Supporting Information

A chiral phosphoric acid catalyst for asymmetric construction of 1,3-dioxanes

Akira Matsumoto, Keisuke Asano,* and Seijiro Matsubara*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan

Contents

Instrumentation and Chemicals	S2
Experimental Procedure	S3
Table S1	S9
Characterization Data of Products	S10
NMR Spectra (¹ H, ¹³ C) of Products	S23
HPLC Chromatogram Profiles	S63
ORTEP Drawings of 3ef	S80
ORTEP Drawing of dihydro-3ef	S83

Instrumentation and Chemicals

¹H and ¹³C Nuclear magnetic resonance spectra were taken on a Varian UNITY INOVA 500 (¹H, 500 MHz; ¹³C, 125.7 MHz) spectrometer using tetramethylsilane as an internal standard for ¹H NMR ($\delta = 0$ ppm) and CDCl₃ as an internal standard for ¹³C NMR ($\delta = 77.0$ ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet,br = broad, m = multiplet), coupling constants (Hz), integration. 19 F NMR spectra were measured on a Varian Mercury 200 (¹⁹F, 188 MHz) spectrometer with hexafluorobenzene as an internal standard ($\delta = 0$ ppm). Mass spectra were recorded on a SHIMADZU GCMS-QP2010 Plus (EI) and a Thermo Scientific Exactive (ESI, APCI) spectrometers. High performance liquid chromatography (HPLC) was performed with a SHIMADZU Prominence. Infrared (IR) spectra were determined on a SHIMADZU IR Affinity-1 spectrometer. Melting points were determined using a YANAKO MP-500D. Optical rotations were measured on a HORIBA SEPA-200. X-ray data were taken on a Rigaku XtaLAB mini diffractometer equipped with a CCD detector. TLC analyses were performed by means of Merck Kieselgel 60 F₂₅₄ (0.25 mm) Plates. Visualization was accomplished with UV light (254 nm) and/or such as an aqueous alkaline KMnO₄ solution followed by heating.

Flash column chromatography was carried out using Kanto Chemical silica gel (spherical, $40-50 \mu m$). Unless otherwise noted, commercially available reagents were used without purification.

Experimental Procedure

General procedure for asymmetric construction of 1,3-dioxane 3

To a 5-mL vial, we sequentially added δ -hydroxy- α , β -unsaturated ketones **1** (0.10 mmol), cyclohexane (2.0 mL), aldehyde **2** (0.20 mmol) and phosphoric acid catalyst **4a** (0.005 mmol). The mixture was stirred in an oil bath maintained at 35 °C for 24 h. The reaction mixture was subsequently diluted with hexane/EtOAc (v/v = 1/1), passed through a short silica gel pad to remove **4a**, and concentrated in vacuo. Purification of the reaction mixture by flash silica gel column chromatography using hexane/EtOAc (v/v = 3/1) as an eluent afforded the corresponding 1,3-dioxanes **3**.

Racemic compounds were prepared using HBF₄ or (\pm) -1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate as a catalyst.

General procedure for the preparation of δ -hydroxy- α , β -unsaturated ketones 1

To a solution of 1,3-propanediol (2.5 g, 33 mmol) in THF (80 mL) was added *n*-BuLi (20 mL, 1.63 M in hexane, 33 mmol) dropwise at 0 °C. After the mixture was stirred for 1 h, a solution of *tert*-butyldimethylsilyl chloride (4.5 g, 30 mmol) in THF (10 mL) was added, and the reaction was allowed to warm to ambient temperature. After being stirred for additional 23 h, the reaction was quenched with H₂O (10 mL), and the mixture was subsequently extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 5/1) as an eluent gave 3-(*tert*-butyldimethylsilyloxy)-propan-1-ol as a colorless oil in 94% yield: CAS RN [73842-99-6]. ¹H NMR (CDCl₃) δ 3.84 (t, *J* = 5.0 Hz, 2H), 3.80 (t, *J* = 5.5 Hz, 2H), 1.78 (tt, *J* = 5.5, 5.0 Hz, 2H), 0.90 (s, 9H), 0.08 (s, 6H). ¹³C NMR (CDCl₃) δ 63.0, 62.5, 34.2, 25.9, 18.2, -5.5.

3-(tert-Butyldimethylsilyloxy) propan-1-ol (5.7 g, 30 mmol) was dissolved in EtOAc (100 mL, 0.30 M), and IBX (25 g, 90 mmol) was added. The resulting suspension was stirred vigorously in an oil bath maintained at 80 °C for 11 h. Subsequently, the reaction was cooled to ambient temperature and then filtered. The filter cake was washed with EtOAc. and the combined filtrates were concentrated to vield 3-(tert-butyldimethylsilyloxy)propanal as a colorless oil in 88 % yield, which was used for the next step without further purification: CAS RN [87184-81-4]. ¹H NMR (CDCl₃) δ 9.80 (t, J = 2,0 Hz, 1H), 3.99 (t, J = 6.0 Hz, 2H), 2.60 (dt, J = 6.0, 2.0 Hz, 2H), 0.88 (s, 9H), 0.06 (s, 6H). ¹³C NMR (CDCl₃) δ 202.2, 57.4, 46.5, 25.7, 18.2, -5.5.

3-(tert-Butyldimethylsilyloxy)propanal (0.90 g, 4.8 mmol) and a stabilized ylide (5.26 mmol) were dissolved in THF (20 mL), and the solution was refluxed in an oil bath at 100 °C for hours. After the solution was cooled to ambient temperature, solvents were removed in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 20/1)as an eluent gave the corresponding (*E*)-5-(*tert*-butyldimethylsilyloxy)pent-2-en-1-one. Subsequently, it was dissolved in CH₃CN (7.7 mL), and 46–48% aqueous HF (380 µL) was added to the solution. After being stirred for 15 min, the reaction was quenched with saturated aqueous NaHCO₃, and the mixture was subsequently extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 1/1) as an eluent gave the corresponding δ -hydroxy- α , β -unsaturated ketone **1**.

Ylides commercially unavailable were prepared by the literature procedure.¹ The characterization results of **1** are as below.

(E)-5-Hydroxy-1-phenylpent-2-en-1-one (1a): CAS RN [946523-96-2].

Colorless oil; 75% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 7.94 (m, 2H), 7.56 (m, 1H), 7.47 (m, 2H), 7.05 (dt, J = 15.0, 7.0 Hz, 1H), 7.00 (dt, J = 15.0, 1.0 Hz, 1H), 3.85 (t, J = 6.0 Hz, 2H), 2.60 (m, 2H), 1.61 (br s, 1H). ¹³C NMR (CDCl₃) δ 190.5, 145.5, 137.7, 132.8, 128.6, 128.0, 61.1, 36.0.

(*E*)-5-Hydroxy-1-(4-methoxyphenyl)pent-2-en-1-one (1b): CAS RN [1005326-88-4].

Colorless oil; 76% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 7.96–7.94 (m, 2H), 7.05–6.98 (m, 2H), 6.95–6.92 (m, 2H), 3.87 (s, 3H), 3.83 (t, *J* = 6.5 Hz, 2H), 2.58 (m, 2H), 1.88 (br s, 1H). ¹³C NMR (CDCl₃) δ 188.8, 163.4, 144.5, 130.9, 130.5, 127.7, 113.8, 61.1, 55.4, 36.0.

(E)-5-Hydroxy-1-(4-(trifluoromethyl)phenyl)pent-2-en-1-one (1c).

Pale yellow oil; 32% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 8.02 (dd, J= 8.0, 1.0 Hz, 2H), 7.74 (dd, J= 8.0, 1.0 Hz, 2H), 7.10 (dt, J = 15.5, 7.0 Hz, 1H), 6.98 (dt, J= 15.5, 1.5 Hz, 1H), 3.87 (t, J= 6.0 Hz, 2H), 2.62 (m, 2H), 1.58 (br s, 1H). ¹³C NMR (CDCl₃) δ 189.6, 147.1, 134.0 (q, J= 33.1 Hz), 128.8, 128.8, 126.1, 125.6 (q, J= 3.9 Hz), 123.6 (q, J= 272.6 Hz), 61.0, 36.0. ¹⁹F NMR (CDCl₃) δ 98.7. TLC: Rf 0.38 (hexane/EtOAc = 1:1). IR (neat): 3381, 2937, 2888, 1672, 1624, 1616, 1411, 1326, 1229, 1169, 1128, 1068, 1016 cm⁻¹. HRMS Calcd for C₁₂H₁₀F₃O₂: [M–H]⁻, 243.0638. Found: m/z 243.0640.

(E)-5-Hydroxy-1-(p-tolyl)pent-2-en-1-one (1d).

Pale yellow oil; 37% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 7.85 (m, 2H), 7.27 (m, 2H), 7.02 (m, 2H), 3.84 (dt, *J* = 6.5, 1.0 Hz, 2H), 2.59 (ddt, *J* = 7.0, 1.0, 6.5 Hz, 2H), 2.42 (s, 3H), 1.68 (br s, 1H). ¹³C NMR (CDCl₃) δ 190.0, 144.9, 143.7, 135.1, 129.3, 128.7, 128.0, 61.1, 36.0, 21.6. TLC: R_f 0.25 (hexane/EtOAc = 1:1). IR (neat): 3421, 2923, 2883, 1669, 1617, 1605, 1350, 1289, 1182, 1040 cm⁻¹. HRMS Calcd for C₁₂H₁₅O₂: [M+H]⁺, 191.1067. Found: *m/z* 191.1061.

(E)-5-Hydroxy-1-(naphthalen-2-yl)pent-2-en-1-one (1e).

White solid; 46% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 8.43 (s, 1H), 8.00 (dd, J = 8.0, 2.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.58 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.53 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.16 (d, J = 15.5 Hz, 1H), 7.11 (dt, J = 15.5, 5.5 Hz, 1H), 3.87 (t, J = 5.5 Hz, 2H), 2.63 (m 2H), 2.30 (br s, 1H). ¹³C NMR (CDCl₃) δ 190.4, 145.7, 135.4, 134.9, 132.4, 130.1, 129.4, 128.4, 128.3, 127.8, 127.7, 126.7, 124.4, 61.0, 36.6. Mp. 69.7–70.5 °C. TLC: $R_f 0.20$ (hexane/EtOAc = 1:1). IR (KBr): 3283, 3270, 3267, 3055, 2892, 1665, 1620, 1610, 1460, 1424, 1370, 1292, 1289, 1193, 1125, 1067, 1044, 1012, 970 cm⁻¹. HRMS Calcd for $C_{15}H_{15}O_2$: $[M+H]^+$, 227.1067. Found: *m/z* 227.1059.

(E)-1-(4-Bromophenyl)-5-hydroxypent-2-en-1-one (1f).

Pale yellow oil; 23% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 7.80 (m, 2H), 7.60 (m, 2H), 7.07 (dt, J = 15.5, 7.0 Hz, 1H), 6.95 (dt, J = 15.5, 1.5 Hz, 1H), 3.85 (t, J = 6.0 Hz, 2H), 2.60 (ddt, J = 7.0, 1.0, 6.0 Hz, 2H), 1.60 (br s, 1H). ¹³C NMR (CDCl₃) δ 189.3, 146.2, 136.3, 131.9, 130.1, 127.9, 127.4, 61.0, 36.0. TLC: R_f 0.22 (hexane/EtOAc = 1:1). IR (neat): 3431, 3089, 3061, 2933, 2883, 1715, 1662, 1622, 1586, 1566, 1484, 1397, 1350, 1288, 1225, 1178, 1105, 1072, 1039, 1009, 976, 823, 665 cm⁻¹. HRMS Calcd for C₁₁H₁₂BrO₂: [M+H]⁺, 255.0015. Found: *m/z* 255.0008.

(E)-7-Hydroxy-1-phenylhept-4-en-3-one (1g).

Pale yellow oil; 42% yield (for last 2 steps).

¹H NMR (CDCl₃) δ 7.28 (m, 2H), 7.19 (m, 3H), 6.81 (dt, J = 16.0, 7.0 Hz, 1H), 6.19 (dt, J = 16.0, 1.5 Hz, 1H), 3.77 (t, J = 6.0 Hz, 2H), 2.94 (m, 2H), 2.89 (m, 2H), 2.47 (m, 2H). ¹³C NMR (CDCl₃) δ 199.3, 143.4, 141.2, 132.3, 128.5, 128.4, 126.1, 61.0, 41.7, 35.6, 30.0. TLC: R_f 0.20 (hexane/EtOAc = 1:1). IR (neat): 3416, 3062, 3027, 2928, 2887, 1691, 1660, 1624, 1604, 1497, 1453, 1369, 1047, 700 cm⁻¹. HRMS Calcd for C₁₃H₁₇O₂: [M+H]⁺, 205.1223. Found: m/z 205.1223.

Procedure for preparation of $1h^2$

To a stirred mixture of diisopropylamine (10.1 g, 100 mmol) in Et_2O (100 mL) at 0 °C was added trifluoroacetic acid dropwise (7.7 mL, 100 mmol). The reaction mixture was stirred at 0 °C for additional 5 min, and the newly formed crystals were filtered.

The filter cake was washed with Et₂O, and the combined filtrates were concentrated in vacuo to afford pure diisopropylammoium 2,2,2-trifluoroacetate as a white solid in 85 % yield. Next, to a mixture of 3-decen-2-one (3.1 g, 20 mmol) and paraformaldehyde (1.2 g, 40 mmol) in dry THF (20 mL) was added diisopropylammoium 2,2,2-trifluoroacetate (4.3 g, 20 mmol) and trifluoroacetic acid (0.31 mL, 4.0 mmol). The reaction mixture was stirred under reflux for 2 h, and then cooled down to ambient temperature, and the second addition of paraformaldehyde (1.2 g, 40 mmol) was performed. The reaction mixture was stirred under reflux for additional 6 h. The reaction mixture was cooled down to ambient temperature and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 20/1) as an eluent gave undeca-1,4-dien-3-one as a pale yellow oil in 31 % yield; CAS RN [52353-97-6] ¹H NMR (CDCl₃) δ 6.95 (dt, *J* = 15.5, 7.0 Hz, 1H), 6.61 (dd, *J* = 16.5, 10.5 Hz, 1H), 6.36 (dt, *J* = 15.5, 1.0 Hz, 1H), 6.28 (dd, *J* = 16.5, 1.0 Hz, 1H), 5.81 (dd, *J* = 10.5, 1.0 Hz, 1H), 2.25 (m, 2H), 1.48 (m, 2H), 1.35–1.25 (m, 6H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 190.1, 149.5, 135.1, 128.6, 128.4, 33.0, 31.8, 29.1, 28.3, 22.8, 14.3.

Hoveyda–Grubbs catalyst 2nd generation (47 mg, 0.076 mmol) was placed in a 30 mL round-bottom flask inside a glovebox. The flask was taken outside the glovebox and immediately filled with argon gas. Pure CH_2Cl_2 (5 mL), a solution of undeca-1,4-dien-3-one (1.3 g, 7.6 mmol) in CH_2Cl_2 (5 mL), and a solution of 3-buten-1-ol (0.11 g, 1.5 mmol) in CH_2Cl_2 (5 mL) were sequentially added to the flask. After the resulting mixture was stirred at ambient temperature for 10 h, the solvent was removed in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 3/1) as an eluent gave (3*E*,6*E*)-1-hydroxytrideca-3,6-dien-5-one (**1h**) in 70 % yield.

(3E,6E)-1-Hydroxytrideca-3,6-dien-5-one (1h)

ÒН

¹H NMR (CDCl₃) δ 6.93 (dt, J = 15.5, 7.0 Hz, 1H), 6.89 (dt, J = 15.5, 7.0 Hz, 1H), 6.45 (dt, J = 15.5, 1.5 Hz, 1H), 6.32 (dt, J = 15.5, 1.5 Hz, 1H), 3.80 (dt, J = 5.5, 6.0 Hz, 2H), 2.51 (m 2H), 2.24 (m, 2H), 1.47 (m, 2H), 1.35–1.24 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 189.3, 148.7, 143.4, 130.6, 128.6, 61.1, 35.8, 32.7, 31.6, 28.9, 28.1, 22.5, 14.1. TLC: R_f 0.29 (hexane/EtOAc = 1:1). IR (neat): 3417, 2956, 2928, 2858, 1667, 1636, 1614, 1466, 1457, 1420, 1351, 1305, 1293, 1212, 1050, 980 cm⁻¹. HRMS Calcd for C₁₃H₂₃O₂: [M+H]⁺, 211.1693. Found: m/z 211.1690.

All aldehydes 2 listed in this manuscript were commercially available.

_		-			<i>n</i> -C ₅ H ₁₁	
O II (A	+	0 ↓	4a (5 mol %)) 	0 0 0	
Ph -	OH <i>n</i> -0	C₅H ₁₁ ∕ `H	solvent (x M)) Ph ²		
1a 2f		2f	1 0,2411		3af	
entry	solvent	T (°C)	<i>x</i> (M)	yield (%) ^{b,c}	ee (%)	
1	benzene	25	0.5	74	86	
2	toluene	25	0.5	83	87	
3	hexane	25	0.5	80	83	
4	<i>c</i> -hexane	25	0.5	92	85	
5	EtOAc	25	0.5	29	81	
6	MeCN	25	0.5	<5	58	
7	CH_2Cl_2	25	0.5	76	68	
8	Et ₂ O	25	0.5	40	82	
9	CPME ^d	25	0.5	18	86	
10 ^e	toluene	25	0.5	40	84	
11	toluene	0	0.5	22	81	
12	toluene	10	0.5	62	81	
13	toluene	20	0.5	80	85	
14	toluene	35	0.5	81	86	
15	toluene	40	0.5	87	85	
16	toluene	50	0.5	76	86	
17	toluene	35	0.125	63	90	
18	toluene	35	0.05	38	93	
19	<i>c</i> -hexane	35	0.05	75	90	
20^{f}	<i>c</i> -hexane	35	0.05	94	91	

Table S1. Screening of reaction conditions^a

^aReactions were run using **1a** (0.1 mmol), **2f** (0.12 mmol), and **4a** (0.005 mmol) in the solvent (0.2 mL). ^bThe diastereomeric ratio was $\geq 20:1$ in all cases. ^cIsolated yields. ^dCPME = cyclopentyl methyl ether. ^eReaction was run using 5Å molecular sieves (50 mg). ^fReactions were run using **1a** (0.1 mmol), **2f** (0.20 mmol), and the catalyst (0.005 mmol) in *c*-hexane (2 mL).

Characterization Data of Products

2-(2-Cyclohexyl-1,3-dioxan-4-yl)-1-phenylethanone (3aa).

Yield: 56%, dr = >20:1, 80% *ee*, white solid. $[\alpha]_D^{23}$ +5.5 (*c* 0.40, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.97 (m, 2H), 7.57 (m, 1H), 7.46 (m, 2H), 4.28 (d, *J* = 5.5 Hz, 1H), 4.26 (m, 1H), 4.12 (ddd, *J* = 11.5, 4.5, 1.0 Hz, 1H), 3.78 (ddd, *J* = 12.0, 12.0, 3.0 Hz, 1H), 3.37 (dd, *J* = 16.0, 6.5 Hz, 1H), 2.99 (dd, *J* = 16.0, 6.5 Hz, 1H), 1.76–1.64 (m, 6H), 1.61 (m, 1H), 1.47 (m, 1H), 1.22–1.05 (m, 3H), 1.01 (dd, *J* = 12.5, 3.5 Hz, 1H), 0.96 (dd, *J* = 12.5, 3.5 Hz, 1H). ¹³C NMR (CDCl₃) δ 198.0, 137.2, 133.2, 128.5, 128.3, 105.2, 73.2, 66.5, 44.9, 42.4, 31.7, 27.4, 27.3, 26.4, 25.77, 25.75. Mp. 60.5–61.4 °C. TLC: R_f 0.59 (hexane/EtOAc = 3:1). IR (KBr): 2928, 2850, 1686, 1595, 1451, 1378, 1249, 1142, 1098, 1071, 965, 754, 689 cm⁻¹. HRMS Calcd for C₁₈H₂₅O₃: [M+H]⁺, 289.1798. Found: *m*/*z* 289.1791. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, $\lambda = 254$ nm, 40 °C): *t_{minor}* = 7.5 min, *t_{major}* = 12.3 min.

2-(2-Isopropyl-1,3-dioxan-4-yl)-1-phenylethanone (3ab).

Yield: 57%, dr = >20:1, 79% *ee*, colorless oil. $[\alpha]_D^{23}$ +4.8 (*c* 0.27, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.98 (m, 2H), 7.57 (m, 1H), 7.47 (m, 2H), 4.27 (m, 1H), 4.26 (d, *J* = 5.5 Hz, 1H), 4.13 (ddd, *J* = 11.5, 4.5, 1.0 Hz, 1H), 3.79 (ddd, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.39 (dd, *J* = 16.0, 6.5 Hz, 1H), 2.98 (dd, *J* = 16.0, 6.0 Hz, 1H), 1.73(m, 2H), 1.63 (m, 1H), 0.88 (d, *J* = 6.5 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (CDCl₃) δ 198.1, 137.2, 133.2, 128.5, 128.3, 73.3, 66.4, 44.8, 32.8, 31.6, 17.1, 17.0. TLC: R_f 0.48 (hexane/EtOAc = 3:1). IR (neat): 2963, 2926, 2874, 2854, 1684, 1598, 1474, 1450, 1366, 1289, 1246, 1213, 1182, 1137, 1119, 1039, 986, 963, 753, 691 cm⁻¹. HRMS Calcd for C₁₅H₂₁O₃: [M+H]⁺, 249.1485. Found: *m*/*z* 249.1476. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 7.5 min, *t_{major}* = 10.5 min.

2-(2-Isobutyl-1,3-dioxan-4-yl)-1-phenylethanone (3ac).

Yield: 64%, dr = >20:1, 71% *ee*, colorless oil. $[α]_D^{23}$ +9.1 (*c* 0.33, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.96 (m, 2H), 7.57 (m, 1H), 7.52 (m, 2H), 4.61 (t, *J* = 5.5 Hz, 1H), 4.31 (m, 1H), 4.12 (ddd, *J* = 11.5, 4.5, 1.5 Hz, 1H), 3.82 (ddd, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.39 (dd, *J* = 16.5, 6.5 Hz, 1H), 3.01 (dd, *J* = 16.5, 6.5 Hz, 1H), 1.78–1.69 (m, 2H), 1.66 (m, 1H), 1.46 (m, 2H), 0.87 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (CDCl₃) δ 197.8, 137.1, 133.2, 128.6, 128.2, 73.1, 66.4, 44.8, 43.8, 31.5, 23.8, 22.8, 22.7. TLC: R_f 0.59 (hexane/EtOAc = 3:1). IR (neat): 2957, 2927, 2869, 2857, 1685, 1449, 1369, 1126, 979, 690 cm⁻¹. HRMS Calcd for C₁₆H₂₃O₃: [M+H]⁺, 263.1642. Found: *m*/*z* 263.1632. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 10.5 min, *t_{major}* = 16.7 min.

2-(2-tert-Butyl-1,3-dioxan-4-yl)-1-phenylethanone (3ad).

Yield: 33%, dr = >20:1, 11% *ee*, pale yellow oil. $[\alpha]_D^{23}$ -4.3 (*c* 0.40, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.99 (m, 2H), 7.57 (m, 1H), 7.47 (m, 2H), 4.23 (m, 1H), 4.12 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 4.12 (s, 1H), 3.77 (dt, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.37 (dd, *J* = 16.0, 7.0 Hz, 1H), 2.93 (dd, *J* = 16.0, 6.0 Hz, 1H), 1.71 (m, 1H), 1.60 (m, 1H), 0.82 (s, 9H). ¹³C NMR (CDCl₃) δ 198.6, 137.4, 133.1, 128.5, 128.4, 107.5, 73.6, 66.5, 44.9, 34.8, 31.6, 24.6. TLC: R_f 0.30 (hexane/EtOAc = 3:1). IR (neat): 2958, 2927, 2869, 2856, 1685, 1449, 1364, 1213, 1134, 1121, 1106, 1044, 982, 690 cm⁻¹. HRMS Calcd for C₁₆H₂₃O₃: [M+H]⁺, 263.1642. Found: *m*/*z* 263.1642. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 11.2 min, *t_{major}* = 13.7 min.

2-(2-Ethyl-1,3-dioxan-4-yl)-1-phenylethanone (3ae).

Yield: 60%, dr = >20:1, 78% *ee*, colorless oil. $[α]_D^{23}$ +8.8 (*c* 0.24, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.97 (m, 2H), 7.57 (m, 1H), 7.47 (m, 2H), 4.52 (t, *J* = 5.5 Hz, 1H), 4.31 (m, 1H), 4.12 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.82 (ddd, *J* = 11.5, 11.5, 2.5 Hz, 1H), 3.39 (dd, *J* = 16.5, 6.0 Hz, 1H), 3.01 (dd, *J* = 16.5, 6.5 Hz, 1H), 1.74 (m, 1H), 1.67 (m, 1H), 1.61 (dq, *J* = 5.5, 7.5 Hz, 2H), 0.87 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (CDCl₃) δ 197.8, 137.1, 133.2, 128.6, 128.2, 103.2, 73.0, 66.4, 44.8, 31.5, 28.1, 8.3. TLC: R_f 0.56 (hexane/EtOAc = 3:1). IR (neat): 2969, 2933, 2855, 1685, 1375, 1369, 1136, 1099, 974, 691 cm⁻¹. HRMS Calcd for C₁₄H₁₉O₃: [M+H]⁺, 235.1329. Found: *m*/*z* 235.1322. HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 8.4 min, *t_{major}* = 13.3 min.

2-(2-Pentyl-1,3-dioxan-4-yl)-1-phenylethanone (3af).

Yield: 94%, dr = >20:1, 91% *ee*, colorless oil. $[α]_D^{23}$ +11.6 (*c* 0.62, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.97 (m, 2H), 7.57 (m, 1H), 7.52 (m, 2H), 4.57 (t, *J* = 5.0 Hz, 1H), 4.30 (m, 1H), 4.12 (ddd, *J* = 11.5, 4.5, 1.0 Hz, 1H), 3.81 (ddd, *J* = 11.5, 11.5, 2.5 Hz, 1H), 3.39 (dd, *J* = 16.5, 6.0 Hz, 1H), 3.01 (dd, *J* = 16.5, 6.5 Hz, 1H), 1.74 (m, 1H), 1.66 (m, 1H), 1.57 (m, 2H), 1.36–1.20 (m, 6H), 0.85 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 197.8, 137.0, 133.2, 128.6, 128.2, 102.3, 73.0, 66.4, 44.8, 35.0, 31.6, 31.5, 23.7, 22.5, 14.0. TLC: R_f 0.47 (hexane/EtOAc = 3:1). IR (neat): 2955, 2928, 2859, 1685, 1212, 1137, 1121, 1029, 990, 690, 668 cm⁻¹. HRMS Calcd for C₁₇H₂₅O₃: [M+H]⁺, 277.1798. Found: *m/z* 277.1789. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, $\lambda = 254$ nm, 40 °C): *t_{major}* = 10.1 min, *t_{minor}* = 14.8 min.

2-(2-Nonyl-1,3-dioxan-4-yl)-1-phenylethanone (3ag).

Yield: 72%, dr = >20:1, 82% *ee*, colorless oil. $[α]_D^{23}$ +6.5 (*c* 0.23, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.97 (m, 2H), 7.57 (m, 1H), 7.46 (m, 2H), 4.57 (t, *J* = 5.5 Hz, 1H), 4.30 (m, 1H), 4.11 (ddd, *J* = 12.0, 5.0, 1.0 Hz, 1H), 3.81 (ddd, *J* = 12.0, 12.0, 3.0 Hz, 1H), 3.39 (dd, *J* = 11.5, 6.0 Hz, 1H), 3.00 (dd, *J* = 11.5, 6.5 Hz, 1H), 1.74 (m, 1H), 1.65 (m, 1H), 1.57 (m, 2H), 1.28 (m, 14H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 197.8, 137.1, 133.2, 128.6, 128.2, 102.3, 73.1, 66.4, 44.8, 35.1, 31.9, 31.5, 29.49, 29.48, 29.4, 29.3, 24.0, 22.3, 14.1. TLC: R_f 0.50 (hexane/EtOAc = 3:1). IR (neat): 2954, 2925, 2855, 2368, 2321, 1688, 1653, 1124, 668 cm⁻¹. HRMS Calcd for C₂₁H₃₃O₃: [M+H]⁺, 333.2424. Found: *m*/*z* 333.2410. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{major}* = 8.5 min, *t_{minor}* = 12.3 min.

2-(2-Phenethyl-1,3-dioxan-4-yl)-1-phenylethanone (3ah).

Yield: 76%, dr = >20:1, 85% *ee*, colorless oil. $[\alpha]_D^{23}$ +21.0 (*c* 0.68, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.01 (m, 2H), 7.59 (m, 1H), 7.49 (m, 2H), 7.27 (m, 2H), 7.18 (m, 3H), 4.58 (t, *J* = 5.5 Hz, 1H), 4.32 (m, 1H), 4.15 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.81 (ddd, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.43 (dd, *J* = 16.5, 6.5 Hz, 1H), 3.02 (dd, *J* = 16.5, 6.0 Hz, 1H), 2.67 (t, *J* = 8.0 Hz, 2H), 1.91 (m, 2H), 1.79 (m, 1H), 1.67 (m, 1H). ¹³C NMR (CDCl₃) δ 197.8, 141.6, 137.2, 133.2, 128.6, 128.4, 128.3, 128.2, 125.7, 101.2, 73.2, 66.4, 44.8, 36.4, 31.5, 30.1. TLC: R_f 0.38 (hexane/EtOAc = 3:1). IR (neat): 3026, 2959, 2927, 2856, 2356, 1685, 1597, 1449, 1375, 1369, 1213, 1180, 1138, 1099, 1035, 751, 700, 691 cm⁻¹. HRMS Calcd for C₂₀H₂₃O₃: [M+H]⁺, 311.1642. Found: *m*/*z* 311.1632. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.5 mL/min, λ = 254 nm, 40 °C): *t_{maior}* = 16.0 min, *t_{minor}* = 21.2 min.

1-(4-Methoxyphenyl)-2-(2-pentyl-1,3-dioxan-4-yl)ethanone (3bf).

Yield: 70%, dr = >20:1, 93% *ee*, colorless oil. $[α]_D^{23}$ +23.0 (*c* 2.18, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.95 (m, 2H), 6.93 (m, 2H), 4.56 (t, *J* = 5.5 Hz, 1H), 4.28 (m, 1H), 4.11 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.87 (s, 3H), 3.81 (ddd, *J* = 11.5, 11.5, 3.5 Hz, 1H), 3.34 (dd, *J* = 16.5, 6.5 Hz, 1H), 2.96 (dd, *J* = 16.5, 6.5 Hz, 1H), 1.72 (m, 1H), 1.65 (m, 1H), 1.56 (m, 2H), 1.35–1.21 (m, 6H), 0.85 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 196.3, 163.6, 130.5, 130.2, 113.7, 102.3, 73.2, 66.4, 55.5, 44.5, 35.0, 31.62, 31.56, 23.7, 22.5, 14.0. TLC: R_f 0.29 (hexane/EtOAc = 3:1). IR (neat): 2955, 2929, 2859, 2364, 2346, 1675, 1601, 1507, 1261, 1172, 1136, 1121, 1032, 989 cm⁻¹. HRMS Calcd for C₁₈H₂₇O₄: [M+H]⁺, 307.1904. Found: *m*/*z* 307.1892. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 13.7 min, *t_{major}* = 15.0 min.

2-(2-Pentyl-1,3-dioxan-4-yl)-1-(4-(trifluoromethyl)phenyl)ethanone (3cf).

Yield: 65%, dr = >20:1, 89% *ee*, colorless oil. $[α]_D^{23}$ +5.4 (*c* 0.13, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.07 (m, 2H), 7.74 (m, 2H), 4.55 (t, *J* = 5.5 Hz, 1H), 4.29 (m, 1H), 4.13 (ddd, *J* = 12.0, 5.5, 1.5 Hz, 1H), 3.81 (ddd, *J* = 12.0, 12.0, 2.5 Hz, 1H), 3.41 (dd, *J* = 16.5, 7.0 Hz, 1H), 2.99 (dd, *J* = 16.5, 6.0 Hz, 1H), 1.76 (m, 1H), 1.65 (m, 1H), 1.55 (m, 2H), 1.33–1.19 (m, 6H), 0.84 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 197.1, 139.7, 134.4 (q, *J* = 32.7 Hz), 128.6, 125.6 (q, *J* = 3.9 Hz), 123.5 (q, *J* = 272.8 Hz), 102.3, 73.0, 66.3, 45.0, 34.9, 31.6, 31.4, 23.6, 22.5, 14.0. ¹⁹F NMR (C₆F₆) δ 98.6. TLC: R_f 0.29 (hexane/EtOAc = 3:1). IR (neat): 2956, 1684, 1411, 1325, 1215, 1167, 1150, 1108, 1068, 974, 855, 821 cm⁻¹. HRMS Calcd for C₁₈H₂₃F₃O₃Na: [M+Na]⁺, 367.1492. Found: *m*/*z* 367.1477. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{major}* = 5.8 min, *t_{minor}* = 8.2 min.

2-(2-Pentyl-1,3-dioxan-4-yl)-1-(p-tolyl)ethanone (3df).

Yield: 75%, dr = >20:1, 90% *ee*, pale yellow oil. $[\alpha]_D^{23}$ +12.9 (*c* 0.62, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.88 (m, 2H), 7.28 (m, 2H), 4.58 (t, *J* = 5.5 Hz, 1H), 4.31 (m, 1H), 4.13 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.82 (ddd, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.37 (dd, *J* = 11.5, 6.0 Hz, 1H), 3.00 (dd, *J* = 11.5, 6.5 Hz, 1H), 2.43 (s, 3H), 1.74 (m, 1H), 1.66 (m, 1H), 1.58 (m, 2H), 1.38–1.21 (m, 6H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 197.2, 143.8, 134.3, 129.0, 128.1, 102.0, 72.9, 66.2, 44.4, 34.8, 31.4, 31.3, 23.4, 22.3, 21.4, 13.7. TLC: R_f 0.42 (hexane/EtOAc = 3:1). IR (neat): 2955, 2927, 2859, 2360, 2340, 1689, 1608, 1375, 1364, 1207, 1181, 1136, 1121, 1031, 995, 665 cm⁻¹. HRMS Calcd for C₁₈H₂₇O₃: [M+H]⁺, 291.1955. Found: *m*/*z* 291.1944. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{major}* = 13.1 min, *t_{minor}* = 20.0 min.

1-(Naphthalen-2-yl)-2-((2R,4R)-2-pentyl-1,3-dioxan-4-yl)ethanone (3ef).

Yield: 99%, dr = >20:1, 90% *ee*, white solid. $[α]_D^{23}$ +34.5 (*c* 0.80, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.50 (s, 1H), 8.03 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.58 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.56 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 4.59 (t, *J* = 5.5 Hz, 1H), 4.36 (m, 1H), 4.14 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.83 (ddd, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.54 (dd, *J* = 16.5, 6.5 Hz, 1H), 3.13 (dd, *J* = 16.5, 6.5 Hz, 1H), 1.79 (m, 1H), 1.70 (m, 1H), 1.58 (m, 2H), 1.37–1.18 (m, 6H), 0.83 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 197.8, 135.6, 134.4, 132.4, 130.2, 129.6, 128.5, 128.4, 127.7, 126.8, 123.7, 102.3, 73.2, 66.4, 44.9, 35.0, 31.6, 31.5, 23.7, 22.5, 14.0. Mp. 58.5–59.2 °C. TLC: R_f 0.43 (hexane/EtOAc = 3:1). IR (neat): 2955, 2950, 2929, 2851, 1676, 1379, 1140, 1126, 1032, 864, 836, 757 cm⁻¹. HRMS Calcd for C₂₁H₂₇O₃: [M+H]⁺, 327.1955. Found: *m*/*z* 327.1940. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 98.0/2.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{maior}* = 11.2 min,

 $t_{minor} = 15.7 \text{ min.}$

1-(4-Bromophenyl)-2-(2-pentyl-1,3-dioxan-4-yl)ethanone (3ff).

Yield: 74%, dr = >20:1, 90% *ee*, colorless oil. $[α]_D^{23}$ +15.1 (*c* 0.72, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.83 (m, 2H), 7.61 (m, 2H), 4.55 (t, *J* = 5.5 Hz, 1H), 4.27 (m, 1H), 4.12 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.80 (ddd, *J* = 11.5, 11.5, 2.5 Hz, 1H), 3.35 (dd, *J* = 16.5, 6.5 Hz, 1H), 2.94 (dd, *J* = 16.5, 6.0 Hz, 1H), 1.74 (m, 1H), 1.64 (m, 1H), 1.55 (m, 2H), 1.35–1.19 (m, 6H), 0.85 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 196.9, 135.8, 131.9, 129.8, 128.5, 102.3, 73.0, 66.4, 44.7, 35.0, 31.6, 31.4, 23.6, 22.5, 14.0. TLC: R_f 0.43 (hexane/EtOAc = 3:1). IR (neat): 2956, 2927, 2859, 2368, 2331, 1689, 1586, 1136, 1122, 1072, 668 cm⁻¹. HRMS Calcd for C₁₇H₂₄BrO₃: [M+H]⁺, 355.0903. Found: *m*/*z* 355.0888. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 7.9 min, *t_{major}* = 10.0 min.

1-(2-Pentyl-1,3-dioxan-4-yl)-4-phenylbutan-2-one (3gf).

Yield: 53%, dr = >20:1, 63% *ee*, colorless oil. $[\alpha]_D^{23}$ –3.99 (*c* 0.43, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.28 (m, 2H), 7.21–7.16 (m, 3H), 4.50 (t, *J* = 5.5 Hz, 1H), 4.09 (m, 1H), 4.07 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.74 (ddd, *J* = 11.5, 11.5, 1.5 Hz, 1H), 2.89 (t, *J* = 7.5 Hz, 2H), 2.87–2.72 (m, 3H), 2.44 (dd, *J* = 16.0 Hz, 1H), 1.63 (m, 1H), 1.56 (m, 2H), 1.37–1.22 (m, 6H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 207.9, 140.9, 128.5, 128.3, 126.1, 102.2, 72.8, 66.3, 48.9, 45.5, 34.9, 31.6, 31.2, 29.4, 23.7, 22.5, 14.0. TLC: R_f 0.43 (hexane/EtOAc = 3:1). IR (neat): 2956, 2927, 2859, 2368, 2331, 1689, 1586, 1136, 1122, 1072, 668 cm⁻¹. HRMS Calcd for C₁₉H₂₈O₃Na: [M+Na]⁺, 327.1931. Found: *m*/*z* 327.1924. HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 95.0/5.0, flow rate = 0.5 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 10.3 min, *t_{maior}* = 15.0 min.

(*E*)-1-(2-Pentyl-1,3-dioxan-4-yl)dec-3-en-2-one (3hf)

Yield: 70%, dr = >20:1, 78% *ee*, colorless oil. $[α]_D^{23}$ +10.0 (*c* 0.56, CH₂Cl₂). ¹H NMR (CDCl₃) δ 6.85 (dt, *J* = 16.0, 7.0 Hz, 1H), 6.10 (dt, *J* = 16.0, 1.0 Hz, 1H), 4.52 (t, *J* = 5.0 Hz, 1H), 4.27 (m, 1H), 4.08 (dd, *J* = 12.0 Hz, 4.0 Hz, 1H), 3.76 (ddd, *J* = 12.0, 12.0, 3.0 Hz, 1H), 2.93 (dd, *J* = 16.0, 6.5 Hz, 1H), 2.59 (dd, *J* = 16.0 Hz, 6.5 Hz, 1H), 2.21 (m, 2H), 1.65 (m, 1H), 1.58–1.54 (m, 3H), 1.45 (m, 2H), 1.37–1.21 (m, 12H), 0.89–0.85 (m, 6H). ¹³C NMR (CDCl₃) δ 198.1, 148.7, 130.9, 102.2, 73.0, 66.4, 45.9, 35.0, 32.5, 31.64, 31.56, 31.4, 28.8, 28.0, 23.7, 22.5, 14.1, 14.0. TLC: R_f 0.28 (hexane/EtOAc = 10:1). IR (neat): 2956, 2858, 1693, 1669, 1628, 1624, 1466, 1459, 1378, 1367, 1137, 1124, 1030, 994, 976 cm⁻¹. HRMS Calcd for C₁₉H₃₅O₃: [M+H]⁺, 311.2581. Found: *m/z* 311.2573. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.0/1.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{maior}* = 11.2 min, *t_{minor}* = 17.3 min.

Procedure for Baeyer–Villiger oxidation of 3bf³

The mixture of **3bf** (0.021 g, 0.070 mmol), *m*-CPBA (0.60 g, 0.35 mmol), and trifluoroacetic acid (0.003 mL, 0.04 mmol) in CH₂Cl₂ (0.6 mL) was stirred at ambient temperature for 8 h. The reaction was quenched with saturated aqueous Na₂S₂O₃ and saturated aqueous NaHCO₃, and subsequently extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 10/1) as an eluent gave 4-methoxyphenyl 2-(2-pentyl-1,3-dioxan-4-yl)acetate (**5**).

4-Methoxyphenyl 2-(2-pentyl-1,3-dioxan-4-yl)acetate (5).

Yield: 70%, 92% *ee*, colorless oil. $[\alpha]_D^{23}$ -10.9 (*c* 0.43, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.00–6.98 (m, 2H), 6.89–6.87 (m, 2H), 4.58 (t, *J* = 5.5 Hz, 1H), 4.20 (m, 1H), 4.14 (ddd, *J* = 11.5, 5.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.80 (m, 1H), 2.83 (dd, *J* = 15.5, 8.0 Hz, 1H), 2.68 (dd, *J* = 15.5, 6.0 Hz, 1H), 1.79 (m, 1H), 1.64–1.58 (m, 3H), 1.39 (m, 2H),

1.34–1.24 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 169.8, 157.2, 144.0, 122.3, 114.4, 102.3, 73.0, 66.3, 55.6, 41.1, 35.0, 31.6, 31.0, 23.7, 22.6, 14.0. TLC: R_f 0.34 (hexane/EtOAc = 10:1). IR (neat): 2955, 2929, 2860, 2364, 2331, 1751, 1506, 1465, 1378, 1249, 1196, 1165, 1135, 1102, 1033 cm⁻¹. HRMS Calcd for C₁₈H₂₆O₅Na: [M+Na]⁺, 345.1672. Found: m/z 345.1666. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 99.5/0.5, flow rate = 2.0 mL/min, λ = 254 nm, 40 °C): t_{major} = 22.9 min, t_{minor} = 27.2 min.

Procedure for diastereoselective reduction of 3af

To a 30-mL round-bottom flask, we sequentially added 2-(2-pentyl-1,3-dioxan-4-yl)-1-phenylethanone (**3af**, 0.076 g, 0.27 mmol), Et₂O (27.4 mL), and EuCl₃ (0.21 g, 0.82 mmol). After the mixture was stirred under argon atmosphere at -78 °C for 0.5 h, LiBH₄ (0.012 g, 0.55 mmol) was added. The resulting mixture was additionally stirred at -78 °C for 2 h. The reaction was quenched with 3M aqueous NaOH, and the mixture was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 5/1) as an eluent gave 2-(2-pentyl-1,3-dioxan-4-yl)-1-phenylethanol (**6**).

2-(2-Pentyl-1,3-dioxan-4-yl)-1-phenylethanol (6).

Yield: 92%, dr = 12:1, colorless oil. $[\alpha]_D^{23}$ +13.4 (*c* 0.90, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.37–7.32 (m, 4H), 7.27 (m, 1H), 4.97 (dd, *J* = 9.5, 3.5 Hz, 1H), 4.58 (t, *J* = 5.0 Hz, 1H), 4.01 (ddd, *J* = 12.0, 5.0, 1.0 Hz, 1H), 3.92 (m, 1H), 3.76 (ddd, *J* = 12.0, 12.0, 2.5 Hz, 1H), 2.04 (m, 1H), 1.81–1.72 (m, 2H), 1.66–1.62 (m, 2H), 1.44–1.38 (m, 3H), 1.35–1.27 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 144.4, 128.6, 127.7, 126.0, 102.3, 74.1, 66.7, 45.4, 35.2, 31.9, 31.7, 24.0, 22.8, 14.3. TLC: R_f 0.37 (hexane/EtOAc = 3:1). IR (neat): 3462, 2953, 2925, 2858, 1465, 1378, 1364, 1139, 1087, 1028, 760, 700, 665 cm⁻¹. HRMS Calcd for C₁₇H₂₇O₃: [M+H]⁺, 279.1955. Found: *m/z* 279.1945.

Procedure for diastereoselective reduction of 3ef

То 20-mL round-bottom flask, we sequentially added a 1-(naphthalen-2-yl)-2-((2R*,4R*)-2-pentyl-1,3-dioxan-4-yl)ethanone (3ef, 0.033 g, 0.10 mmol), Et₂O (1.8 mL), and EuCl₃ (0.078 mg, 0.30 mmol). After the mixture was stirred under argon atmosphere at -78 °C for 0.5 h, a solution of LiBH₄ in Et₂O (0.2 mmol, 1.0 M, 0.2 mL) was added. The resulting mixture was additionally stirred at -78 °C for 1 h. The reaction was quenched with 1 M aqueous NaOH, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flash silica gel column chromatography using (v/v)5/1) hexane/EtOAc as eluent = an gave (R^*) -1-(naphthalen-2-yl)-2-(($2R^*, 4R^*$)-2-pentyl-1,3-dioxan-4-yl)ethanol (dihydro-**3ef**).

(R^*) -1-(Naphthalen-2-yl)-2-(($2R^*$, $4R^*$)-2-pentyl-1,3-dioxan-4-yl)ethanol (dihydro-3ef).

Yield: 99%, dr = 11:1, white solid. ¹H NMR (CDCl₃) δ 7.85–7.82 (m, 4H), 7.50–7.44 (m, 3H), 5.15 (dd, *J* = 9.0, 3.5 Hz, 1H), 4.60 (t, *J* = 5.5 Hz, 1H), 4.10 (ddd, *J* = 11.5, 5.0, 1.0 Hz, 1H), 3.96 (m, 1H), 3.75 (ddd, *J* = 11.5, 11.5, 3.0 Hz, 1H), 3.68 (br s, 1H), 2.11 (m, 1H), 1.88 (m, 1H), 1.78 (m, 1H), 1.69–1.64(m, 2H), 1.47–1.41 (m, 3H), 1.38–1.30 (m, 4H), 0.91 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃) δ 141.5, 133.3, 132.9, 128.1, 128.0, 127.6, 126.0, 125.7, 124.4, 124.0, 102.1, 74.0, 66.5, 45.1, 35.0, 31.7, 31.5, 23.8, 22.5, 14.0. Mp. 78.0–78.8 °C. TLC: R_f 0.33 (hexane/EtOAc = 3:1). IR (KBr): 3482, 2955, 2937, 2931, 2910, 2871, 2851, 1424, 1365, 1165, 1139, 1086, 975.1, 862.2, 822.7, 758.1 cm⁻¹. HRMS Calcd for C₂₁H₂₈O₃Na: [M+Na]⁺, 351.1931. Found: *m/z* 351.1918.

Procedure for deacetalizaton of 6

The mixture of **6** (diastereomer mixture, dr = 12:1, 0.059 g, 0.20 mmol) and p-TsOH·H₂O (0.040 g, 0.21 mmol) in CH₃OH (1.6 mL) and H₂O (0.5 mL) was stirred at 100 °C for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The organic layers were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc

(v/v = 1/3) as an eluent gave 1-phenylpentane-1,3,5-triol (7).

1-Penylpentane-1,3,5-triol (7).

Yield: 64% (isolated yield of the major diastereomer), colorless oil. $[\alpha]_D^{23}$ +31.5 (*c* 0.72, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.38–7.34 (m, 4H), 7.29 (m, 1H), 5.00 (dd, *J* = 10.5, 2.5 Hz, 1H), 4.26 (m, 1H), 3.87 (m, 2H), 3.17 (br s, 3H), 1.97 (dt, *J* = 14.5, 10.5 Hz, 1H), 1.79–1.69 (m, 3H). ¹³C NMR (CDCl₃) δ 144.2, 128.6, 127.7, 125.6, 75.5, 73.0, 61.6, 45.4, 38.5. TLC: R_f 0.10 (hexane/EtOAc = 1:3). IR (neat): 3322, 3088, 3064, 3031, 2944, 2920, 1455, 1428, 1329, 1101, 1059, 1029, 1003, 759, 701, 673 cm⁻¹. HRMS Calcd for C₁₁H₁₇O₃: [M+H]⁺, 197.1172. Found: *m/z* 197.1172.

The enantiomeric excess of 7 was determined by HPLC analysis after benzoylation.

Procedure for benzoylation of 7

To a solution of **7** (0.013 g, 0.068 mmol) in CH_2Cl_2 (0.3 mL) were added benzoyl chloride (0.024 mL, 0.20 mmol) and pyridine (0.027 mL, 0.33 mmol) at ambient temperature, and the mixture was stirred overnight. The resulting mixture was diluted with H_2O and subsequently extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over Na_2SO_4 , and concentrated in vacuo. Purification by flash silica gel column chromatography using hexane/EtOAc (v/v = 10/1) as an eluent gave 1-phenylpentane-1,3,5-triyl tribenzoate.

1-Phenylpentane-1,3,5-triyl tribenzoate.

Yield: 36%, 91% *ee*, colorless oil. $[\alpha]_D^{23}$ +1.21 (*c* 0.41, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.05–8.03 (m, 2H), 7.98–7.96 (m, 2H), 7.91–7.89 (m, 2H), 7.55–7.48 (m, 3H), 7.41–7.36 (m, 6H), 7.34–7.29 (m, 4H), 7.24 (m, 2H), 6.18 (t, *J* = 7.0 Hz, 1H), 5.40 (m 1H), 4.47 (m, 1H), 4.38 (m, 1H), 2.72 (m, 1H), 2.36–2.21 (m, 2H). ¹³C NMR (CDCl₃) δ 166.4, 165.8, 165.6, 139.7, 133.03, 133.02, 132.9, 129.94, 129.87, 129.64, 129.61, 129.5, 128.7, 128.33, 128.30, 128.2, 126.4, 73.7, 69.2, 61.1, 40.8, 33.1. TLC: R_f 0.39 (hexane/EtOAc = 3:1).

IR (neat): 3090, 3064, 3034, 2964, 2926, 2854, 1706, 1602, 1585, 1492, 1452, 1315, 1265, 1177, 1110, 1098, 1070, 1026, 1002, 974, 805, 760, 707, 687 cm⁻¹. HRMS Calcd for C₃₂H₂₈O₆Na: $[M+Na]^+$, 531.1778. Found: *m*/*z* 531.1774. HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 80.0/20.0, flow rate = 2.0 mL/min, λ = 254 nm, 40 °C): *t_{major}* = 5.9 min, *t_{minor}* = 7.3 min.

References

- 1. Oswald, C. L.; Peterson, J. A.; Lam, H. W. Org. Lett. 2009, 11, 4504.
- 2. Alejandro Bugarin; Kyle D. Jones; Brian T. Connell. Chem. Commun. 2010, 46, 1715.
- 3. Sedelmeier, J.; Hammerer, T.; Bolm, C. Org. Lett. 2008, 10, 917.

2-(2-Cyclohexyl-1,3-dioxan-4-yl)-1-phenylethanone (3aa)

=0

чQ

ó

¹H NMR

=0

Ō

п-С₅Н₁₁

=0

чQ

Ó

1-(4-Methoxyphenyl)-2-(2-pentyl-1,3-dioxan-4-yl)ethanone (3bf)

 $\label{eq:2-2-Pentyl-1,3-dioxan-4-yl} 2-(2-Pentyl-1,3-dioxan-4-yl)-1-(4-(trifluoromethyl)phenyl) ethanone \ (3cf)$

2-(2-Pentyl-1,3-dioxan-4-yl)-1-(p-tolyl)ethanone (3df)

1-(Naphthalen-2-yl)-2-((2R,4R)-2-pentyl-1,3-dioxan-4-yl)ethan one (3ef)

Ψ

Ξ

п-С₅Н₁₁

(E)-1-(2-pentyl-1,3-dioxan-4-yl)dec-3-en-2-one (3hf)

4-Methoxyphenyl 2-(2-pentyl-1,3-dioxan-4-yl)acetate (5)

2-(2-Pentyl-1,3-dioxan-4-yl)-1-phenylethanol (6)

1-Phenylpentane-1,3,5-triol (7) OH OH OH

1-Phenylpentane-1,3,5-triol (7)

¹³C NMR

1-Phenylpentane-1,3,5-triyl tribenzoate OBz OBz OBz

¹H NMR

1-Phenylpentane-1,3,5-triyl tribenzoate OBz OBz OBz

HPLC Chromatogram Plofiles

2-(2-Cyclohexyl-1,3-dioxan-4-yl)-1-phenylethanone (3aa).

2-(2-Isopropyl-1,3-dioxan-4-yl)-1-phenylethanone (3ab).

2-(2-Isobutyl-1,3-dioxan-4-yl)-1-phenylethanone (3ac).

2-(2-tert-Butyl-1,3-dioxan-4-yl)-1-phenylethanone (3ad).

2-(2-Ethyl-1,3-dioxan-4-yl)-1-phenylethanone (3ae).

2-(2-Pentyl-1,3-dioxan-4-yl)-1-phenylethanone (3af).

2-(2-Nonyl-1,3-dioxan-4-yl)-1-phenylethanone (3ag).

8.719

12.337

2-(2-Phenethyl-1,3-dioxan-4-yl)-1-phenylethanone (3ah).

1-(4-Methoxyphenyl)-2-(2-pentyl-1,3-dioxan-4-yl)ethanone (3bf).

2-(2-Pentyl-1,3-dioxan-4-yl)-1-(4-(trifluoromethyl)phenyl)ethanone (3cf).

2-(2-Pentyl-1,3-dioxan-4-yl)-1-(p-tolyl)ethanone (3df).

1-(4-Bromophenyl)-2-(2-pentyl-1,3-dioxan-4-yl)ethanone (3ff).

1-(2-Pentyl-1,3-dioxan-4-yl)-4-phenylbutan-2-one (3gf).

(E)-1-(2-Pentyl-1,3-dioxan-4-yl)dec-3-en-2-one (3hf).

4-Methoxyphenyl 2-(2-pentyl-1,3-dioxan-4-yl)acetate (5).

1-Phenylpentane-1,3,5-triyl tribenzoate.

ORTEP Drawing of 3ef

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(CuK\alpha)$ $\begin{array}{l} C_{21}H_{26}O_{3}\\ 326.43\\ Colorless, Needle\\ 0.244 \times 0.070 \times 0.060 \mm\\ Orthorhombic\\ Primitive\\ a = 5.7682(2) \mbox{ Å}\\ b = 7.7444(3) \mbox{ Å}\\ c = 39.9505(14) \mbox{ Å}\\ V = 1784.64(11) \mbox{ Å}^{3}\\ P2_{1}2_{1}2_{1} \mbox{ (\#19)}\\ 4\\ 1.215 \mbox{ g/cm}^{3}\\ 704.00\\ 6.326 \mbox{ cm}^{-1} \end{array}$

B. Intensity Measurements

DiffractometerR-AXIS RAPIDRadiation $CuK\alpha$ ($\lambda = 1.54187$ Å)Wulti-layer mirror monochromatedVoltage, Current40kV, 30mA

Temperature
Detector Aperture
Data Images
$ω$ Oscillation Range ($\chi = 54.0, \varphi = 0.0$)
Exposure Rate
$ω$ Oscillation Range ($\chi = 54.0, \varphi = 90.0$)
Exposure Rate
$ω$ Oscillation Range ($\chi = 54.0, \varphi = 180.0$)
Exposure Rate
$ω$ Oscillation Range ($\chi = 54.0, \varphi = 270.0$)
Exposure Rate
$ω$ Oscillation Range ($\chi = 0.0, \varphi = 0.0$)
Exposure Rate
Detector Position
Pixel Size
20 _{max}
No. of Reflections Measured

Corrections

-180.0 °C $460.0\times256.0\ mm$ 180 exposures 80.0-260.0° 20.0 sec./° 127.40 mm 0.100 mm 136.4° Total: 20325 Unique: $3254 (R_{int} = 0.0784)$ Parsons quotients (Flack x parameter): 1047 Lorentz-polarization Absorption (trans. factors: 0.687-0.963)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXS2013)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma w (F_0^2 - F_c^2)^2$
Least Squares Weights	$w = 1/ \left[\sigma^2(F_0^2) + (0.1161 \cdot P)^2 \right]$
	+ 0.2777·P]
	where $P = (Max(F_0^2, 0) + 2F_c^2)/3$
$2_{\theta_{\text{max}}}$ cutoff	136.4°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3254

No. Variables	217
Reflection/Parameter Ratio	15.00
Residuals: R1 (I>2.00 σ (I))	0.0683
Residuals: R (All reflections)	0.0732
Residuals: wR2 (All reflections)	0.1857
Goodness of Fit Indicator	1.110
Flack parameter (Parsons' quotients = 1047)	0.0(2)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.33 \text{ e}^{-}/\text{\AA}^{3}$
Minimum peak in Final Diff. Map	$-0.36 \text{ e}^{-}/\text{\AA}^{3}$

ORTEP Drawing of dihydro-3ef

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(MoK\alpha)$

 $C_{21}H_{28}O_3$ 328.45 Colorless, Prism $0.410 \times 0.380 \times 0.200 \text{ mm}$ Monoclinic Primitive a = 28.83(4) Åb = 7.923(11) Å c = 7.876(11) Å $\beta = 89.14(2)^{\circ}$ $V = 1799(5) Å^3$ P2₁/c (#14) 4 1.213 g/cm^3 712.00 0.791 cm^{-1}

B. Intensity Measurements

Diffractometer	XtaLAB mini
Radiation	MoKα ($\lambda = 0.71075$ Å)
	graphite monochromated
Voltage, Current	50kV, 12mA
Temperature	20.0 °C
Detector Aperture	75 mm (diameter)
Data Images	1080 exposures
ω Oscillation Range	-60.0-120.0°
Exposure Rate	96.0 sec./°
Detector Swing Angle	30.50°
ω Oscillation Range	-60.0-120.0°
Exposure Rate	96.0 sec./°
Detector Swing Angle	30.50°
ω Oscillation Range	-60.0-120.0°
Exposure Rate	96.0 sec./°
Detector Swing Angle	30.50°
Detector Position	49.00 mm
Pixel Size	0.146 mm
$2\theta_{max}$	55.6°
No. of Reflections Measured	Total: 11513
	Unique: $3684 (R_{int} = 0.0874)$
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.967–0.984)

C. Structure Solution and Refinement

Structure Solution Refinement Function Minimized Least Squares Weights Direct Methods (SHELX97) Full-matrix least-squares on F^2 $\Sigma \le (F_0^2 - F_c^2)^2$ $\le 1/[\sigma^2(F_0^2) + (0.1000 \cdot P)^2$ $+ 0.0000 \cdot P]$ where $P = (Max(F_0^2, 0) + 2F_c^2)/3$

$2\theta_{max}$ cutoff	55.6°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3684
No. Variables	217
Reflection/Parameter Ratio	16.98
Residuals: R1 (I>2.00 σ (I))	0.1052
Residuals: R (All reflections)	0.1523
Residuals: wR2 (All reflections)	0.2984
Goodness of Fit Indicator	1.270
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.33 \text{ e}^{-}/\text{\AA}^{3}$
Minimum peak in Final Diff. Map	$-0.35 \text{ e}^{-}/\text{Å}^{3}$