350540
Н	2.4637155	-1.3240285	-1.4084439
Н	-4.5166005	2.4899713	-0.8131084
Н	-4.7628011	1.9337313	0.8984782
Н	5.4948116	-2.1595830	-0.8480905
Н	5.1483545	-2.9114769	0.7658049
Н	0.0852805	-5.1631865	-0.8362963
Н	0.7249224	-5.1108051	0.8621703
Н	4.0819350	3.1835924	0.8023976
Н	4.4207562	2.6622010	-0.9038503
Н	-0.8890335	5.8418077	-0.8259790
Н	-0.0390456	5.9212936	0.7738984
Н	-4.6336078	-3.6954799	-0.7415723
Н	-5.0919621	-2.9990894	0.8689594

HCOO-@cycHC[6]

С	1.6567554	1.5154543	3.2428041
С	3.0067247	2.2305837	3.2565992
С	3.9661637	1.3832364	2.3806370
С	4.0404489	-0.1019092	2.8132161
С	2.6451346	-0.7723378	2.8982665
С	1.8074512	0.1045140	3.8220294
Ν	0.5488398	2.0221767	4.0580980
С	-0.2739984	0.9447406	4.4265988
Ν	0.4156377	-0.2223418	4.1146679
0	-1.3822107	1.0239329	4.9537927
С	-0.0184774	-1.5514565	4.4926565
С	-3.9572399	-2.5534365	0.9741310
С	-4.0522947	-1.6605843	2.2352322
С	-2.6640353	-1.1767945	2.7258884
С	-2.9897577	-3.7540598	1.1394759
С	-1.6489626	-3.1758952	1.5865325
С	-1.8211925	-2.4333691	2.9153653
Ν	-0.4360895	-2.3539366	3.3664581
Ν	-0.5424742	-4.0784541	1.9272792
С	-0.0133989	-5.0476464	0.9855825
С	0.2614010	-3.4655527	2.8974600
0	1.3602059	-3.8553434	3.2905468
С	-3.9814452	2.1762793	1.8343959
С	-4.0503102	2.7341158	0.3905188
С	-2.6531509	2.8365383	-0.2742271
С	-2.9894260	2.9394631	2.7503070
С	-1.6451206	2.9560428	2.0238476
С	-1.7947827	3.6688678	0.6743721
Ν	-0.4029422	3.9841314	0.3690677
Ν	-0.5143479	3.6893501	2.5978828
С	0.0279345	3.3678578	3.9077729
С	0.2974397	4.1666382	1.5596665
0	1.4085842	4.6794947	1.6788829
С	4.0598222	2.3580004	-1.4064861
С	3.9868032	1.3069940	-2.5425797
С	3.0008187	1.6836963	-3.6791817
С	2.6644047	2.7119835	-0.8319156
С	1.8146734	3.1405079	-2.0249036
С	1.6578879	1.9787433	-3.0130598
Ν	0.5290981	2.4504723	-3.8187193
Ν	0.4261217	3.5598923	-1.8627714
С	0.0129431	4.5530637	-0.8946445

c	-0 2781/35	3 2855246	-3 0326303
0	1 2000152	2 7105547	-3.0320303
0	-1.3009152	3.7 193347	-3.3320124
C	-3.9707359	0.4168151	-2.7411409
С	-4.0498109	-1.1207564	-2.5736431
С	-2.6570169	-1.7755132	-2.3937845
С	-3.0064590	0.8647829	-3.8704238
С	-1.6598617	0.2046908	-3.5831393
С	-1.8161458	-1.3197367	-3.5811973
Ν	-0.4255810	-1.7384485	-3.7247246
Ν	-0.5498413	0.3584139	-4.5285781
С	-0 0231029	1 6569861	-4 9048210
c.	0 2680127	-0 7812660	-4 4582209
0	1 3756355	0.0145076	4.0755273
ĉ	1.3750555	-0.9143970	4.9700270
	4.0304115	-2.3903240	-1.4393627
	3.9371540	-2.7413042	0.0653502
C	2.9653992	-3.9128261	0.3617826
С	2.6501370	-2.1179906	-2.0767026
С	1.8000058	-3.3497585	-1.7814998
С	1.6263594	-3.5404262	-0.2712808
Ν	0.5174894	-4.5019579	-0.2513196
Ν	0.4144964	-3.4372984	-2.2287948
С	0.0003422	-3.1149724	-3.5747469
С	-0.2864588	-4.2919439	-1.3794604
0	-1.3872911	-4.7954227	-1.5986472
н	1.3225637	1.4185270	2.1852627
н	3.3816430	2.2946635	4.3021578
н	2.9145616	3.2542834	2.8464495
н	4,9820097	1.8335586	2.3903262
н	3 5980671	1 4234818	1 3370085
н	4 6819874	-0.6629546	2 1029783
н	4 5302380	-0 1645282	3 8118828
н	2 1636868	-0.8112760	1 9028786
н	2 7202203	-0.0112700	3 2805311
 Ц	2.7232233	0 1020720	1 708/377
	2.0012009	0.1920720	4.7904377
	-4.9077110	-2.9101300	0.0901301
	-3.3033007	-1.9310151	0.1300073
н	-4.5430353	-2.2343793	3.0544947
н	-4.7010222	-0.7858529	2.0208890
н	-2.1863426	-0.5335302	1.9626777
Н	-2.7556448	-0.6045358	3.6696008
Н	-3.3676518	-4.4616408	1.9113856
Н	-2.8861339	-4.2966146	0.1802622
Н	-1.3035077	-2.4383900	0.8275871
Н	-2.3727424	-3.1093238	3.6210249
Н	-3.6462063	1.1233391	1.7820709
Н	-4.9942642	2.1775940	2.2911255
н	-4.7073646	2.0851335	-0.2249359
н	-4.5167975	3.7454415	0.4097447
н	-2.2150390	1.8241665	-0.3833967
н	-2.7227576	3.3078355	-1.2739892
н	-3.3299984	3,9848142	2,9205643
н	-2 9009766	2 4268824	3 7272931
н	-1 3413338	1 9026815	1 8296691
н	-2 3308241	4 6375936	0.8536038
н	4 5360370	3 2863872	-1 796574/
н	4 7101838	1 9760032	-0 5021822
ц	1 0000011	1 1221220	-0.0921022
11 LI	7.5550011	0.2500000	-2.3040340
п 	3.0440931	0.000029	-2.100/000
п 	3.3301132	2.00/9011	4.220002
П LI	2.90020/5	0.0401302	-4.3935521
П LI	2.2100340	1.0101509	-0.3348316
	2.7411/53	3.5199865	-0.0778532
н	2.3592961	3.90/3319	-2.54945/6

н	1.3488066	1.0741105	-2.4418087
Н	-3.6042684	0.8508087	-1.7913007
Н	-4.9852641	0.8313742	-2.9249716
н	-4.6931094	-1.3660189	-1.7036498
н	-4.5392155	-1.5593597	-3.4733340
Н	-2.7426808	-2.8787987	-2.3615666
Н	-2.1777700	-1.4316793	-1.4572251
Н	-2.9112720	1.9671277	-3.8789440
Н	-3.3790962	0.5284948	-4.8632711
Н	-1.3269156	0.5175970	-2.5681256
Н	-2.3604230	-1.6090096	-4.5180250
Н	4.6904992	-1.5034340	-1.5704135
Н	4.5216945	-3.2339311	-1.9815611
Н	3.5638164	-1.8494587	0.6025319
Н	4.9460005	-2.9743596	0.4686211
Н	2.8593232	-4.0563735	1.4541883
Н	3.3408414	-4.8590303	-0.0882757
Н	2.7428967	-1.9404883	-3.1658999
Н	2.1786474	-1.2331629	-1.6089418
Н	2.3470225	-4.2430687	-2.1828083
Н	1.2826096	-2.5720187	0.1567019
Н	0.8611464	5.2367124	-0.6881314
Н	-0.8327297	5.1181630	-1.3378993
Н	0.7941317	-5.5890247	1.5132429
Н	-0.8210837	-5.7468513	0.6988894
Н	0.8477859	-3.2783036	-4.2715970
Н	-0.8415690	-3.7883360	-3.8366060
Н	-0.8662791	-1.4348942	5.1982805
Н	0.8197935	-2.0819821	4.9879983
Н	0.8430783	4.0910318	4.0974318
Н	-0.7719679	3.4849072	4.6626666
Н	0.7726636	1.4722205	-5.6499379
Н	-0.8371348	2.2572571	-5.3515702
С	-0.0055908	0.3723996	-0.0902416
0	-1.1430958	-0.1577302	0.0233953
0	1.1302966	-0.1526089	0.0606850
Н	-0.0036035	1.4721941	-0.3641660

HCOOH@cycHC[6]

143

С	1.7346874	1.6158646	3.1232363
С	3.0792056	2.3363549	3.2091090
С	4.0669391	1.5452008	2.3107627
С	4.1507284	0.0385535	2.6646947
С	2.7630582	-0.6528602	2.6848040
С	1.8783896	0.1712755	3.6171286
Ν	0.6016791	2.0642249	3.9386659
С	-0.2153097	0.9685387	4.2308600
Ν	0.4757229	-0.1853436	3.8359712
0	-1.3284529	1.0022960	4.7465032
С	0.0819801	-1.5053941	4.2957107
С	-4.0984853	-2.9121097	1.1725748
С	-4.0898870	-1.8132901	2.2658133
С	-2.6680635	-1.2885238	2.5925089
С	-3.1213307	-4.0799072	1.4694264
С	-1.7543951	-3.4458389	1.7145143
С	-1.8123288	-2.5079096	2.9219851
Ν	-0.3915773	-2.3611094	3.2262588
Ν	-0.5984200	-4.2793169	2.0548144
С	-0.0868278	-5.2520880	1.1042449
С	0.2805870	-3.5269486	2.8472970
0	1.4267069	-3.8336295	3.1593069

С	-3.9165581	2.0844421	1.8090744
С	-3.9566501	2.5288005	0.3248134
С	-2.5494192	2.6931844	-0.3082864
С	-2.9813660	2.9439349	2.6993408
С	-1.6210166	2.9801770	2.0020676
С	-1.7670502	3.6242350	0.6180708
Ν	-0.3890826	4.0023122	0.3267349
Ν	-0.5195821	3.7527848	2.5678610
С	0.0576467	3.4102105	3.8583094
С	0.2890002	4.2341915	1.5272047
0	1.3823343	4.7741996	1.6505673
С	4.1572442	2.7687669	-1.5116043
С	4.0879016	1.6564231	-2.5892433
С	3.0895723	1.9806872	-3.7324679
С	2.7706636	3.1551161	-0.9357439
С	1.8704389	3.4770393	-2.1254528
С	1.7511031	2.2697591	-3.0604878
Ň	0.5792601	2.6553593	-3.8585409
N	0.4576095	3.7974647	-1.9259564
С	-0.0332102	4.6895855	-0.9035746
С	-0.2710004	3.4251707	-3.0455508
0	-1 4404963	3 7121765	-3 2924137
c	-4 2702604	0 5935520	-3 3294559
c	-4 3557965	-0.9280384	-3 0462421
Ċ	-3.0333015	-1.5019223	-2.4764678
c	-3 0758482	0 9821907	-4 2386711
c	-1 8150841	0 4098480	-3 5937053
c	-1 9309192	-1 1130686	-3 4604712
N	-0 5184947	-1 4771844	-3 2054765
N	-0 5347701	0 5166757	-4 2958151
С	0.0130518	1 7569741	-4 8395057
c	0 2618566	-0 5710370	-4 0047221
õ	1 4117623	-0 7656569	-4 3677723
Ċ	4.1297129	-2.8167912	-1.2618548
c	4 0626865	-3 3580655	0 1883821
Ċ	2.9837399	-4.4549221	0.3794739
Ċ	2.7555832	-2.3446951	-1.8040024
С	1.7774519	-3.5011132	-1.6071364
С	1.6681273	-3.8659521	-0.1229356
N	0.4505953	-4.6804466	-0.1225265
Ν	0.3585401	-3.3635271	-1.9474622
С	-0.1258225	-2.9033971	-3.2212589
С	-0.3901853	-4.2349309	-1.1460326
0	-1.5615606	-4.5493566	-1.3296783
Н	1.4305893	1.5958317	2.0512919
н	3.4288341	2.3478487	4.2638222
н	2.9873623	3.3792605	2.8510369
н	5.0766920	2.0017137	2.3726544
н	3,7293762	1.6455846	1.2590866
Н	4.8118668	-0.4796730	1.9393907
Н	4.6196948	-0.0741519	3.6672633
Н	2.3377181	-0.6671254	1.6655728
Н	2.8432336	-1.7004372	3.0359057
н	2.3856542	0.2034425	4.6131275
H	-5.1288449	-3.3047074	1.0470576
н	-3.8015237	-2.4594869	0.2026441
н	-4.5321326	-2.2270194	3 1983904
н	-4.7368877	-0.9672718	1.9527362
н	-2.2418107	-0.7672118	1.7120387
H	-2.6938744	-0.5722576	3.4368096
н	-3.4418082	-4.6467832	2.3701674
н	-3.0847594	-4.7668977	0.6032378
Н	-1.5022794	-2.8336592	0.8234782

Н	-2.3004156	-3.0461597	3.7719935
Н	-3.5574267	1.0382744	1.8550628
Н	-4.9441557	2.0890166	2.2281723
Н	-4.5514958	1.7991297	-0.2631238
н	-4.4845771	3.5042971	0.2506419
н	-2 0324996	1 7126269	-0 3763103
н	-2 6229236	3 1100630	-1 3307770
ц	2 2604919	2 0709722	2 9000910
	-3.3034010	3.9790722	2.0000010
	-2.0975055	2.4925179	3.7055493
н	-1.2834161	1.9255101	1.8593310
н	-2.3676389	4.5609344	0.7294634
н	4.6188198	3.6750266	-1.9626336
Н	4.8237506	2.4465544	-0.6848152
Н	5.0995130	1.4838836	-3.0120890
Н	3.7654540	0.7069688	-2.1116965
Н	3.4235902	2.8702167	-4.3095007
Н	3.0070134	1.1168261	-4.4189795
Н	2.3376944	2.3157267	-0.3629212
н	2.8581106	4.0210625	-0.2516804
н	2 3418486	4 3153591	-2 6963957
н	1 4843470	1 3877083	-2 4392034
н	-4 1588202	1 1325333	-2 3646497
Ц	- 4 .1300202	0.0440221	2 7066125
	-5.2179000	1 1210207	-3.7600123
н	-5.1834852	-1.1318387	-2.3359251
н	-4.6018741	-1.4609567	-3.9913356
н	-3.0877369	-2.6013486	-2.3508691
н	-2.8323114	-1.0630488	-1.4811546
Н	-2.9984874	2.0826333	-4.3215346
Н	-3.2009329	0.5502877	-5.2551680
Н	-1.7193206	0.8547386	-2.5771686
Н	-2.2111608	-1.5209318	-4.4613229
Н	4.8535696	-1.9768287	-1.3158855
Н	4.5163706	-3.6196807	-1.9279054
Н	3.8244739	-2.5201272	0.8764349
н	5.0560031	-3.7510525	0.4885676
н	2.9057338	-4.7280560	1.4480007
н	3 2346615	-5 3630287	-0 2106954
н	2 8332523	-2.0628708	-2 8703259
н	2.0002020	-1 4526483	-1 2523061
ц	2 1837026	4 3996107	2 1510721
	2.1037920	2 0260695	-2.1319721
	0.7519046	-2.9209000	0.4477731
	0.7516040	5.4312463	-0.0592471
н	-0.9305171	5.2033739	-1.3048106
н	0.7183900	-5.8181653	1.6052160
Н	-0.9107945	-5.9301429	0.8200656
Н	0.6681431	-3.0340933	-3.9825494
Н	-1.0165945	-3.5025110	-3.4932296
Н	-0.7266819	-1.3757497	5.0431386
Н	0.9545459	-2.0028043	4.7637248
Н	0.8663822	4.1368937	4.0541229
н	-0.7250091	3.4890372	4.6344934
н	0.8033179	1.4738611	-5.5572232
н	-0.8028797	2.2906249	-5.3574153
Ċ	0 2005183	-0 1669050	0 2066645
0	-0 7071216	-0 8740726	-0 4575038
0	1 215/780	0.3058355	-0 2662307
ц	-0.0820076	-0.0767649	1 2817016
11	-0.0029070	1 0200450	1.201/010
п	-0.4488861	-1.0309450	-1.431/185

cycHC[6]-HCOOH-outside

143

C 1.7155623 1.8122533 3.2131032

С	3.0784117	2.4912089	3.3341681
С	4.0386892	1.7316974	2.3805657
С	4.0472511	0.1940505	2.5801835
С	2.6286329	-0.4365849	2.5939353
С	1.8295490	0.3462218	3.6308951
Ν	0.5894357	2.2564734	4.0387121
С	-0.2267797	1,1626199	4.3121126
N	0 4349675	0.0147665	3 9160749
$\overline{0}$	-1 3532574	1 23/70/2	4 8205647
ĉ	0.0540465	1 2282027	4 2800440
ĉ	2 0906752	2 7420111	4.2099449
0	-3.9600755	-2.7420111	1.0004029
C	-3.9616950	-1.5534/6/	1.9956352
C	-2.5324799	-1.044/103	2.3248132
С	-3.0115604	-3.8974169	1.3663463
С	-1.6432119	-3.2617524	1.6049101
С	-1.7335706	-2.2669835	2.7648651
Ν	-0.3305845	-2.1434056	3.1510790
Ν	-0.5082012	-4.0874981	2.0140312
С	0.0235461	-5.1072386	1.1214891
С	0.3390798	-3.3337875	2.8333632
0	1.4623057	-3.6495681	3.2128244
С	-4 0068426	2 3386561	1 9651756
c	-4 0220161	2 6479542	0 4454539
c	-2 6087276	2 6811141	-0 1954967
ĉ	-3.0176275	3 21351/1	2 7706812
c	-3.0170273	3.2133141	2.7790012
	-1.0006212	3.1100120	2.0640541
	-1.//5/64/	3.0380359	0.6514920
N	-0.3797654	3.9024244	0.3273127
N	-0.51/8241	3.8745656	2.5809620
С	0.0432995	3.6028856	3.8918638
С	0.3149348	4.2095440	1.4981936
0	1.4418200	4.6871711	1.5707941
С	4.0324256	2.2374781	-1.5114138
С	4.0019610	1.2908632	-2.7391673
С	3.0094879	1.7279753	-3.8485896
С	2.6249136	2.5454759	-0.9362365
С	1.7795208	3.0387574	-2.1061899
С	1.6583271	1.9448217	-3.1696135
Ν	0.5123843	2.4233316	-3.9414466
N	0 3826464	3 4047204	-1 9127746
C	0.0020404	4 4342726	-0.9679070
ĉ	-0.3183036	3 1808601	-3 1031044
0	-0.3183030	2 5021112	2 2615520
0	-1.4403210	3.3621112	-3.3013539
C	-4.0412041	0.5427439	-2.09/12/4
C	-4.0552651	-0.9423039	-2.4513250
C	-2.6390616	-1.5199006	-2.1910298
С	-3.0739991	0.8379431	-4.0734396
С	-1.7111974	0.2732923	-3.6752582
С	-1.8188210	-1.2356740	-3.4450278
Ν	-0.4205532	-1.6368698	-3.5266108
Ν	-0.5839821	0.3398622	-4.6037732
С	-0.0426085	1.6228742	-5.0240225
С	0.2588789	-0.7592796	-4.3758509
0	1.3826163	-0.9245659	-4.8393121
ć	4 0305834	-2 3344146	-1 2318214
č	4 0202540	-2 9252098	0 2022301
č	3 057/360	-1 1102080	0.2022001
č	0.0074000	-4.1192000	1 7074000
C	2.0103558	-2.0114358	-1./0/4393
C	1.7863075	-3.2848113	-1.5985253
С	1.6919689	-3.6595700	-0.1176515
Ν	0.5598237	-4.5835194	-0.1266890
Ν	0.3844746	-3.3235189	-1.9923559
С	-0.0228831	-3.0198361	-3.3501800

С	-0.2918689	-4.2500392	-1.1922978
0	-1.4187071	-4.6908887	-1.3902658
н	1.4040840	1.8446191	2.1429989
н	3.4298439	2.4285253	4.3860939
н	3.0168183	3.5541165	3.0366276
н	5.0695497	2.1255942	2.4964109
н	3.7264158	1.9536700	1.3421272
н	4.6601188	-0.2780146	1.7851427
н	4.5397246	-0.0458128	3.5478223
н	2.1412784	-0.3464188	1.5994273
н	2.6756539	-1.5125855	2.8509764
н	2.3913261	0.2954421	4.5945771
н	-5.0153768	-3.1337570	0.9192204
н	-3.6964182	-2.3745642	-0.0027980
н	-4.4463261	-1.8613702	2.9450438
н	-4.5708284	-0.7225641	1.5825568
н	-2.0544514	-0.5828804	1.4346304
н	-2.5647715	-0.2819562	3.1245775
н	-3.3413211	-4.4191373	2.2896109
н	-2.9676078	-4.6265185	0.5349384
н	-1.3604253	-2.6956020	0.6861709
н	-2.2868369	-2.7411578	3.6082975
Н	-3.7187437	1.2797129	2.1089743
Н	-5.0319396	2.4489017	2.3757279
н	-4.6542385	1.9005077	-0.0763153
н	-4.4976472	3.6394709	0.2816644
н	-2 1418098	1 6726244	-0 1864875
н	-2.6603432	3.0209503	-1.2484031
н	-3 3437750	4 2749276	2 7959016
н	-2.9574761	2.8449635	3.8211158
н	-1 3794685	2 0318921	2 0309187
н	-2 3163814	4 6161672	0 6795408
н	4 5021205	3 2012880	-1 8061945
н	4.6756594	1.7981018	-0.7206250
н	5 0234869	1 2016143	-3 1627208
н	3 7051116	0 2792683	-2 4016457
н	3 3388712	2 6751306	-4 3268840
н	2 9387472	0.9398586	-4 6219016
н	2 1632657	1 6315100	-0 5045527
н	2 6822420	3 3082596	-0 1342253
н	2 3108729	3 9117824	-2 5583675
н	1 3752855	0.9956340	-2 6550573
н	-3 7297000	1 1701028	-2 0388634
н	-5 0698215	0 8584251	-3 1681539
н	-4 6792436	-1 0502032	-1 5406264
н	-4 5372967	-1 5550906	-3 2438559
н	-2.6851051	-2.6064283	-1.9806474
н	-2.1644765	-1.0254526	-1.3162715
н	-3 0134173	1 9285618	-4 2466874
н	-3 4196608	0 3428483	-5 0058640
н	-1 4106315	0 7457417	-2 7095153
н	-2 3636737	-1 6864995	-4 3108998
н	4 6590151	-1 4204579	-1 2553862
н	4 5022597	-3.0645221	-1 9250403
н	3 7291901	-2 1317601	0.9139593
н	5 0596319	-3 2308934	0.4784911
H	3 0061974	-4 3973722	1 4604520
н	3 3920192	-5 0012816	-0 1956840
н	2 6484043	-1 696557/	-2 8285031
н	2 1441422	-1 1867185	-1 1863678
н	2 3241865	-4 1042852	-2 1360684
н	1 4036800	-2 7416042	0 4492520
н	0 8540788	5 1235625	-0 8085271
• •	2.2010100	2	5.5555EI I

Н	-0.8560676	4.9892999	-1.4011033
Н	0.8300516	-5.6319117	1.6634754
Н	-0.7871339	-5.8109506	0.8632170
Н	0.8226746	-3.2172561	-4.0404640
Н	-0.8765513	-3.6824156	-3.6010370
Н	-0.7853761	-1.2841031	5.0080276
Н	0.9214245	-1.8308453	4.7730759
Н	0.8571696	4.3296097	4.0626687
Н	-0.7453523	3.7247197	4.6552529
Н	0.7559477	1.4190082	-5.7590654
Н	-0.8509251	2.2145076	-5.4887979
Н	-2.4196423	0.0968646	5.3900460
0	-3.0441157	-0.6506638	5.6563442
С	-4.3096069	-0.3729735	5.3052900
0	-5.2294364	-1.1419584	5.4338469
Н	-4.4244849	0.6605740	4.8693002

cycHC[8] 184

С	0.4705034	-2.9944381	-5.1806270
С	-0.6296600	-0.9414200	-5.1130946
Н	-0.2417527	-0.5048282	-4.1607235
С	-1.6179959	-2.0593554	-4.7574945
Н	-2.1905409	-2.3245051	-5.6809141
С	-2.6264096	-1.5790702	-3.7149590
Н	-2.0903768	-1.2769234	-2.7896267
Н	-3.3358219	-2.3878226	-3.4509077
С	-3.3810555	-0.3767703	-4.3392708
Н	-4.0141035	-0.7577725	-5.1700023
Н	-4.0711617	0.0636951	-3.5893696
С	-2.4366357	0.7207625	-4.8932982
Н	-1.9184970	1.2127457	-4.0425634
Н	-3.0343375	1.5060058	-5.4005395
С	-1.3545739	0.1750862	-5.8640380
Н	-1.8222911	-0.2360786	-6.7839454
Н	-0.6563019	0.9813877	-6.1578359
С	-4.8265051	-2.7846837	1.4636078
С	-3.7754824	-1.0480495	5.0043633
С	-1.8623978	-2.3056273	4.5891748
Н	-1.8237153	-2.9804706	5.4799376
С	-1.4505487	-0.8988221	5.0405603
Н	-1.2463535	-0.2856502	4.1282036
С	-0.1521082	-0.9690770	5.8435855
Н	-0.2935051	-1.6315202	6.7241175
Н	0.1513269	0.0317049	6.2052385
С	0.9226357	-1.5503108	4.8862666
Н	1.1040419	-0.8063756	4.0818079
н	1.8829283	-1.6734541	5.4284113
С	0.5123398	-2.8989766	4.2397856
Н	0.4852034	-3.6822205	5.0288197
Н	1.2816040	-3.2126654	3.5040684
С	-0.8794313	-2.8535286	3.5559137
н	-0.8662492	-2.1892367	2.6656268
н	-1.1811830	-3.8661010	3.2224476
С	-2.8359923	0.8909206	6.2328592
н	-3.9013151	1.0019067	6.5070545
н	-2.1998711	0.9689759	7.1334693
С	-1.1407001	2.4943450	5.3916307
С	-2.9737966	2.1324645	4.0002269
н	-2.6212217	1.2735776	3.3779491
С	-2.2282192	3.3925240	3.5415513
н	-2.7458950	4.2816402	3.9801172

С	-2.2840563	3.5323509	2.0214388
Н	-1.8038403	2.6491383	1.5487645
Н	-1.7384262	4.4374553	1.6878567
С	-3.7825077	3.6267604	1.6331573
н	-3.8840173	3.6471504	0.5279979
н	-4.1767480	4.5958799	2.0087547
C	-4 6418129	2 4760645	2 2178092
й	-5 7105587	2.4700040	1 07/7057
н Ц	4 2514610	1 5227064	1.3747037
	-4.3514619	1.5237004	1.7241020
C 	-4.4730300	2.2930825	3.7500797
н	-4.8492250	3.1845763	4.2959709
н	-5.0361414	1.4064102	4.0990057
Н	-2.1514823	-4.6648756	-4.7320776
С	0.0615063	4.2602916	4.1407128
Н	-0.4165023	5.2615208	4.0959753
С	1.1430332	5.2252438	2.1332998
С	2.0627620	3.2619248	2.9778213
н	2.7775742	3.6454506	3.7475989
C	2 6589252	3 5404165	1 5927336
й	2 0817401	2 9482860	0.8412870
\hat{c}	4 1070909	2.0402000	1 5306473
	4.1070000	3.0304073	1.5590475
н	4.7010082	3.5686845	2.3260845
Н	4.5684296	3.2744115	0.5572631
С	4.0641581	1.5255578	1.7937039
Н	3.5527668	1.0479265	0.9303129
Н	5.0960746	1.1186163	1.8180865
С	3.3200712	1.1358958	3.0972089
Н	3.9190344	1.4792487	3.9688617
н	3.2494845	0.0311726	3.1743697
С	1 9045661	1 7599392	3 2072464
н	1 2203060	1 3361456	2 4413747
н	1.2200000	1.5580324	4 2051371
\hat{c}	2 6706066	5 7120140	4.2031371
	2.0700000	0.7120140	0.2407301
н	2.1933443	6.7041106	0.3503692
Н	3.7687913	5.8234125	0.1/6/2/1
С	3.1132847	4.2792435	-1.7357502
С	0.8685752	4.6712063	-1.2484815
Н	0.6320598	3.8228019	-0.5605593
С	0.9897917	4.1135710	-2.6723857
Н	0.9751628	4.9757315	-3.3847978
С	-0.2035379	3.2209355	-3.0087722
н	-0.2400310	2.3654706	-2.3007846
н	-0.1129650	2.8116726	-4.0344682
С	-1 4739619	4 1025881	-2 8857565
й	-2 3792936	3 4793368	-3 0390097
Ц	1 4570454	4 9502790	2 7099701
	-1.4379434	4.0505769	-3.7000701
C 	-1.5/38013	4.8505319	-1.5310090
н	-2.4550595	5.5247956	-1.5416949
Н	-1.7495353	4.1088008	-0.7228795
С	-0.2965822	5.6571741	-1.1728923
Н	-0.1361616	6.4811227	-1.9004443
Н	-0.3859593	6.0977642	-0.1614760
С	2.9210939	2.9985740	-3.8471363
н	2.5576900	3.5448096	-4.7430210
н	4.0222547	3,1119292	-3.7599339
c	2 0932771	1 1322504	-5 2505023
c	3 3667007	0 5613300	-3 3881400
	4 4007000	0.0010009	-0.0001400
н	4.4097690	0.0159223	-3./880606
C	2.7055465	-0.7026700	-3.9515157
Н	1.7696178	-0.8942508	-3.3697130
С	3.6239237	-1.9073139	-3.7473314
Н	4.5975459	-1.7241406	-4.2505852
н	3.1799032	-2.8276434	-4.1721637

C 3.8168792 -2.0536297 -2.2136994 H 2.8390418 -2.3398026 -1.7708283 H 4.5195706 -2.8852392 -2.0001222 C 4.3193632 -0.7576040 -1.5258793 H 4.3508407 -0.9038097 -0.4261533 C 3.4622784 0.4899534 -1.8648333 C 3.4622784 0.4499545 -1.45143237 H 3.9313882 1.4063302 -1.4554545 C 1.6554069 -1.0960541 -6.2503224 H 2.3229258 -1.9224104 -6.5566923 N 0.4425545 -1.7117037 -5.7409516 N -0.7106515 -3.1550370 -4.4483570 N -2.24400499 1.9754269 5.3520516 N -2.6958203 -0.4298769 5.6457698 N -2.3210793 4.9535282 1.4278416 N 2.3210793 4.9535282 1.4278416 N 2.3356081 -0.2445832 5.2895948				
H 2.8390418 -2.3398026 -1.7708283 H 4.5195706 -2.8852392 -2.0001222 C 4.3193632 -0.7576040 -1.5258793 H 5.3632386 -0.5591753 -1.8648332 C 3.4622784 0.4899534 -1.8648332 H 2.4429689 0.4040765 -1.41313237 H 3.9313882 1.4063302 -1.455458 C 1.6554069 -1.0960541 -6.2503224 H 2.3229258 -1.9224104 -6.5566923 H 1.4143711 -0.4574829 -7.1201937 N 0.4425545 -1.7117037 -5.7409516 N -2.6958249 -2.0942161 4.2332605 N -2.4958023 -4.282123 2.9639858 N 2.3210793 4.9535282 1.4278416 N 2.9245036 4.1282123 2.9639858 N 2.3356081 -0.2458332 -5.2895948 O -3.355873 3.5587290 -2.6484543 N 2.355037 1.6045979 -4.0248661	С	3.8168792	-2.0536297	-2.2136994
H 4.5195706 -2.8852392 -2.0001222 C 4.3193632 -0.7576040 -1.5258793 H 5.3632386 -0.5591753 -1.8524572 H 4.3508407 -0.9038097 -0.4261538 C 3.4622784 0.4899534 -1.8648335 H 2.4429689 0.4040765 -1.4313237 H 3.931382 1.4063302 -1.455458 C 1.6554069 -1.0960541 -6.5560692 H 1.4143711 -0.4574829 -7.1201937 N 0.4425545 -1.7117037 -5.7409516 N -0.7106515 -3.1550370 -4.4483570 N -2.6958203 -0.4298769 5.6457696 N -2.6958203 -0.4298769 5.6457696 N -2.4400498 3.2268937 4.215639 N 2.2451027 5.0971106 -1.0035211 N 2.3210793 4.9535282 1.4278416 N 2.3356081 -0.2458332 -5.2895946 O -1.3594941 -3.8295247 -5.3040974	н	2.8390418	-2.3398026	-1.7708283
C 4.3193632 -0.7576040 -1.5258793 H 5.3632386 -0.5591753 -1.8524572 H 4.3508407 -0.9038097 -0.4261538 C 3.4622784 0.4899534 -1.8648333 H 2.4429689 0.4040765 -1.4313237 H 3.9313882 1.4063302 -1.4554544 C 1.6554069 -1.0960541 -6.5560923 H 1.4143711 -0.477429 -7.1201937 N -0.4425545 -1.7117037 -5.7409516 N -0.7106515 -3.1550370 -4.4483570 N -2.6958203 -0.4298769 5.6457692 N -2.6958203 -0.4298769 5.6457692 N -2.4400499 1.9754269 5.3520516 N -2.835087 3.256873 3.268937 4.216332 N 2.3355887 3.5587209 -2.6484543 N N 2.3355887 3.5958729 -2.6484543 N N 2.3356881 -0.2458322 5.289544 O 1.3594941 -3.8295247 <t< td=""><td>н</td><td>4.5195706</td><td>-2.8852392</td><td>-2.0001222</td></t<>	н	4.5195706	-2.8852392	-2.0001222
H 5.3632386 -0.5591753 -1.8524572 H 4.3508407 -0.9038097 -0.4261538 C 3.4622784 0.4899534 -1.8648332 H 2.4429689 0.4040765 -1.4313237 H 3.9313882 1.4063302 -1.4554584 C 1.6554069 -1.0960541 -6.2503224 H 2.3229258 -1.9224104 -6.566922 H 1.4143711 -0.4574829 -7.1201937 N 0.4425545 -1.7117037 -5.7409516 N -0.26958203 -0.4298769 5.6457696 N -2.6958203 -0.4298769 5.6457696 N -2.6958203 -0.4298769 5.6457696 N -2.3210793 4.9535282 1.4278416 N 2.3210793 4.9535282 1.4278416 N 2.3356081 -0.248832 -5.2895948 O 1.3594941 -3.8295247 -5.040974 O 4.9583249 -0.7383603 5.0963786 </td <td>С</td> <td>4 3193632</td> <td>-0 7576040</td> <td>-1 5258793</td>	С	4 3193632	-0 7576040	-1 5258793
1 0.30307 -0.426153 C 3.4622784 0.4899534 -1.8648332 H 2.4429689 0.4040765 -1.4313237 H 3.9313882 1.4063302 -1.4554584 C 1.6554069 -1.0960541 -6.2503224 H 2.3229258 -1.9224104 -6.5566923 H 1.4143711 -0.4574829 -7.120193 N 0.4425545 -1.7117037 -5.7409516 N -2.6958203 -0.4298769 5.6457698 N -2.6958203 -0.428769 5.3520516 N -0.9484586 3.2268937 4.216332 N 2.3210793 4.9535282 1.4278416 N 2.3355887 3.5587290 -2.6484543 N 2.3355081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O 4.528709 6.2350837 2.0466166 O 0.4528709 6.2350837 2.0466166 O	й	5 3632386	-0 5591753	-1 8524572
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	н	4 3508407	-0.9038097	-0 4261538
C 3.4022164 0.4040765 -1.4313237 H 2.4429689 0.4040765 -1.4554584 C 1.6554069 -1.0960541 -6.2503224 H 2.3229258 -1.9224104 -6.5566923 H 1.4143711 -0.4574829 -7.1201937 N 0.4425545 -1.7117037 -5.7409516 N -2.6958203 -0.4298769 5.6457692 N -2.6958203 -0.4298769 5.6457692 N -2.6958203 -0.4298769 5.6457692 N -2.6958203 -0.4298769 5.3520516 N -2.4400499 1.9754269 5.3520516 N 2.3210793 4.9535282 1.4278416 N 2.335587 3.5587209 -2.6484543 N 2.3355887 3.5587290 -2.6484543 N 2.3356881 -0.2458323 -5.2895946 O -1.3594941 -3.8295247 -5.304097 O 4.9583249 -0.7383603 5.0963788 </td <td>ĉ</td> <td>3 4622784</td> <td>0.4800534</td> <td>-0.4201000</td>	ĉ	3 4622784	0.4800534	-0.4201000
1 2.4428069 0.4040103 -1.451320 H 3.9313882 1.4063302 -1.4554584 C 1.6554069 -1.0960541 -6.2503224 H 1.4143711 -0.4574829 -7.120193 N 0.4425545 -1.7117037 -5.7409516 N -0.7106515 -3.1550370 -4.4483570 N -2.6958203 -0.4298769 5.6457696 N -2.6958203 -0.4298769 5.6457696 N -2.4400499 1.9754269 5.3520516 N -0.9484586 3.2268937 4.2156394 N 2.3210793 4.9535282 1.4278416 N 2.3355887 3.5587290 -2.6484543 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963786 O 0.4528709 6.2350837 2.0466166 O 1.3594941 -3.0284356 3.8361086 C -1.030367 4.2028148 -1.6092800	ы	2 4420690	0.40393334	1 4212227
No. 3.8313662 1.4063502 -1.4354562 C 1.6554069 -1.0960541 -6.2503224 H 2.3229258 -1.9224104 -6.5566923 N 0.4425545 -1.7117037 -5.7409516 N -0.7106515 -3.1550370 -4.4483577 N -3.2582849 -2.0942161 4.2332605 N -2.6958203 -0.4298769 5.6457696 N -2.6958203 -0.4298769 5.6457696 N -2.6958203 -0.4298769 5.3520516 N -0.9484586 3.2268937 4.2156394 N 2.825036 4.1282123 2.9639859 N 2.3210793 4.9535282 1.4278416 N 2.355887 3.5587290 -2.6484543 N 2.355887 3.5587290 -2.6484543 N 2.355887 3.5587290 -2.6484543 N 2.355837 1.6045979 4.0248661 N 2.355837 2.046166 6.350337 O 1.3594941 -3.8295247 5.3040974		2.4429009	1 4062202	1 4513237
C 1.0534069 -1.0900541 -0.2503224 H 2.3229258 -1.9224104 -6.5566923 N 0.4425545 -1.7117037 -5.7409516 N -0.2582849 -2.0942161 4.2332603 N -2.6958203 -0.4298769 5.6457698 N -2.6958203 -0.4280769 5.6457698 N -2.4400499 1.9754269 5.3520516 N -9.9484586 3.2268937 4.2156394 N 0.9484586 3.2268937 4.2156394 N 2.3210793 4.9535282 1.4278416 N 2.3210793 4.9535282 1.4278416 N 2.325087 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895944 O -1.3594941 -3.8295247 -5.3040974 O 4.9533249 -0.7383603 5.0963784 O -0.3173052 2.3428069 6.2873367		3.9313002	1.4003302	-1.4004004
H 2.3229288 -1.9224104 -0.3580942 H 1.4143711 -0.4574829 -7.1201937 N 0.4425545 -1.7117037 -5.7409516 N -2.6958203 -0.4298769 5.6457698 N -2.6958203 -0.4298769 5.6457698 N -2.4400499 1.9754269 5.3520516 N -0.9484586 3.2268937 4.2156394 N 2.821079 4.9535282 1.4278416 N 2.2451027 5.0971106 -1.0035211 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900		1.6554069	-1.0960541	-0.2503224
H 1.4143711 -0.4574829 -7.120193' N 0.4425545 -1.7117037 -5.7409516' N -0.7106515 -3.1550370 -4.4483570' N -3.2582849 -2.0942161 4.2332605' N -2.6958203 -0.4298769 5.6457698' N -2.6958203 -0.4298769 5.3520516' N -0.9484586 3.2268937 4.2156394' N 0.8925036 4.1282123 2.9639859' N 2.3210793 4.9535282 1.4278416' N 2.335687 3.5587290 -2.6484543' N 2.3556081 -0.2458332 -5.2895948' O 1.3594941 -3.8295247 -5.304097' O -4.9583249 -0.7383603 5.096378' O 0.4528709 6.2350837 2.0466166' O 4.330367 4.2028148 -1.6092800' O 1.5603470 1.8081325 6.123533' H -5.8961710 -3.0180706 1.6914900' H 0.6811025 4.1813181 5.058077'	н	2.3229258	-1.9224104	-6.5566923
N 0.4425545 -1.7117037 -5.7409516 N -0.7106515 -3.1550370 -4.4483570 N -3.2582849 -2.0942161 4.2332605 N -2.6958203 -0.4298769 5.6457696 N -0.9484586 3.2268937 4.2156394 N 0.8925036 4.1282123 2.9639856 N 2.3210793 4.9535282 1.4278416 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O -3.3594941 -3.8295247 -5.304097 O -4.9583249 -0.7383603 5.096378 O -0.3173052 2.3428069 6.2873367 O 4.58370 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.058077 H 0.6811025 4.1813181 5.058077	н	1.4143/11	-0.4574829	-7.1201931
N -0.7106515 -3.1550370 -4.4483577 N -3.2582849 -2.0942161 4.2332605 N -2.6958203 -0.4298769 5.6457698 N -2.6958203 -0.4298769 5.6457698 N -0.9484586 3.2268937 4.2156394 N 0.8925036 4.1282123 2.9639859 N 2.3210793 4.9535282 1.4278416 N 2.3255887 3.5587290 -2.6484543 N 2.355887 1.6045979 4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O 4.4528709 6.2350837 2.0466166 O 1.5603470 1.8081325 -6.1235337 <t< td=""><td>N</td><td>0.4425545</td><td>-1./11/03/</td><td>-5.7409516</td></t<>	N	0.4425545	-1./11/03/	-5.7409516
N -3.2582849 -2.0942161 4.2332605 N -2.6958203 -0.4298769 5.6457695 N -2.4400499 1.9754269 5.3520516 N -0.9484586 3.2268937 4.2156394 N 0.8925036 4.1282123 2.9639855 N 2.3210793 4.9535282 1.4278416 N 2.3255887 3.5587290 -2.6484543 N 2.355681 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0580774 C -2.8011876 -5.1493001 -2.3603574	N	-0.7106515	-3.1550370	-4.4483570
N -2.6958203 -0.4298769 5.6457698 N -2.4400499 1.9754269 5.3520516 N -0.9484586 3.2268937 4.2156394 N 0.8925036 4.1282123 2.9639859 N 2.3210793 4.9535282 1.4278416 N 2.3255887 3.5587290 -2.6484543 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O -4.58961710 -3.0180706 1.6914900 H 0.6611025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -2.8011876 -5.1493001 -2.3603574 C -1.268093 -4.4729447 -4.1475468 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618	Ν	-3.2582849	-2.0942161	4.2332605
N -2.4400499 1.9754269 5.3520516 N -0.9484586 3.2268937 4.2156394 N 0.8925036 4.1282123 2.9639859 N 2.3210793 4.9535282 1.4278416 N 2.2451027 5.0971106 -1.0035211 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 4.588709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0580774 C -2.8011876 5.1493001 -2.3603574	Ν	-2.6958203	-0.4298769	5.6457698
N -0.9484586 3.2268937 4.2156394 N 0.8925036 4.1282123 2.9639859 N 2.3210793 4.9535282 1.4278416 N 2.2451027 5.0971106 -1.0035211 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -1.268093 -4.4729447 -4.1475468 C -2.8011876 -5.1493001 -2.3603574	Ν	-2.4400499	1.9754269	5.3520516
N 0.8925036 4.1282123 2.9639855 N 2.3210793 4.9535282 1.4278416 N 2.2451027 5.0971106 -1.0035211 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618	Ν	-0.9484586	3.2268937	4.2156394
N 2.3210793 4.9535282 1.4278416 N 2.2451027 5.0971106 -1.0035211 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -1.2268093 -4.4729447 -4.1475468 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 <	Ν	0.8925036	4.1282123	2.9639859
N 2.2451027 5.0971106 -1.0035211 N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.268093 -4.4729447 -4.1475468 C -2.8011876 -5.1493001 -2.36033767 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714	Ν	2.3210793	4.9535282	1.4278416
N 2.3355887 3.5587290 -2.6484543 N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.268093 -4.4729447 -4.1475469 C -2.8011876 -5.1493001 -2.3603574 C -1.268093 -4.1272053 -0.0909359 C -0.5520097 -5.0173953 -1.7809618 H -0.3680496 -6.9520020 0.1445628	Ν	2.2451027	5.0971106	-1.0035211
N 2.5753157 1.6045979 -4.0248661 N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.268093 -4.4729447 -4.1475468 C -8.011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.2602484 -4.1272053 -0.0909358	Ν	2.3355887	3.5587290	-2.6484543
N 2.3356081 -0.2458332 -5.2895948 O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457	Ν	2.5753157	1.6045979	-4.0248661
O 1.3594941 -3.8295247 -5.3040974 O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056	Ν	2.3356081	-0.2458332	-5.2895948
O -4.9583249 -0.7383603 5.0963788 O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445626 H -1.2196177 -6.0824358 1.4681056 <td>0</td> <td>1.3594941</td> <td>-3.8295247</td> <td>-5.3040974</td>	0	1.3594941	-3.8295247	-5.3040974
O -0.3173052 2.3428069 6.2873367 O 0.4528709 6.2350837 2.0466166 O 4.3303367 4.2028148 -1.6092800 O 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445626 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409	0	-4.9583249	-0.7383603	5.0963788
0 0.4528709 6.2350837 2.0466166 0 4.3303367 4.2028148 -1.6092800 0 1.5603470 1.8081325 -6.1235337 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686	0	-0.3173052	2.3428069	6.2873367
0 4.3303367 4.2028148 -1.6092800 0 1.5603470 1.8081325 -6.123533 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202	0	0.4528709	6.2350837	2.0466166
0 1.5603470 1.8081325 -6.123533 H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233547	0	4.3303367	4.2028148	-1.6092800
H -5.8961710 -3.0180706 1.6914900 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233547 H 2.3554429 -4.1287969 -1.5372698	0	1 5603470	1 8081325	-6 1235331
H 0.6811025 4.1813181 5.0588096 H 0.6811025 4.1813181 5.0588096 C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233547 H 2.3554429 -4.1287969 -1.5372698	н	-5 8961710	-3 0180706	1 6914900
C -4.0912429 -3.2084356 3.8361088 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233547 H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 <td>н</td> <td>0.6811025</td> <td>4 1813181</td> <td>5 0588096</td>	н	0.6811025	4 1813181	5 0588096
C -1.0312425 -0.100402 -0.000000 C -1.2268093 -4.4729447 -4.1475463 C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233541 H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 <td>C</td> <td>-4 0012420</td> <td>-3 2084356</td> <td>3 8361088</td>	C	-4 0012420	-3 2084356	3 8361088
C -2.8011876 -5.1493001 -2.3603574 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354 H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273 <td>c</td> <td>-1 2268093</td> <td>-4 4729447</td> <td>-4 1475465</td>	c	-1 2268093	-4 4729447	-4 1475465
C -2.3011010 -3.1493001 -2.300314 C -0.5520097 -5.0173953 -1.7809618 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233541 H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273 <td>ĉ</td> <td>2 8011876</td> <td>5 1403001</td> <td>2 3603574</td>	ĉ	2 8011876	5 1403001	2 3603574
C -0.532097 -5.0173953 -1.7609076 H -0.1760722 -6.0333968 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909358 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233547 H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273<	ĉ	-2.0011070	-5.1495001	1 7900619
-0.1760722 -0.0333966 -2.0587714 C -1.3920534 -5.1517730 -0.5050776 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.8233547 H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273 H -3.5974742 -6.8050012 0.4155926		-0.5520097	-5.0173955	-1.7609016
C -1.392034 -5.1317730 -0.303076 H -1.5602484 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -3.4826091 -3.0691742 -0.2033887 H -3.6628014 -1.0002150 1.0548827		1 2020524	-0.0333900 E 1E17720	-2.0307714
H -1.5602464 -4.1272053 -0.0909353 C -0.6209122 -5.9478544 0.5471457 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.933527 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033383		1.5920534	-5.1517730	-0.5050776
C -0.6209122 -5.9478544 0.547145 H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273 H -3.5974742 -6.8050012 0.4155928 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033383 <td>Н</td> <td>-1.5602484</td> <td>-4.1272053</td> <td>-0.0909355</td>	Н	-1.5602484	-4.1272053	-0.0909355
H -0.3680496 -6.9520020 0.1445628 H -1.2196177 -6.0824358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335275 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827	C	-0.6209122	-5.9478544	0.5471451
H -1.2196177 -6.08224358 1.4681056 C 0.6679022 -5.1376527 0.8491409 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335275 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.203388 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827	н	-0.3680496	-6.9520020	0.1445628
C 0.6679022 -5.1376527 0.8491405 H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335273 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033383 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827	Н	-1.2196177	-6.0824358	1.4681056
H 0.3691321 -4.1887988 1.3451686 H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335279 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033389 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 <td>C</td> <td>0.6679022</td> <td>-5.13/652/</td> <td>0.8491409</td>	C	0.6679022	-5.13/652/	0.8491409
H 1.2993179 -5.6917213 1.5739324 C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335279 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -3.4826091 -3.0691742 -0.2033389 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 <td>Н</td> <td>0.3691321</td> <td>-4.1887988</td> <td>1.3451686</td>	Н	0.3691321	-4.1887988	1.3451686
C 1.4988677 -4.8031560 -0.4166202 H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273 H -3.5974742 -6.8050012 0.4155928 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033383 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 <td>Н</td> <td>1.2993179</td> <td>-5.6917213</td> <td>1.5739324</td>	Н	1.2993179	-5.6917213	1.5739324
H 1.9284175 -5.7444527 -0.823354' H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.231126' H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335279 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033389 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.029447 <td>С</td> <td>1.4988677</td> <td>-4.8031560</td> <td>-0.4166202</td>	С	1.4988677	-4.8031560	-0.4166202
H 2.3554429 -4.1527462 -0.1426048 C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335273 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033383 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2390189 -0.029447	Н	1.9284175	-5.7444527	-0.8233541
C 0.6657837 -4.1287969 -1.5372698 H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335278 H -3.5974742 -6.8050012 0.4155928 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033388 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2399189 -0.029447	н	2.3554429	-4.1527462	-0.1426048
H 0.3316254 -3.1145516 -1.2311267 H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372268 H -4.6365620 -6.1811646 -0.9335278 H -3.5974742 -6.8050012 0.4155928 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033388 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.239189 -0.029447	С	0.6657837	-4.1287969	-1.5372698
H 1.2686939 -4.0248621 -2.4608728 C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335279 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.203388 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.0294473	Н	0.3316254	-3.1145516	-1.2311261
C -3.8129983 -5.9390620 -0.2372269 H -4.6365620 -6.1811646 -0.9335279 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033389 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.239189 -0.029447	Н	1.2686939	-4.0248621	-2.4608728
H -4.6365620 -6.1811646 -0.9335275 H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.203388 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.239189 -0.0294475	С	-3.8129983	-5.9390620	-0.2372269
H -3.5974742 -6.8050012 0.4155929 C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559400 H -3.4826091 -3.0691742 -0.2033383 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.0294477	Н	-4.6365620	-6.1811646	-0.9335275
C -3.7618998 -4.7933219 1.9621913 C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.2033383 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -3.6628014 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.0294475	н	-3.5974742	-6.8050012	0.4155929
C -4.4520497 -3.4929856 0.1559406 H -3.4826091 -3.0691742 -0.203388 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.239189 -0.0294473	С	-3.7618998	-4.7933219	1.9621913
H -3.4826091 -3.0691742 -0.2033383 C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.0294477	С	-4.4520497	-3.4929856	0.1559406
C -4.7098602 -1.2689272 1.3113243 H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.029447	Н	-3.4826091	-3.0691742	-0.2033385
H -3.6628014 -1.0002150 1.0548827 H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.029447	С	-4.7098602	-1.2689272	1.3113243
H -4.9724330 -0.7560045 2.2578702 C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5 5781670 0.2309189 -0.0294477	Н	-3.6628014	-1.0002150	1.0548827
C -5.6852378 -0.8538964 0.1792307 H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.029447	н	-4.9724330	-0.7560045	2.2578702
H -5.1380511 -2.9477108 4.0992036 H -5.5781670 0.2309189 -0.029447	С	-5.6852378	-0.8538964	0.1792307
H -5 5781670 0 2309189 -0 0294473	H	-5.1380511	-2.9477108	4.0992036
11 0.0101010 0.2000100 0.0204410	Н	-5.5781670	0.2309189	-0.0294473

н	-6.7242919	-1.0077836	0.5439126
С	-5.4881928	-1.6627364	-1.1293486
Н	-3.7858501	-4.1278169	4.3793410
Н	-6.2689100	-1.3783968	-1.8644147
Н	-4.5101204	-1.3868742	-1.5795121
С	-5.5016332	-3.2005504	-0.9154624
Н	-6.4990315	-3.5396273	-0.5633368
Н	-5.2687414	-3.7262163	-1.8612447
Н	-0.4436335	-5.2064740	-4.4330050
Ν	-1.5652472	-4.6218033	-2.7488007
Ν	-2.6531448	-5.6418043	-1.0585803
Ν	-4.2134733	-4.8521139	0.6385684
Ν	-3.9873231	-3.4913057	2.4210494
0	-3.8197630	-5.1733010	-3.0421494
0	-3.2618416	-5.7077647	2.6078076

HCOO-@cycHC[8]

С	0.5112527	-3.0527345	-5.1935235
С	-0.5702972	-0.9892182	-5.1079650
Н	-0.1942200	-0.5636283	-4.1489598
С	-1.5716167	-2.1013932	-4.7721412
Н	-2.1435267	-2.3509020	-5.7016254
С	-2.5770395	-1.6208547	-3.7269522
Н	-2.0420908	-1.3271988	-2.7989274
Н	-3.2955978	-2.4238738	-3.4707899
С	-3.3186123	-0.4081513	-4.3460704
Н	-3.9541523	-0.7768495	-5.1816304
Н	-4.0025301	0.0331540	-3.5917030
С	-2.3607517	0.6847200	-4.8849026
Н	-1.8432336	1.1573820	-4.0261851
Н	-2.9468711	1.4837035	-5.3848924
С	-1.2770489	0.1406767	-5.8549796
Н	-1.7391787	-0.2563489	-6.7848756
Н	-0.5674418	0.9434951	-6.1324372
С	-4.7373948	-2.7654133	1.4831640
С	-3.7229507	-1.1439067	5.0284771
С	-1.8111125	-2.3644407	4.4884664
Н	-1.6824782	-3.0239957	5.3852119
С	-1.4080440	-0.9351989	4.8711716
Н	-1.2962406	-0.3550960	3.9301774
С	-0.0506763	-0.9452472	5.5701288
Н	-0.0909297	-1.5948581	6.4721037
Н	0.2457667	0.0726137	5.8903423
С	0.9534080	-1.5037309	4.5273466
Н	1.0041592	-0.7812268	3.6895656
Н	1.9685657	-1.5676904	4.9715524
С	0.5411266	-2.8829387	3.9541094
Н	0.6090486	-3.6490577	4.7597281
Н	1.2596832	-3.1828465	3.1628574
С	-0.9001962	-2.8916484	3.3804424
Н	-0.9738838	-2.2238607	2.4980358
Н	-1.1927946	-3.9200132	3.0867007
С	-2.7444051	0.8235048	6.1804715
Н	-3.8093434	0.9247214	6.4658917
Н	-2.1037342	0.8847695	7.0807898
С	-1.0935147	2.5304905	5.4576523
С	-2.8080751	2.0818197	3.9447246
Н	-2.3431870	1.2910105	3.3160904
С	-2.1409345	3.4105416	3.5684441
Н	-2.7514755	4.2497519	3.9927507
С	-2.1059117	3.5728391	2.0492742

Н	-1.5362558	2.7349946	1.5992375
Н	-1.6171636	4.5255219	1.7646030
С	-3.5825746	3.5656508	1.5764566
н	-3.6190932	3.6074699	0.4690274
н	-4.0812109	4.4878797	1.9523802
С	-4.3720790	2.3284554	2.0714927
Ĥ	-5 4321458	2 4018588	1 7489189
н	-3 0/07300	1 / 276106	1 5017277
\hat{c}	4 2058060	2 1285707	3 6078542
	-4.2936900	2.1203/07	3.0070342
н	-4.7800529	2.9758430	4.1416432
н	-4.8105295	1.1946549	3.9080304
н	-2.1254442	-4.7093239	-4.7769476
С	0.1046254	4.3511953	4.2629304
Н	-0.3678171	5.3558968	4.2182902
С	1.1557337	5.2712710	2.2067978
С	2.0375210	3.2753003	3.0316814
н	2.8339171	3.6281811	3.7366101
С	2.5268601	3,4894412	1.5945893
Ĥ	1 8493081	2 9125573	0 9279152
c	3 9331806	2 9221290	1 4283987
й	4 6262218	3 4017427	2 15/6618
	4.0202210	2 1022252	2.1040010
	4.3203073	3.1033253	0.4009002
C	3.8063954	1.4014073	1.7067722
н	3.1633709	0.9650822	0.9164211
Н	4.8026973	0.9158574	1.6329752
С	3.1668094	1.0851325	3.0810717
Н	3.8628499	1.4099617	3.8874167
Н	3.0407964	-0.0112606	3.1860837
С	1.8004880	1.7880889	3.2930900
н	1.0346612	1.4015058	2.5896317
н	1 4424775	1 6223346	4 3286901
c	2 6002300	5 6599452	0.2253650
ы	2.0002000	6 6490792	0.2200000
	2.1120301	0.0409702 5 7052277	0.3247730
	3.0977104	5.7655577	0.1000024
C	3.0884484	4.3046426	-1.7956147
C	0.8350890	4.4998602	-1.2359859
н	0.6819002	3.6047465	-0.5953956
С	0.9531718	4.0156411	-2.6862150
Н	0.8527138	4.8997212	-3.3676326
С	-0.1766323	3.0393086	-3.0111578
Н	-0.1247927	2.1756941	-2.3172328
н	-0.0923594	2.6748137	-4.0549723
С	-1.5029559	3.8204414	-2.8169218
Ĥ	-2 3643815	3 1357487	-2 9627912
н	-1 5750342	4 6023290	-3 6068618
\hat{c}	1 6109407	4.0023230	1 4 25 1 4 94
	-1.0100497	4.4937095	1 2620502
	-2.0490211	0.0020200	-1.3039302
Н	-1.6699039	3.6983447	-0.6564115
С	-0.3935027	5.3926368	-1.0809/12
н	-0.3281557	6.2572580	-1.7777715
Н	-0.4780327	5.7865014	-0.0493938
С	2.9286098	3.0260324	-3.9129074
н	2.5490792	3.5508776	-4.8157979
н	4.0276770	3.1666555	-3.8297802
С	2.1756149	1.1084283	-5.2956248
c	3 3331856	0 5939139	-3 3396973
н	4 3086100	0 50705/6	-3 6843380
с С	-1.0000100	0.0373040	2 0704400
	2.0033089	-0.0700872	-3.0/04400
Н	1.0900514	-0.8048361	-3.3363689
C	3.5227580	-1.9000741	-3.5655520
Н	4.5320864	-1.7730293	-4.0141237
Н	3.0747273	-2.8248867	-3.9783403
С	3.6144387	-1.9758516	-2.0177706

н	2.6001298	-2.1959444	-1.6238664
н	4 2663983	-2 8235045	-1 7192883
C	4 1254640	-0 6646874	-1 3685423
ц	5 1050620	0.5242005	1 6427414
	5.1950620	-0.5243905	-1.0427414
Н	4.0848875	-0.7567420	-0.2649046
С	3.3351395	0.5948099	-1.8110394
н	2.2963874	0.5845525	-1.4188448
Н	3.8285198	1.5063606	-1.4215429
С	1.7326838	-1.1518626	-6.2153548
н	2.4062126	-1.9870223	-6.4853271
н	1 5186971	-0 5320744	-7 1065904
N	0 5042337	-1 7610332	-5 7321006
N	0.0072007	2 2100042	4 4750110
	-0.0770707	-3.2109642	-4.4/52115
N	-3.2373009	-2.1954936	4.2487655
N	-2.6165904	-0.4877626	5.5703591
Ν	-2.3496963	1.9266615	5.3290237
Ν	-0.9022827	3.3204950	4.3287164
Ν	0.9297860	4.2187083	3.0879537
Ν	2.2633443	4.9226704	1.4255823
Ν	2,1854667	5.0250466	-1.0122987
N	2 3393176	3 5710964	-2 7179062
N	2.6000170	1 6227005	4 0705270
N	2.0129249	0.0227005	-4.0795270
	2.3011130	-0.2793276	-5.25/5265
0	1.3907533	-3.8988154	-5.3263810
0	-4.9068356	-0.8633718	5.2034760
0	-0.3075428	2.3970480	6.3939103
0	0.5058972	6.3129600	2.1355417
0	4.3141194	4.3119867	-1.7055408
0	1.7022477	1.7474847	-6.2319023
н	-5 8298538	-2 9342890	1 6598967
н	0 7108580	4 2637183	5 18/0080
C	4 0717079	2 202/105	2 9641059
	-4.0/1/0/6	-3.3034196	3.0041030
C	-1.2059724	-4.5235359	-4.1813680
C	-2.8080656	-5.1804847	-2.4108685
С	-0.5644902	-5.0558375	-1.8024671
Н	-0.1871196	-6.0762763	-2.0662985
С	-1.4221136	-5.1730577	-0.5369496
Н	-1.5797009	-4.1459700	-0.1326344
С	-0.6726634	-5.9670034	0.5317112
н	-0.4241080	-6.9783669	0.1423746
н	-1 2854982	-6 0867001	1 4462409
C	0.6167444	-5 1605341	0.8419980
ц	0.3140081	4 2066810	1 3203103
	4.0055500	-4.2000010	1.5205195
	1.2355590	-5.7062991	1.3627319
C	1.4662645	-4.8390108	-0.4142880
н	1.8997496	-5.7839055	-0.8110421
н	2.3175094	-4.1862578	-0.1310831
С	0.6500139	-4.1658553	-1.5475212
н	0.3147793	-3.1513575	-1.2460521
Н	1.2666169	-4.0656163	-2.4623360
С	-3.8606868	-5.9223356	-0.2912562
н	-4 6838196	-6 1230143	-1 0023365
н	-3 6837061	-6.8087830	0.3466027
с С	-3.0037001	4 95 97 205	1.0490622
	-3.6246096	-4.0007290	1.9460632
С 	-4.3562264	-3.4529329	0.1657736
н	-3.3504428	-3.0757172	-0.1335010
С	-4.5069264	-1.2568863	1.3899017
Н	-3.4336489	-1.0354392	1.2099153
Н	-4.7952058	-0.7595275	2.3364325
С	-5.4010090	-0.7440220	0.2300720
Н	-5.1136134	-3.0443218	4.1507617
н	-5.2079437	0.3348049	0.0642554
н	-6.4664603	-0.8377426	0.5386195
-			

С	-5.1980488	-1.5177449	-1.0971391
Н	-3.7582100	-4.2339271	4.3848980
Н	-5.9167713	-1.1523802	-1.8604426
Н	-4.1804899	-1.3002421	-1.4837274
С	-5.3331285	-3.0558049	-0.9387876
Н	-6.3678371	-3.3319188	-0.6408242
Н	-5.0981414	-3.5710433	-1.8904439
Н	-0.4229945	-5.2616648	-4.4571635
Ν	-1.5635748	-4.6700788	-2.7889274
Ν	-2.6835320	-5.6544474	-1.1010472
Ν	-4.2273688	-4.8429675	0.6037314
Ν	-3.9922131	-3.5700416	2.4433082
0	-3.8175523	-5.2088722	-3.1088728
0	-3.4067876	-5.8320461	2.5700182
0	0.2258475	1.2196147	-0.0146775
0	-1.0752862	0.0847676	1.4715493
Н	-0.6529989	-0.5771757	-0.4095925
С	-0.4970848	0.2619749	0.3671565

cycHC[8]-HCOO-anion-outside

С	0.3810243	-2.9962950	-4.9700610
С	-0.6675297	-0.9101951	-4.8173432
Н	-0.2597949	-0.4937315	-3.8575522
С	-1.6730865	-2.0175214	-4.5023388
Н	-2.2459349	-2.2563572	-5.4251547
С	-2.6683312	-1.5669599	-3.4428318
Н	-2.1465911	-1.3002329	-2.4919890
Н	-3.3864902	-2.3833750	-3.2275682
С	-3.4138831	-0.3482703	-4.0475575
н	-3.9900913	-0.7121659	-4.9222298
Н	-4.1209246	0.0779082	-3.3007684
С	-2.4498656	0.7570558	-4.5492499
н	-1.9221691	1.2093397	-3.6782240
Н	-3.0372781	1.5665946	-5.0318983
С	-1.3883409	0.2225768	-5.5490532
Н	-1.9040551	-0.1875837	-6.4406647
н	-0.6891140	1.0301377	-5.8455275
С	-4.8422495	-2.9773206	1.4830761
С	-3.7689392	-1.0849610	4.9587322
С	-1.8341524	-2.3080908	4.5475297
Н	-1.7617007	-2.9522533	5.4592532
С	-1.4471373	-0.8779722	4.9437214
Н	-1.2750265	-0.2953061	4.0061315
С	-0.1301947	-0.8875110	5.7194508
Н	-0.2345994	-1.5228468	6.6250631
Н	0.1543959	0.1325807	6.0419695
С	0.9371665	-1.4748635	4.7571742
Н	1.0798154	-0.7551655	3.9233118
Н	1.9134001	-1.5536455	5.2792166
С	0.5462334	-2.8549429	4.1670161
Н	0.5560247	-3.6100104	4.9839240
Н	1.3066168	-3.1754139	3.4253158
С	-0.8598630	-2.8672021	3.5120704
Н	-0.8808216	-2.2344620	2.6002159
Н	-1.1437478	-3.8968114	3.2184050
С	-2.8549175	0.9177288	6.1012742
Н	-3.9252097	1.0192432	6.3612752
Н	-2.2301582	1.0367937	7.0060031
С	-1.1897100	2.5531234	5.2623264
С	-2.9571087	2.0805441	3.8194213
н	-2.5499296	1.2206860	3.2348435

С	-2.2443351	3.3549409	3.3481518
Н	-2.8117618	4.2367231	3.7394373
С	-2.2482213	3.4440854	1.8231938
н	-1.7135661	2.5689851	1.3972565
н	-1.7288253	4.3606040	1.4793280
С	-3.7329136	3.4605623	1.3754960
Ĥ	-3 7901801	3 4387646	0 2675954
н	-4 1822434	4 4242508	1 7018665
\hat{c}	4 5666000	2 2029515	1.0658782
	-4.0000909	2.2930313	1.9030702
	-5.0312100	2.4133442	1.0770400
н	-4.2208720	1.3385924	1.5162199
0	-4.4506962	2.1698282	3.5094191
н	-4.8831418	3.0629045	4.0097629
Н	-4.9911651	1.2732399	3.8695466
Н	-2.3225637	-4.5284392	-4.6638812
С	-0.0113341	4.3285872	4.0031883
Н	-0.5226174	5.3111388	3.9207380
С	1.1351190	5.3059408	2.0388288
С	2.0334665	3.3457716	2.9120919
н	2.7144570	3.7367353	3.7095600
С	2.6799479	3.6311562	1.5511864
H	2 1396098	3 0350332	0 7771278
c	4 1343363	3 1620801	1 5553190
й	4 6008534	3 68/3/05	2 3634664
н ц	4.0900004	2 2040071	2.3034004
	4.0200009	3.3040071	0.0099074
C	4.0992069	1.6324799	1.8103145
н	3.6278486	1.1488449	0.9291231
н	5.1339909	1.2368451	1.8750480
С	3.3093953	1.2348148	3.0838852
Н	3.8684777	1.5856027	3.9794148
Н	3.2477637	0.1293919	3.1578324
С	1.8832664	1.8420264	3.1363637
Н	1.2365306	1.4093901	2.3439007
н	1.4088833	1.6347813	4.1160395
С	2.7182616	5.7998846	0.1922424
н	2.2261505	6.7859099	0.2839131
н	3.8170844	5.9218051	0.1677255
С	3 2478251	4 3489929	-1 7488169
c	0.9818023	4 7267019	-1 3449219
ы	0.3010023	3 8881105	0 6500020
\hat{c}	1 1501001	1 1 1 1 0 2 2 4	2 7515072
	1.1091021	4.1410324	-2.7515075
	1.1003571	4.9669501	-3.4614790
0	-0.0142633	3.2330072	-3.1148778
н	-0.0771242	2.3926371	-2.3919695
Н	0.1131170	2.7995733	-4.1258087
С	-1.2909923	4.1103091	-3.0593580
Н	-2.1815940	3.4767945	-3.2425429
Н	-1.2435903	4.8462895	-3.8921822
С	-1.4507732	4.8778071	-1.7220036
н	-2.3361604	5.5452610	-1.7762116
н	-1.6513306	4.1463828	-0.9099554
С	-0 1947961	5 7011417	-1 3268698
Ĥ	-0 0140716	6 5153125	-2 0609984
н	-0 3250670	6 1561060	-0 3257402
\hat{c}	3 1302507	2 0722063	3 81/1023
С U	0.1002007	2.3122003	-3.0141023
п	2.0309948	3.500/022	-4./4289/1
Н	4.2295207	3.0418522	-3.6706051
С	2.1972642	1.1195512	-5.1768556
С	3.4387938	0.5275823	-3.2950624
Н	4.4867170	0.4992856	-3.6884387
С	2.6933974	-0.7032444	-3.8226630
н	1.7503322	-0.8155327	-3.2365061
С	3.5265389	-1.9616876	-3 5824704

н	4 5148501	-1 8582327	-4 0808183
	4.0140001	0.0500047	4.0000100
	3.0211143	-2.0000247	-3.9909370
С	3.6966288	-2.0782314	-2.0440362
Н	2.6967864	-2.2792421	-1.6048151
н	1 33/3768	2 0520633	1 7966450
	4.0045700	-2.3320033	-1.7300430
C	4.2855864	-0.8017841	-1.3874399
н	5.3436185	-0.6865706	-1.7107061
н	4 2992133	-0 9185100	-0 2830355
<u> </u>	2 5014400	0.4020122	1 7602000
C	3.3214429	0.4920122	-1.7092000
н	2.4960116	0.4892060	-1.3425344
Н	4.0492047	1.3872543	-1.3806963
C	1 5566380	-1 1116877	-6 0738143
	1.0000000	4.0504470	-0.0730143
н	2.1814010	-1.9531170	-6.4272953
н	1.2677194	-0.4655941	-6.9243003
Ν	0.3906675	-1.6870109	-5.4625139
N	0 7000570	3 1502780	1 2201380
IN	-0.7900379	-3.1592760	-4.2394309
Ν	-3.2415069	-2.1408381	4.2154304
Ν	-2.6904857	-0.4172951	5.5581847
N	-2 4651578	1 9831501	5 1935986
N	2.4001070	2.000075	4.0700704
IN	-0.9846597	3.2608075	4.0739724
Ν	0.8568372	4.2014662	2.8538940
Ν	2.3372235	5.0421223	1.3747512
N	2 3444176	5 1752047	1 0603386
	2.5444170	0.0005500	-1.0003300
Ν	2.5108529	3.6035502	-2.6641754
Ν	2.7205122	1.5991106	-3.9618669
N	2 3459786	-0 2665400	-5 1725870
~	1 0600407	2.0407006	E 107010E
0	1.2032427	-3.6407996	-5.1370105
0	-4.9562038	-0.7966256	5.0702064
0	-0.3930312	2.4579553	6.1909400
0	0 4470540	6 3164010	1 9382283
õ	4 4000074	4 0075047	1.0002200
0	4.4623271	4.29/584/	-1.5/55180
0	1.7126515	1.8142571	-6.0622915
н	-5.8932577	-3.2423217	1.7614713
н	0 5823830	4 2024080	4 0417533
~	4.050000	4.2024000	4.04170000
C	-4.0509074	-3.2850040	3.8476244
С	-1.3782744	-4.4740253	-4.0876747
С	-2.8416104	-5.3608544	-2.2761228
Ċ	0 5034600	5 118/002	1 76/20/7
	-0.0304030	-5.1104032	-1.7042047
н	-0.1789442	-6.1135171	-2.0660030
С	-1.3778331	-5.3066530	-0.4590620
н	-1.5850940	-4.2925173	-0.0337227
C	0 5349629	6 0660580	0 5640380
	-0.0040020	-0.0000000	0.0040000
н	-0.2491943	-7.0564395	0.1497650
Н	-1.0975911	-6.2293605	1.5046723
С	0.7254455	-5.2011442	0.8272496
н	0 4008582	1 2651062	1 332/350
	4.4050004	-4.2001002	1.0024000
н	1.4058981	-5.7256827	1.5312614
С	1.4939022	-4.8305937	-0.4671831
н	1 9409910	-5 7553420	-0 8939959
Ц	2 2265120	1 1513972	0.221/208
	2.000100	-4.1010072	-0.2214230
C	0.5960547	-4.1817436	-1.5521592
Н	0.2327867	-3.1845503	-1.2260406
н	1 1593544	-4 0475638	-2 4957830
C	2 7470521	6 1670906	0 1150550
	-0.1410021	-0.1070000	-0.1100000
н	-4.5813398	-0.455/414	-0.7805220
Н	-3.4956302	-6.9982775	0.5695265
С	-3.6858274	-4.9220621	2.0306397
ĉ	1 1071000	3 7200200	0.1055040
		-2.1233203	0.1900049
н	-4.4074000	0.0000.00-	0.000-111
	-3.5542791	-3.2868422	-0.2265114
С	-3.5542791 -4.7959857	-3.2868422 -1.4668738	-0.2265114 1.2584461
С Н	-3.5542791 -4.7959857 -3.7756925	-3.2868422 -1.4668738 -1.1706820	-0.2265114 1.2584461 0.9343117
С Н н	-3.5542791 -4.7959857 -3.7756925 -5.0327591	-3.2868422 -1.4668738 -1.1706820	-0.2265114 1.2584461 0.9343117 2.1935491
C H H	-3.5542791 -4.7959857 -3.7756925 -5.0327591	-3.2868422 -1.4668738 -1.1706820 -0.9200534	-0.2265114 1.2584461 0.9343117 2.1935491

-5.1017731	-3.0387608	4.1101653
-5.7875550	-0.0701707	-0.1080381
-6.8543499	-1.3215386	0.5858184
-5.6717397	-2.0092451	-1.1184878
-3.7202774	-4.1792508	4.4178139
-6.5013438	-1.7989692	-1.8234370
-4.7375906	-1.7073511	-1.6348664
-5.5950534	-3.5345625	-0.8395623
-6.5568599	-3.9113869	-0.4291920
-5.3705414	-4.0823830	-1.7743229
-0.6552285	-5.2170834	-4.4842364
-1.6590313	-4.7621598	-2.6872992
-2.6213361	-5.8684351	-0.9711890
-4.1700502	-5.0560872	0.7318186
-3.9451941	-3.6051472	2.4437762
-3.8883575	-5.4503268	-2.9028792
-3.1365795	-5.7855304	2.7100341
-3.7653150	-1.5958236	-7.1338902
-3.6533616	-2.8270585	-7.3739728
-2.9759108	-3.7076807	-6.7847647
-4.2652022	-3.2066698	-8.2783039
	-5.1017731 -5.7875550 -6.8543499 -5.6717397 -3.7202774 -6.5013438 -4.7375906 -5.5950534 -6.5568599 -5.3705414 -0.6552285 -1.6590313 -2.6213361 -4.1700502 -3.9451941 -3.8883575 -3.1365795 -3.7653150 -3.6533616 -2.9759108 -4.2652022	-5.1017731-3.0387608-5.7875550-0.0701707-6.8543499-1.3215386-5.6717397-2.0092451-3.7202774-4.1792508-6.5013438-1.7989692-4.7375906-1.7073511-5.5950534-3.5345625-6.5568599-3.9113869-5.3705414-4.0823830-0.6552285-5.2170834-1.6590313-4.7621598-2.6213361-5.8684351-4.1700502-5.0560872-3.9451941-3.6051472-3.883575-5.4503268-3.1365795-5.7855304-3.7653150-1.5958236-3.6533616-2.8270585-2.9759108-3.7076807-4.2652022-3.2066698

HCOOH@cycHC[8]

С	0.5370685	-3.2044409	-4.6838355
С	-0.3927761	-1.0705379	-4.8240068
Н	-0.1549973	-0.6447327	-3.8218233
С	-1.5136634	-2.0993437	-4.6336434
Н	-1.9571741	-2.3286299	-5.6350092
С	-2.6180003	-1.5180198	-3.7531870
Н	-2.1913782	-1.2325767	-2.7694284
Н	-3.4217788	-2.2622255	-3.5849388
С	-3.1692748	-0.2723855	-4.4952888
Н	-3.7034891	-0.6165117	-5.4077738
Н	-3.9194165	0.2407931	-3.8579747
С	-2.0627916	0.7339497	-4.9093321
Н	-1.6440218	1.1950367	-3.9908827
Н	-2.5087060	1.5537716	-5.5094120
С	-0.8897423	0.0835784	-5.6936144
Н	-1.2381648	-0.3065434	-6.6733570
Н	-0.0886026	0.8235687	-5.8856913
С	-4.5478768	-2.6167616	1.5216655
С	-3.1174614	-1.5053268	5.2301361
С	-1.4205546	-2.4732986	3.9659694
Н	-1.0618884	-3.2893217	4.6418026
С	-0.9295288	-1.1293542	4.5233490
Н	-1.0692234	-0.3580772	3.7291136
С	0.5662131	-1.2050789	4.8308079
Н	0.7537093	-2.0065473	5.5768389
Н	0.9348002	-0.2474533	5.2463327
С	1.2811760	-1.5206703	3.4892306
Н	1.1507292	-0.6476382	2.8197399
Н	2.3713747	-1.6389846	3.6627082
С	0.7223084	-2.7732249	2.7682544
Н	0.9736271	-3.6814390	3.3588213
Н	1.2151286	-2.8841489	1.7791434
С	-0.8149902	-2.7152090	2.5820304
Н	-1.0883019	-1.8872324	1.8980639
Н	-1.1953889	-3.6566664	2.1432013
С	-1.9359352	0.3510979	6.3345672
Н	-2.8243895	0.3119760	6.9905438
н	-1.0166547	0.4536104	6.9387117

С	-0.8423733	2.1568691	5.0546392
С	-3.0383524	1.6638470	4.4439198
Н	-2.9249587	0.8225477	3.7210839
С	-2.5970414	2.9555258	3.7489212
н	-2.9610531	3.8183992	4.3592517
С	-3 2431101	3 0624786	2 3686895
н	-2 9698798	2 1765635	1 7608545
 Ц	2.0000700	2.1703033	1.7000040
	-2.0900010	3.97 14131	1.6529120
0	-4.7758841	3.1194501	2.6074589
н	-5.3086600	3.1159511	1.6343893
Н	-5.0152564	4.0855803	3.1037704
С	-5.3009198	1.9553098	3.4889573
Н	-6.3763098	2.1160974	3.7092371
Н	-5.2317465	1.0109283	2.9103560
С	-4.5184647	1.7668685	4.8161517
н	-4.6693657	2.6374588	5.4894803
н	-4 8628134	0 8534273	5 3357568
ц.	2 2222650	4 5721591	4 6653519
0	-2.3322030	4.01051501	2 5265120
	-0.3296951	4.0105154	3.5265129
Н	-0.9920098	4.8688370	3.2844686
С	0.6369410	4.9438113	1.4771972
С	1.9163599	3.3522914	2.6201690
Н	2.2847704	3.9543635	3.4827842
С	2.6739885	3.8126045	1.3717910
н	2.5212358	3.0671169	0.5568564
С	4 1709792	3 8709969	1 6821645
н	4 3422878	4 5687469	2 5299774
ц.	4.5422070	4.2240433	0.8042030
0	4.7415005	4.2249433	0.0042930
	4.0007309	2.4309677	2.0590060
н	4.5377441	1.8008710	1.14/8/53
Н	5.6754152	2.4353177	2.3633731
С	3.7478390	1.7947432	3.1795760
Н	3.9586205	2.3120689	4.1406148
Н	4.0357448	0.7319924	3.3160765
С	2.2257560	1.8858966	2.9070031
н	1.9517125	1.2688509	2.0280628
н	1.6564690	1.5248780	3,7820035
С	2 3375346	5 9405992	-0.0355389
н	1 6032203	6 8337964	0.0422535
	2 2072244	6.0120001	0.0422000
	3.3973041	0.2139001	0.1120629
C	3.2047238	4.4958334	-1.83/1585
C	0.9140263	4.9116218	-1.8488681
Н	0.5460597	4.1121954	-1.1598078
С	1.3102849	4.2377332	-3.1667169
Н	1.4516479	5.0312305	-3.9401715
С	0.1937686	3.3140173	-3.6513983
Н	0.0038570	2.5229499	-2.8966498
н	0.4750268	2.8153326	-4.5998698
С	-1 0631006	4 2000618	-3 8524740
н	-1 9244014	3 5635641	-4 1368717
ц.	0.8714404	4 9949377	4 7060484
0	1 4265214	F 0470122	2 6061462
	-1.4203314	5.0476132	-2.0001402
н	-2.2805396	5.7143142	-2.8448949
н	-1.7667766	4.3710619	-1.7913532
С	-0.2387173	5.8879451	-2.0677541
Н	0.0640252	6.6616887	-2.8045936
Н	-0.5228149	6.3847404	-1.1207863
С	3.3900407	2.8824254	-3.7199196
н	3.3013942	3.2666844	-4.7575382
н	4.4479855	2.9380308	-3.3881174
С	2.5835405	0.8663603	-4.9156018
Ċ	3 3835512	0 5381876	-2 7473651
ц	A A770727	0.3616902	-2 80/72/0
11	7.7/ 5/3/	0.0010093	-2.034/340

С	2.6195556	-0.7109603	-3.2057129
Н	1.5781479	-0.6225214	-2.8175259
С	3.2209023	-1.9649984	-2.5747478
н	4.2978909	-2.0432689	-2.8359963
н	2 7143123	-2 8819769	-2 9340127
c	3 0365081	-1 8005664	-1 0406605
ы	1 0477178	1 8283654	0.8170841
	1.9477170	-1.0203034	-0.0170041
н	3.4966354	-2.0598132	-0.5101652
C	3.6287088	-0.4747380	-0.4911778
н	4.7374502	-0.5182299	-0.5611703
Н	3.3785363	-0.3743562	0.5858164
С	3.1427678	0.7835642	-1.2580492
Н	2.0601646	0.9490856	-1.0875556
Н	3.6887403	1.6845586	-0.9133703
С	2.0289505	-1.4502057	-5.6002508
н	2.6752696	-2.3450200	-5.6801295
н	1 9940751	-0 9249547	-6 5736887
N	0 7106402	-1 9340434	-5 2416973
N	-0 7663279	-3 2664421	-4 1857578
N	2 9613279	2 2246206	4 1371448
N	1 0054120	-2.3340300	4.1371440 5.5000057
	-1.9054139	-0.6933150	5.5663357
N	-2.0113069	1.5304530	5.4/8//5/
N	-1.1429181	2.88/21/1	3.8912957
Ν	0.5303762	3.7903722	2.3408657
Ν	1.9415847	5.0326889	1.0365820
Ν	2.2116826	5.3757958	-1.3622898
Ν	2.6164611	3.7001643	-2.8110403
Ν	2.9266986	1.5155029	-3.7256726
Ν	2.5970785	-0.5056881	-4.6545056
0	1.3712300	-4.1035060	-4.6387248
0	-4.2009164	-1.3420054	5.7778790
õ	0 2570275	2 1065951	5 5954628
õ	-0 2871348	5 7007948	1 2199244
0	4 3685165	4 4412126	-1 4573787
0	2 2196020	1 4124690	E 0010047
	2.3100030	1.4124009	-3.9610647
	-0.0102012	-2.5492750	1.0391049
Н	0.3251740	4.2805603	4.3834158
C	-3.7792679	-3.4027806	3.8063965
С	-1.4359362	-4.53/3148	-4.0125404
С	-3.2134674	-5.0757451	-2.3774720
С	-1.0157610	-5.4758670	-1.7184622
Н	-0.8022178	-6.4900992	-2.1383026
С	-1.9392772	-5.6416017	-0.5070185
Н	-1.9214261	-4.6887108	0.0743652
С	-1.3944666	-6.7449858	0.4012415
н	-1.3216824	-7.6942123	-0.1715429
н	-2 0537714	-6 9081616	1 2738244
c	0.0097026	-6 2756409	0.8721070
ы	0.1280124	5 4077416	1 5503052
	-0.1200124	-3.4077410	1.0000002
н	0.4885859	-7.0762734	1.4731265
C	0.9574436	-5.8616129	-0.2851918
н	1.2566009	-6.7734844	-0.8470977
н	1.8874820	-5.4254339	0.1355242
С	0.3185379	-4.8667167	-1.2903918
Н	0.1404010	-3.8765521	-0.8179994
Н	0.9827026	-4.7178042	-2.1650942
С	-4.4788915	-5.8159915	-0.3872299
н	-5.3114128	-5.7791635	-1.1132094
н	-4.5172466	-6.7558344	0.1928341
С	-4.0795450	-4.8726554	1.8564232
С	-4.4888204	-3.3282151	0.1616919
Ĥ	-3.4695871	-3.1682439	-0.2665441
С	-4 0127293	-1 1901033	1 3840902
-			

Н	-2.9724856	-1.2080123	1.0027104
Н	-4.0043555	-0.6733556	2.3618663
С	-4.9368992	-0.4561803	0.3806739
Н	-4.7612826	-3.1276681	4.2488968
Н	-4.5464770	0.5671718	0.1974019
Н	-5.9414354	-0.3413363	0.8441480
С	-5.0808874	-1.2100671	-0.9663479
Н	-3.4451977	-4.3727754	4.2338054
Н	-5.8148554	-0.6858255	-1.6129818
Н	-4.1062900	-1.1793087	-1.4944430
С	-5.4930813	-2.6986155	-0.8035981
Н	-6.5172038	-2.7809605	-0.3806675
Н	-5.4733770	-3.2108555	-1.7845211
Н	-0.7227031	-5.3347865	-4.3078546
Ν	-1.8787942	-4.7699580	-2.6545731
Ν	-3.2454800	-5.7635552	-1.1567858
Ν	-4.6112806	-4.7272989	0.5685797
Ν	-3.8750153	-3.5884331	2.3750228
0	-4.1777343	-4.7941185	-3.0814498
0	-3.8406541	-5.9276587	2.4311605
0	-0.5581980	1.3528589	1.2616710
0	-0.7600017	0.2871222	-0.7071232
Н	-0.0649247	2.2083445	-0.5456925
С	-0.4596229	1.2708770	-0.0689119
Н	-0.2434531	2.2525648	1.6032413

cycHC[8]-HCOOH-outside

С	0.4504757	-3.1054048	-5.2159747
С	-0.6325191	-1.0419227	-5.1903072
Н	-0.2882911	-0.6137400	-4.2175997
С	-1.6479368	-2.1511966	-4.8874935
Н	-2.1854406	-2.4012848	-5.8361534
С	-2.6919003	-1.6667212	-3.8823627
Н	-2.1880428	-1.3749349	-2.9360171
Н	-3.4190237	-2.4694804	-3.6493394
С	-3.4080159	-0.4526909	-4.5288455
Н	-4.0114851	-0.8217784	-5.3864119
Н	-4.1226363	-0.0081627	-3.8045347
С	-2.4302560	0.6378722	-5.0386665
Н	-1.9443030	1.1204867	-4.1637423
Н	-2.9986969	1.4310201	-5.5669133
С	-1.3116030	0.0872910	-5.9652047
Н	-1.7425737	-0.3120239	-6.9077962
Н	-0.5931170	0.8887356	-6.2223085
С	-4.7183904	-2.8121889	1.4164283
С	-3.5601160	-1.1486530	4.9499476
С	-1.6545877	-2.3547494	4.3746972
Н	-1.5365669	-3.0453193	5.2464301
С	-1.2431866	-0.9462811	4.8230550
Н	-1.1227829	-0.3136224	3.9096134
С	0.1135869	-0.9956079	5.5251007
Н	0.0578883	-1.6798016	6.3984434
Н	0.4159124	0.0052813	5.8880352
С	1.1277042	-1.5256468	4.4759320
Н	1.2268321	-0.7605513	3.6761342
Н	2.1296420	-1.6315360	4.9401900
С	0.7051720	-2.8732962	3.8349106
Н	0.7632336	-3.6712151	4.6071652
н	1.4236637	-3.1504678	3.0358395
С	-0.7365964	-2.8577892	3.2617168
н	-0.8099186	-2.1814173	2.3834668

н	-1 0354040	-3 8734511	2 9350519
<u> </u>	0 5770650	0 7747740	6 1700700
	-2.5775055	0.7747719	0.1700709
н	-3.6257676	0.8533181	6.5126424
Н	-1.8894668	0.8348129	7.0335988
С	-0 9761046	2 4647611	5 3117732
č	2 0562002	2.0065122	2 0002072
	-2.0002903	2.0003133	3.9693073
Н	-2.5045790	1.2638046	3.3198099
С	-2.1758934	3.3872027	3.5436009
н	-2 7056240	4 2424556	4 0320623
~	-2.7030240	9.5700400	9.0020020
C	-2.3008548	3.5720199	2.0326062
Н	-1.8131553	2.7194115	1.5131874
Н	-1.7985990	4.5044235	1.7055147
C	-3 8171667	3 6267205	1 7103170
	-0.0171007	0.0207200	0.0444504
н	-3.9000212	3.6756290	0.0114581
Н	-4.2266822	4.5703669	2.1315762
С	-4.6119084	2.4299046	2.2945862
н	-5 6952852	2 5733520	2 1030765
	4.04007002	1 50400020	4 7577000
н	-4.3120723	1.5043304	1./5//898
С	-4.3697203	2.2032863	3.8112385
Н	-4.7503028	3.0625411	4.4036397
н	-4 8875228	1 2871042	4 1542869
	9.0400070	4 7070070	4.0400570
н	-2.2460872	-4.7273679	-4.8490570
С	0.1055563	4.3180522	4.0761045
Н	-0.4125716	5.2982986	4.0249758
C	1 1334454	5 3016992	2 0477196
~	0.4050.400	0.0010002	2.0477100
C	2.1053482	3.4142918	2.9364054
Н	2.8535567	3.8553038	3.6994515
С	2.7498222	3.6962358	1.5477002
Н	2.2150986	3.0517600	0.8076875
C	4 2248262	3 3002231	1 5171251
	4.7000044	2 0727222	2 2972400
	4.7020344	3.0/3/332	2.2073100
н	4.6736503	3.5196132	0.5308904
С	4.2813956	1.7770245	1.8105525
Н	3.8140355	1.2438133	0.9558809
н	5 3359147	1 4384743	1 8501050
C	3 5473994	1 3735691	3 1151003
	4.440000	1.3733001	0.0050000
н	4.1130080	1.7713462	3.9853932
Н	3.5444162	0.2685893	3.2139353
С	2.0947046	1.9108416	3.1969531
н	1.4480376	1.4306356	2,4320090
н	1 6570855	1 7038621	1 10/1553
6	0.6056050	E 00040E0	0.1200770
С 	2.0200000	0.0201000	0.1360779
н	2.0978959	6.7906345	0.2181140
Н	3.7149589	5.9886036	0.0521513
С	3.0796512	4.3285036	-1.7901279
Ċ	0 8/07011	4 6532765	1 2787/58
	0.0407011	4.0002700	0.5000704
н	0.6528430	3.8462383	-0.5308704
С	0.9623581	4.0092785	-2.6634806
Н	0.9094940	4.8199267	-3.4316929
C	-0 2002972	3 0534990	-2 9240158
ы	0.1056102	0.0001000	2.0210100
	-0.1950105	2.2414525	-2.1000012
н	-0.1087408	2.5868712	-3.9238548
С	-1.4996231	3.8971631	-2.8355224
Н	-2.3829628	3.2326929	-2.9335894
н	-1 5234454	4 5887708	-3 7058947
ĉ	-1 6095074	1 7071007	-1 5207750
	-1.00002/1	4.1211301	-1.0307759
н	-2.5124942	5.3688372	-1.5/151/8
Н	-1.7466474	4.0349258	-0.6733183
С	-0.3566010	5.6009505	-1.2460592
н	-0.2360956	6.3818925	-2.0268356
н	-0 4175126	6 0080353	-0.2620749
0	-0.7710420	0.0303002	2 0000004
C	2.9085786	2.8//490/	-3.8028964
н	2.5769938	3.4110575	-4.7187294

н	4 0121734	2 9421119	-3 7187540
C	2 0002475	1 0170831	-5 1006544
ĉ	2.0002470	0.4490467	2 2040424
0	3.1690094	0.4462467	-3.2040124
н	4.2710150	0.5062434	-3.4641763
С	2.5927962	-0.8165096	-3.8365614
Н	1.6142335	-1.0315930	-3.3416579
С	3.5130722	-2.0051539	-3.5577657
н	4 5252373	-1 7956539	-3 9640458
н	3 1286051	-2 0303181	-4 0284572
C	2 5606192	2.0000101	2 01204372
	3.3000162	-2.1032020	-2.0120172
н	2.5557425	-2.4933172	-1.0/03533
н	4.2710600	-2.9708188	-1./414199
С	3.9386272	-0.8639162	-1.2547677
Н	5.0064285	-0.6206613	-1.4329907
Н	3.8303960	-1.0308399	-0.1622945
С	3.0902076	0.3615358	-1.6832063
н	2 0250754	0 2430370	-1 3849083
н	3 4844043	1 2700005	-1 2103488
C	1 7002440	1.2790995	6 2026294
	1.7063410	-1.2067269	-0.2020301
н	2.3911269	-2.0380340	-6.4635673
Н	1.5271083	-0.5711040	-7.0876408
Ν	0.4626187	-1.8178283	-5.7689803
Ν	-0.7690403	-3.2604535	-4.5495982
Ν	-3.0769592	-2.1681380	4.1228761
N	-2 4504067	-0 5198211	5 5267034
N	2.4004007	1 8003534	5 309/139
IN N	-2.2002100	1.0995554	1 4 5 7 7 7 0 0
IN	-0.8632765	3.2479112	4.15/3/62
Ν	0.9479849	4.2140902	2.9024609
Ν	2.3290153	5.0824408	1.3464111
Ν	2.2081678	5.1448514	-1.0839418
Ν	2.3373862	3.5152439	-2.6295391
Ν	2.4848792	1.5024468	-3.9303897
Ν	2.3267753	-0.3591307	-5.1989809
0	1 3387900	-3 9459085	-5 2979855
0	4 7200225	0.0400000	5 1211422
0	-4.7369233	-0.0049304	0.1011400
0	-0.1077443	2.3123300	0.1030173
0	0.3889305	6.2692683	1.9345982
0	4.3173845	4.3448849	-1.6834945
0	1.6473284	1.6931914	-6.1084389
Н	-5.7878433	-3.0062271	1.6799235
н	0.7297253	4.2703879	4.9931124
С	-3.9169533	-3.2886357	3.7582997
Ċ.	-1 3127907	-4 5716985	-4 2685873
ĉ	2 8053822	5 2185110	2 4723460
č	-2.0900022	5 2122269	1 0206250
	-0.0329774	-5.2122200	-1.9290359
н	-0.3102104	-6.2366138	-2.2403614
С	-1.4560020	-5.3404608	-0.6432019
Н	-1.5649399	-4.3214138	-0.1967818
С	-0.7054053	-6.2050217	0.3694132
н	-0.5120198	-7.2080463	-0.0676398
н	-1 2909965	-6 3358368	1 2990795
C	0.6286425	-5 4692074	0 6680959
Ц	0.0200423	4 5242200	1 2017752
	4.0400700	-4.0240005	1.2017755
н	1.2462723	-0.0778385	1.3602010
С	1.4504094	-5.1319702	-0.6027996
Н	1.8312220	-6.0773625	-1.0465601
Н	2.3388418	-4.5274025	-0.3263039
С	0.6275543	-4.3874569	-1.6854618
Н	0.3438175	-3.3701716	-1.3406107
н	1.2165159	-4,2800763	-2.6174748
С	-3 9082255	-5 9928524	-0.3426051
й	-4 7502517	-6 1783546	-1 0224/10
ц	-3 707/606	-6 8720700	0 2046006
		-0 0/00/00	U Z 240U20

С	-3.7305557	-4.8704966	1.8640335
С	-4.4177496	-3.5237266	0.0915804
Н	-3.4417914	-3.1403134	-0.2947504
С	-4.5491776	-1.3005859	1.2713080
Н	-3.5010157	-1.0680559	0.9859935
Н	-4.7636442	-0.7870812	2.2293698
С	-5.5420441	-0.8378655	0.1733812
Н	-4.9520850	-3.0383014	4.0739725
Н	-5.4007556	0.2443097	-0.0285924
Н	-6.5745282	-0.9562197	0.5686769
С	-5.4164008	-1.6406269	-1.1477825
Н	-3.5796967	-4.2103006	4.2784067
Н	-6.2071730	-1.3185814	-1.8560740
Н	-4.4419853	-1.4008434	-1.6261345
С	-5.4865999	-3.1780050	-0.9443498
Н	-6.4857128	-3.4788702	-0.5634987
Н	-5.3047628	-3.7051256	-1.9004264
Н	-0.5502063	-5.3182807	-4.5742146
Ν	-1.6413888	-4.7448240	-2.8699509
Ν	-2.7508070	-5.7499212	-1.1847940
Ν	-4.2275295	-4.8964691	0.5559162
Ν	-3.8737198	-3.5602585	2.3374657
0	-3.9255093	-5.1746481	-3.1363210
0	-3.2589940	-5.8136341	2.4885952
0	5.7409302	2.1224152	-1.9158335
0	7.1168074	0.8392889	-0.6871741
Н	6.7953396	2.8273033	-0.2914491
С	6.6015355	1.9075369	-0.9111199
н	5.3002019	3.0313354	-1.8588374

Formic Acid

5

С	-2.3734719	1.1282090	-0.1794130
0	-3.3348718	2.0806884	-0.1832355
Н	-2.8842189	2.9570272	-0.2045493
0	-1.1852089	1.3274929	-0.1987549
Н	-2.8679814	0.1254183	-0.1552168

Formic Acid + H+

4

С	-0.3831958	-0.6035850	1.5592479
0	0.8415822	-0.7845472	1.7561912
0	-0.9976457	0.1356431	0.7546027
Н	-1.0893693	-1.2499986	2.2628129

Geometries for the model system

1b

С	0.221315	0.435915	0.558093
С	1.768264	0.458084	0.598308
С	2.357888	0.097072	1.983994
С	-0.393147	-0.875367	1.108577
С	0.206016	-1.114641	2.493511
С	1.736829	-1.235886	2.400346
Ν	2.042982	-1.833999	3.698495
Ν	-0.109150	-2.329436	3.241014
С	0.946712	-2.598603	4.126160
0	0.922381	-3.360807	5.087241
С	3.030665	-0.786542	8.579848
С	4.027042	0.357862	8.886201

С	5.310543	0.309386	8.019290
С	2.691129	-0.927099	7.075792
С	4.018580	-1.030333	6.325262
С	4.872023	0.228221	6.558107
Ν	5.859621	0.077304	5.492367
Ν	4.051914	-1.116927	4.866482
С	3.389154	-2.168239	4.119797
С	5.246034	-0.548294	4.395891
0	5.671227	-0.597514	3.246228
Н	-0.168719	1.289294	1.161722
Н	-0.129363	0.609445	-0.483774
Н	2.134448	1.459693	0.281581
Н	2.161130	-0.265895	-0.153866
Н	3.466680	0.024256	1.933595
Н	2.111540	0.880024	2.737461
Н	-1.502371	-0.787676	1.157165
Н	-0.159862	-1.737132	0.442862
Н	-0.021171	-0.212513	3.122716
Н	1.974652	-1.984004	1.596588
Н	2.096908	-0.633811	9.165248
Н	3.463855	-1.750050	8.937130
Н	3.519455	1.336134	8.711761
Н	4.299289	0.339418	9.964980
Н	5.932860	1.213769	8.206043
Н	5.934028	-0.577369	8.275789
Н	2.058904	-1.824305	6.896842
Н	2.119739	-0.042006	6.712701
Н	4.577252	-1.908885	6.748646
Н	3.307906	-3.085386	4.745719
Н	4.025733	-2.374715	3.229490
Н	-1.050712	-2.485040	3.612375
Н	4.220689	1.118182	6.348566
Н	6.507069	0.837757	5.266475

1b-protonated

С	-0.776369	-4.268688	2.900418
С	0.676962	-4.333704	2.375582
С	1.519762	-3.080351	2.727136
С	-0.877632	-3.923782	4.407201
С	-0.068823	-2.648228	4.632791
С	1.400393	-2.873591	4.234810
Ν	2.040703	-1.717569	4.900171
Ν	0.098440	-2.100790	5.979585
С	1.278715	-1.405329	6.080221
0	1.674692	-0.668309	6.973406
С	3.789287	3.078276	6.114222
С	4.800699	3.807647	5.201931
С	5.852430	2.860733	4.572848
С	3.098924	1.865893	5.436667
С	4.214217	0.987993	4.885838
С	5.088606	1.737368	3.870722
Ν	5.838124	0.630847	3.262311
Ν	3.883471	-0.285916	4.140970
С	3.441959	-1.528529	4.954349
С	5.206853	-0.559284	3.285080
0	5.441664	-1.648325	2.837414
Н	-1.340997	-3.501911	2.320964
Н	-1.283925	-5.237686	2.704026
Н	0.671191	-4.479876	1.273787
Н	1.183418	-5.229801	2.803354
Н	2.577008	-3.235059	2.415280

Н	1.136470	-2.183301	2.186274
Н	-1.942225	-3.779389	4.695227
Н	-0.473870	-4.748569	5.037369
Н	-0.490338	-1.853060	3.964211
Н	1.754965	-3.805894	4.743680
Н	3.010909	3.791714	6.459109
Н	4.307168	2.721037	7.034033
Н	4.254065	4.330228	4.382986
Н	5.321019	4.601386	5.779248
Н	6.490236	3.416753	3.850984
Н	6.524371	2.433351	5.351729
Н	2.483785	1.300716	6.169391
Н	2.432975	2.205595	4.608987
Н	4.868539	0.650284	5.721099
Н	3.780671	-1.337818	5.994380
Н	3.995010	-2.373793	4.493299
Н	-0.684937	-1.841690	6.585321
Н	4.435199	2.200134	3.089967
н	6.687134	0.748351	2.698259
Н	3.112473	-0.111077	3.461977

TS2a

С	0.532595	-3.466343	5.916669
С	1.618821	-2.371454	5.791963
С	1.536502	-1.544425	4.481330
С	-0.907850	-2.949314	5.668993
С	-0.891237	-2.228624	4.321712
С	0.097003	-1.049750	4.381378
Ν	-0.368807	-0.208208	3.252687
Ν	-2.096776	-1.564927	3.814648
С	-1.823657	-0.498292	3.011805
0	-2.506360	0.161907	2.265903
С	0.731413	0.852949	-2.960894
С	2.114110	1.423159	-3.355943
С	2.837668	2.152741	-2.197583
С	0.746495	-0.012382	-1.670919
С	1.438156	0.811337	-0.589596
С	2.872869	1.179511	-1.022941
Ν	3.428866	1.582201	0.270982
Ν	1.623718	0.280935	0.789456
С	0.236881	0.782337	2.647602
С	2.866583	0.873389	1.296985
0	3.241166	0.761131	2.454785
Н	0.746811	-4.283102	5.188630
Н	0.591212	-3.931692	6.923921
Н	2.626054	-2.834406	5.866491
Н	1.537366	-1.671039	6.655180
Н	2.264196	-0.706335	4.499618
Н	1.786261	-2.175971	3.598368
Н	-1.624127	-3.799872	5.660973
Н	-1.230590	-2.251241	6.474585
Н	-0.535010	-2.958282	3.552145
Н	-0.141400	-0.458532	5.297615
Н	0.324052	0.252289	-3.802346
Н	0.018244	1.695810	-2.809017
Н	2.767262	0.594757	-3.716517
Н	1.995470	2.115201	-4.217548
Н	3.864253	2.445757	-2.510733
Н	2.300150	3.084467	-1.908661
Н	-0.293472	-0.27890	-1.380225
Н	1.301764	-0.963796	-1.845167

Н	0.879054	1.769016	-0.468366
Н	-0.394748	1.400588	1.986073
Н	1.221117	1.108170	3.024753
Н	-3.018886	-2.009737	3.768543
н	3.396872	0.251176	-1.367772
Н	4.360857	1.988807	0.395197
Н	1.630083	-0.747085	0.874810

TS2b

50

С	1.354362	0.256773	-0.246550
С	2.484114	-0.547007	0.444554
С	2.353515	-0.597409	1.986810
С	-0.074258	-0.159798	0.191695
С	-0.099928	-0.126843	1.718919
С	0.945872	-1.114657	2.258104
Ν	0.449706	-1.356163	3.626260
Ν	-1.296265	-0.547825	2.452571
С	-0.970547	-1.066979	3.685063
0	-1.675513	-1.286745	4.652413
С	4.946443	-2.509246	7.495184
С	5.923313	-1.312747	7.398728
С	5.600336	-0.340172	6.235488
С	3.454110	-2.086934	7.527186
С	3.263143	-1.191020	6.312558
С	4.136583	0.070141	6.395328
Ν	3.480578	0.897351	5.379184
Ν	1.918577	-0.668558	5.933737
С	1.089362	-1.975734	4.614138
С	2.131719	0.639219	5.306993
0	1.242374	1.304380	4.806576
Н	1.487874	1.340659	-0.016615
Н	1.447517	0.161215	-1.351206
Н	3.469068	-0.113031	0.163279
Н	2.484396	-1.594807	0.066578
Н	3.114458	-1.274889	2.429596
Н	2.485381	0.418180	2.425200
Н	-0.825482	0.536717	-0.245180
Н	-0.319824	-1.184960	-0.166919
Н	0.180656	0.903779	2.051980
Н	0.858559	-2.100001	1.745547
Н	5.187839	-3.116770	8.395013

8 References

¹ Á.L. Fuentes de Arriba, D.G. Seidedos, L. Simón, V. Alcázar, C. Raposo, J.R. Morán, J. Org. Chem., 2010, **75**, 8303.

² J.F. Larrow, E.N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C.M. Zepp, J. Org. Chem., 1994, 59, 1939

³ M. Fomitšenko, E. Shmatova, M. Öeren, I. Järving, R. Aav, *Supramol. Chem.*, 2014, 26, 698.

⁴ L.M. Daniels, Acta Cryst., 2011, A67, C143.

⁵ W. Kabsch, Acta Cryst., 2010, D66, 125.

⁶ G.M. Sheldrick, Acta Cryst., 2008, A64, 112.

⁷ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.

⁸ P. v.d. Sluis, A.L. Spek, Acta Cryst., 1990, A46, 194.

⁹ A.L. Spek, Acta Cryst., 2009, D65, 148.

¹⁰ R. Aav, E. Shmatova, I. Reile, M. Borissova, F. Topic, K. Rissanen, Org. Lett., 2013, 15, 3786.

¹¹ R. Rymden, J. Carlfors, P. Stilbs, J. Incl. Phenom., 1983, 1, 159.

¹² K.-C. Chung, H.-Y. Yu, S. Ahn, Bull. Korean Chem. Soc., 2011, 32, 1970.

¹³ H. Jacobson, W. H. Stockmayer, J. Chem. Phys., 1950, 18, 1600.

¹⁴ S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, *Angew. Chem., Int. Ed.*, 2002, **41**, 898.

¹⁵ M. Öeren, E. Shmatova, T. Tamm, R. Aav, *Phys. Chem. Chem. Phys.*, 2014, 16, 19198.

¹⁶ S. Grimme, J. Comput. Chem., 2006, **27**, 1787-1799; M. Sundararajan, J. Phys. Chem. B, 2013, **117**, 13409.

¹⁷ F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297.

¹⁸ J. Ho, A. Klamt, M.L. Coote, J. Phys. Chem. A, 2010, **114**, 13442.

¹⁹ O. Treutler, R. Ahlrichs, *J. Chem. Phys.*, 1995, **102**,346; M. Von Arnim, R. Ahlrichs, *J. Comput. Chem.*, 1998, **19**, 1746; R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, *Chem. Phys. Lett.*, 1989, **162**, 165; K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.*, 1997, **97**, 119.

²⁰ Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

²¹ P. A. M. Dirac, *Proc. R. Soc. A*, 1929, **123**, 714; J. C. Slater, *Phys. Rev.*, 1951, **81**, 385; S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200; A. D. Becke, *Phys. Rev. A: At., Mol., Opt. Phys.*, 1988, **38**, 3098; J. P. Perdew, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1986, **33**, 8822.