Approaching the limit of Cu^{II}/Cu^{II} mixed valency in a $Cu^{II}Br_2-N$ methylquinoxalinium hybrid compound

Nicolas Leblanc^{*}*a*, Stephen Sproules^{*c*}, Claude Pasquier^{*}*d*</sup>, Pascale Auban-Senzier^{*d*}, Helene Raffy^{*d*}, and Annie K. Powell^{*}*a*,*b*

Supporting Information

A - Synthesis

 $(MQ)[CuBr_2]_{\infty}$ salt is obtained according to the following steps :

<u>A₁- (MQ)[I]</u>

Quinoxaline (5 mL, 4.32 10^{-2} mol) and methyliodide (4 mL, 6.42 10^{-2} mol) are mixed with 10 mL of DCM and the solution is left standing 3 weeks after sealing. The orange-red crystals formed are filtered, washed with Et₂O and dried under vacuum to afford 9.263 g (79%) of the title compound.

¹H NMR (500 MHz, DMSO-d⁶): δ= 9.73 (d, J= 2.8 Hz, 1H), 9.67 (d, J= 2.8 Hz, 1H), 8.64 (d, J=8.5 Hz, 1H), 8.54 (dd, J=8.4, 1.3 Hz, 1H), 8.37 (ddd, J=8.7, 7.1, 1.5 Hz, 1H), 8.31 (ddd, J = 8.3, 7.1, 1.2 Hz, 1H), 4.73 (s, 3H).

<u>A₂-(MQ)[BF₄]</u>

(MQ)[I] (2.721 g, 10^{-2} mol) and NH₄BF₄ (5.242 g, 5 10^{-2} mol) are added into 150 mL of MeOH. The mixture is heated up to the boiling point and subsequently filtered through a paper filter. The red filtrate is then stored overnight in the freezer at -20°C. The mixture of crystals formed is collected in a filter paper and dried. To separate the residual NH₄BF₄ salt, (MQ)[BF₄] crystals are dissolved with 10 mL of ACN giving a red solution. Et₂O (100 mL) is then added resulting of a crystalline yellow precipitate. The precipitate is repeatedly recrystallized from MeOH at -20°C, giving 1.034 g (44 %) of the title compound as white flakes.

¹H NMR (500 MHz, DMSO-d⁶): δ= 9.57 (d, J= 2.1 Hz, 1H), 9.10 (d, J= 2.6 Hz, 1H), 8.55 (dd, J=8.5, 1.4 Hz, 1H), 8.47 (d, J=8.6, 1H), 8.36 (ddd, J = 8.8, 7.1, 1.5 Hz, 1H), 8.31 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 4.69 (s, 3H).

XRPD of (MQ)[BF₄]: theoretical (red) and experimental (blue)

$\underline{A_3-(MQ)}[CuBr_2]_{\infty}$

Under aerobic conditions, in a pillbox is mixed a stoichiometric (2.10^{-3} mol) amount of Cu^IBr (143 mg), NaBr (106 mg) and (MQ)[BF₄] (232 mg) in 2.5 mL of DMSO. The compounds are completely dissolved under slightly heating, leading to a brown solution. After cooling to room temperature, the pillbox is covered with an aluminium foil pierced with 4 "syringes" holes and then inserted in a bigger one filled with MeOH for liquid/gas diffusion. After few hours dark brown crystals of the title compound were formed in a pure phase (257 mg, 35%).

B- Single crystal X-ray diffraction analysis for (MQ)[CuBr₂]_∞ and (MQ)[BF₄]

<u>B-I- (MQ)/CuBr₂/_∞</u>

Summary of crystallographic data

```
Empirical formula
                                     C9 H9 Br2 Cu N2
                                     368.54
Formula weight
Temperature
                                     293(2) K
Wavelength [Vavelength]
                                     0.71073 A
                                     Monoclinic, C 2/m
Crystal system, space group
                                                   alpha = 90 deg.
beta = 96.692(12) deg.
gamma = 90 deg.
Unit cell dimensions
                                a = 15.373(2) A
                               b = 6.4099(7) A
c = 10.9646(18) A
Volume
                                     1073.1(3) A^3
Z, Calculated density
                                     4, 2.281 Mg/m^3
Absorption coefficient
                                     9.441 mm^-1
F(000)
                                     704
Crystal size
                                     0.362 x 0.185 x 0.081 mm
                                     3.447 to 27.308 deg.
Theta range for data collection
Limiting indices
                                     -19<=h<=19, -8<=k<=7, -11<=1<=14
Reflections collected / unique
                                     2530 / 1265 [R(int) = 0.0216]
Completeness to theta = 25.242
                                     94.9 %
Absorption correction
                                     Integration
Max. and min. transmission
                                     0.4145 and 0.1832
Refinement method
                                     Full-matrix least-squares on F^2
Data / restraints / parameters
                                     1265 / 0 / 92
Goodness-of-fit on F^2
                                     1.322
Final R indices [I>2sigma(I)]
                                     R1 = 0.0290, WR2 = 0.0792
R indices (all data)
                                     R1 = 0.0328, wR2 = 0.0912
Extinction coefficient
                                     0.012(2)
Largest diff. peak and hole
                                     0.390 and -0.582 e.A^-3
```

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) N(1) N(2) Cu(1) Br(2) Br(1)	7633(4) 7516(3) 8428(3) 8783(4) 8264(4) 7373(4) 6979(3) 5741(3) 6240(3) 7100(2) 6083(3) 10000 9281(1) 9046(1)	5000 5000 5000 5000 5000 5000 5000 500	8930(5) 6666(4) 6711(5) 5629(6) 4487(6) 4436(5) 5528(5) 6494(6) 7645(5) 7716(4) 5466(5) 10000 11400(1) 8769(1)	59(1)46(1)54(1)64(1)67(1)61(1)53(1)62(1)56(1)49(1)63(1)66(1)54(1)52(1)

Table 3. Bond lengths [A] and angles [deg].

C(1)-N(1) C(1)-H(1B) C(1)-H(1C) C(2)-N(1) C(2)-C(3) C(2)-C(7) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(4)-H(4) C(5)-C(6) C(5)-H(5) C(6)-C(7) C(6)-H(6) C(7)-N(2) C(8)-N(2) C(8)-N(2) C(8)-N(2) C(8)-N(2) C(8)-H(8) C(9)-H(9) C(8)-H(8) C(9)-H(9) C(1)-Br(2)#1 Cu(1)-Br(2)#1 Cu(1)-Br(1)#2 Cu(1)-Br(1) Cu(1)-Cu(1)#1 Br(2)-Cu(1)#1	$\begin{array}{c} 1.480(6)\\ 1.10(5)\\ 0.77(8)\\ 1.381(6)\\ 1.397(6)\\ 1.414(7)\\ 1.362(8)\\ 0.9300\\ 1.405(9)\\ 0.9300\\ 1.364(9)\\ 0.9300\\ 1.364(9)\\ 0.9300\\ 1.364(8)\\ 0.9300\\ 1.372(6)\\ 1.298(8)\\ 1.398(8)\\ 0.9300\\ 1.315(6)\\ 0.9300\\ 1.315(6)\\ 0.9300\\ 2.4935(6)\\ 2.5347(6)\\ 2.$
$\begin{array}{c} N(1)-C(1)-H(1B) \\ N(1)-C(1)-H(1C) \\ H(1B)-C(1)-H(1C) \\ N(1)-C(2)-C(3) \\ N(1)-C(2)-C(7) \\ C(3)-C(2)-C(7) \\ C(4)-C(3)-C(2) \\ C(4)-C(3)-H(3) \\ C(2)-C(3)-H(3) \\ C(2)-C(3)-H(3) \\ C(3)-C(4)-H(4) \\ C(5)-C(4)-H(4) \\ C(5)-C(4)-H(4) \\ C(6)-C(5)-C(4) \\ C(6)-C(5)-H(5) \\ C(4)-C(5)-H(5) \\ C(5)-C(6)-C(7) \end{array}$	110(3) 108(5) 109(3) 122.1(4) 117.1(4) 120.8(5) 118.1(5) 120.9 122.2(5) 118.9 118.9 118.9 120.0(5) 120.0 120.0 120.0 119.7(5)

C(5)-C(6)-H(6) C(7)-C(6)-H(6) N(2)-C(7)-C(6) N(2)-C(7)-C(2) C(6)-C(7)-C(2) N(2)-C(8)-C(9) N(2)-C(8)-H(8) C(9)-C(8)-H(8) N(1)-C(9)-C(8) N(1)-C(9)-H(9) C(8)-C(9)-H(9) C(9)-N(1)-C(1) Br(2)#1-Cu(1)-Br(1)#2 Br(2)#1-Cu(1)-Br(1) Br(2)-Cu(1)-Br(1)	120.1 120.1 $119.2(5)$ $121.6(5)$ $123.3(5)$ 118.3 118.3 $119.6(5)$ 120.2 120.2 $120.7(4)$ $120.1(5)$ $119.2(4)$ $117.5(5)$ $106.19(3)$ $117.514(17)$ $110.314(17)$ $110.314(17)$ $117.513(16)$
Br(2)#1-Cu(1)-Br(2) Br(2)#1-Cu(1)-Br(1)#2	106.19(3) 117.514(17) 110.214(17)
Br(2)-Cu(1)-Br(1)#2 Br(2)#1-Cu(1)-Br(1) Br(2)-Cu(1)-Br(1) Br(1)#2-Cu(1)-Br(1) Br(2)#1-Cu(1)-Cu(1)#1 Br(2)-Cu(1)-Cu(1)#1 Br(1)#2-Cu(1)-Cu(1)#1 Cu(1)#1-Br(2)-Cu(1) Cu(1)-Br(1)-Cu(1)#2	$\begin{array}{c} 110.314(17) \\ 110.314(17) \\ 117.513(16) \\ 95.29(3) \\ 53.094(15) \\ 53.094(16) \\ 132.354(15) \\ 132.354(15) \\ 73.81(3) \\ 84.71(3) \end{array}$

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+2 #2 -x+2,-y+2,-z+2

Table 4. Anisotropic displacement parameters (A^2 x 10^3). The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) N(1) N(2) Cu(1) Br(2) Br(1)	58(3) 51(2) 48(2) 58(3) 96(4) 87(4) 55(2) 44(2) 48(2) 47(2) 55(2) 68(1) 58(1) 48(1)	79(4) 43(2) 59(3) 61(3) 56(3) 48(2) 45(2) 70(3) 57(3) 46(2) 62(2) 65(1) 55(1) 57(1)	41(2) 46(2) 55(3) 78(4) 55(3) 46(2) 57(3) 71(3) 65(3) 53(2) 70(3) 65(1) 50(1) 50(1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5(2) 8(2) 7(2) 23(3) 31(3) 5(2) 1(2) 4(2) 13(2) 6(2) -7(2) 13(1) 13(1) 3(1)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

checkCIF/PLATON report (basic structural check)

No syntax errors found. Please wait while processing

CIF dictionary Interpreting this report

Datablock: shelx

Bond precisio	on: $C-C =$	0.0080 A	Wavelength=0.71073	
Cell: a	a=15.373(2)	b=6.4099(7)	c=10.9646(18)	
ä	alpha=90	beta=96.692(12)gamma=90	
Temperature: 2	293 K			
	Calcula	ted	Reported	
Volume	1073.1(3)	1073.1(3)	
Space group	C 2/m		C 2/m	
Hall group	-C 2y		-C 2y	
Moiety formul	.a Br2 Cu,	C9 H9 N2	Br2 Cu, C9 H9 N2	
Sum formula	С9 Н9 В	r2 Cu N2	C9 H9 Br2 Cu N2	
Mr	368.53		368.54	
Dx,g cm-3	2.281		2.281	
Z	4		4	
Mu (mm-1)	9.441		9.441	
F000	704.0		704.0	
F000'	703.38			
h,k,lmax	19,8,14		19,8,14	
Nref	1325		1265	
Tmin,Tmax	0.134,0	.465	0.183,0.414	
Tmin'	0.030			
Correction me	thod= # Repor	ted T Limits:	Tmin=0.183	
Tmax=0.414 Ab	sCorr = INTEG	RATION		
Data complete	eness= 0.955	Theta(max	x) = 27.308	
R(reflections) = 0.0290(1133) wR2(reflections) = 0.0912(1265)				
S = 1.322	Npar	= 92		

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

.Alert level C

PLAT019_ALERT_1_Cdiffrn_measured_fraction_theta_full/_max < 1	.0
0.994 Report	
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds	0.0080
Ang.	
PLAT350_ALERT_3_C Short C-H (X0.96,N1.08A) C1 - H1C	0.76
Ang.	

Alert level G

PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info PLAT164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-Atom Struct. 2 Note PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 293 Check PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Br1 -- Cu1 34.6 su ... PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Br2 -- Cu1 25.4 su ... PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C1 Check PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.19 Ratio

0 **ALERT level A** = Most likely a serious problem - resolve or explain 0 **ALERT level B** = A potentially serious problem, consider carefully 3 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected

<u>B-II- (MQ)[BF₄]</u>

Summary of crystallographic data

Empirical formula		С9 Н9 В F4 N2			
Formula weight		231.99			
Temperature		293(2) к			
Wavelength		0.71073 A			
Crystal system, space group		Monoclinic, P 21/a			
Unit cell dimensions	a = b = c =	13.372(2) A alpha = 90 deg. 6.2221(9) A beta = 112.232(11) deg. 13.8278(19) A gamma = 90 deg.			
Volume		1064.9(3) A^3			
Z, Calculated density		4, 1.447 Mg/m^3			
Absorption coefficient		0.136 mm^-1			
F(000)		472			
Crystal size		0.204 x 0.176 x 0.102 mm			
Theta range for data collecti	on	3.066 to 27.398 deg.			
Limiting indices		-17<=h<=17, -7<=k<=8, -17<=l<=14			
Reflections collected / uniqu	e	4693 / 2357 [R(int) = 0.0315]			
Completeness to theta = 25.24	2	98.5 %			
Absorption correction		None			
Refinement method		Full-matrix least-squares on F^2			
Data / restraints / parameter	s	2357 / 0 / 191			
Goodness-of-fit on F^2		0.716			
<pre>Final R indices [I>2sigma(I)]</pre>		R1 = 0.0362, $wR2 = 0.0764$			
R indices (all data)		R1 = 0.1415, $wR2 = 0.0992$			
Extinction coefficient		0.028(4)			
Largest diff. peak and hole		0.082 and -0.074 e.A^-3			

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) N(1) N(2) F(1A) F(1B) F(2A) F(2B) F(2B) F(3A) F(3B) F(4A)	4436(2) 5109(2) 5727(2) 6337(2) 6356(2) 5767(2) 5113(2) 3923(2) 3894(2) 4475(2) 4508(2) 5868(4) 6040(30) 7269(17) 7750(9) 7261(10) 7345(3) 6742(6)	859(5) 1408(4) -443(4) -1021(5) 184(6) 1985(5) 2642(4) 4979(4) 3816(5) 2075(4) 4450(3) 5765(10) 5110(70) 4510(30) 4962(11) 6550(20) 6009(14) 3290(20)	850(2) 2769(2) 2935(3) 3935(4) 4765(3) 4621(2) 3608(2) 2523(3) 1652(2) 1782(2) 3476(2) 1375(4) 1760(50) 2513(7) 2483(7) 1372(16) 1001(6) 882(10)	138(1)86(1)117(1)141(1)133(1)117(1)90(1)119(1)107(1)95(1)114(1)132(2)264(12)263(5)138(4)274(6)152(3)166(4)
F(4B) B(1)	6847(2)	4896(5)	1440(30) 1564(3)	83(1)

Table 3. Bond lengths [A] and angles [deg].

C(1)-N(1) C(1)-H(1A) C(1)-H(1B) C(1)-H(1C) C(2)-C(3) C(2)-C(7) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(4)-H(4) C(5)-C(6) C(5)-H(5) C(6)-C(7) C(6)-H(6) C(7)-N(2) C(8)-N(2) C(8)-N(2) C(8)-C(9) C(8)-H(8) C(9)-N(1) C(9)-H(9) F(1A)-F(1B) F(1A)-F(1B) F(1A)-F(1B) F(1A)-F(1B) F(1A)-F(1B) F(1A)-F(2A) F(2A)-F(2B) F(2A)-F(2B) F(2A)-F(2B) F(2A)-F(2B) F(2A)-F(4B) F(2A)-F(3A) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(3B) F(3A)-F(4B) F(4A)-F(4B) F(4A)-F(4B) F(4A)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4B)-B(1) F(4A)-F(4B) F(4B)-B(1) F(4A)-B(1) F(4B)-B(1)	$\begin{array}{c} 1.478(3)\\ 0.9600\\ 0.9600\\ 0.9600\\ 1.370(3)\\ 1.385(3)\\ 1.390(3)\\ 1.361(4)\\ 0.9300\\ 1.363(4)\\ 0.9300\\ 1.363(4)\\ 0.9300\\ 1.341(4)\\ 0.9300\\ 1.402(3)\\ 0.9300\\ 1.357(3)\\ 1.295(3)\\ 1.392(4)\\ 0.9300\\ 1.305(3)\\ 0.9300\\ 0.64(7)\\ 1.348(5)\\ 1.220(15)\\ 1.62(6)\\ 0.719(17)\\ 1.240(9)\\ 1.77(3)\\ 1.383(9)\\ 1.732(18)\\ 0.659(19)\\ 1.244(11)\\ 1.387(6)\\ 0.838(17)\\ 1.344(7)\\ 1.366(12)\\ 100.5\end{array}$
N(1)-C(1)-H(1A)	109.5

N(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
H(1A) - C(1) - H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
N(1)-C(2)-C(3) N(1)-C(2)-C(7)	121.5(3)
C(3)-C(2)-C(7)	120.5(3)
C(4) - C(3) - C(2)	118.6(3)
C(4)-C(3)-H(3)	120.7
C(3) - C(4) - C(5)	121.6(3)
С(3)-С(4)-Н(4)	119.2
C(5)-C(4)-H(4) C(6)-C(5)-C(4)	119.2 120 8(3)
с(6)-с(5)-н(5)	119.6
С(4)-С(5)-Н(5)	119.6
C(5) - C(6) - U(7) C(5) - C(6) - H(6)	120.1(3) 120.0
с(7)-с(6)-н(6)	120.0
N(2)-C(7)-C(2)	122.1(2)
C(2) - C(7) - C(6)	119.4(3) 118.5(3)
N(2)-C(8)-C(9)	123.8(3)
N(2) - C(8) - H(8)	118.1
N(1) - C(9) - C(8)	110.1 119.4(3)
N(1)-C(9)-H(9)	120.3
C(8)-C(9)-H(9)	120.3
C(9) - N(1) - C(2) C(9) - N(1) - C(1)	120.1(2) 118.8(3)
C(2)-N(1)-C(1)	121.2(2)
C(8) - N(2) - C(7) E(1R) - E(1A) - B(1)	116.6(2) 64.6(17)
F(1A) - F(1B) - B(1)	87(4)
F(1A) - F(1B) - F(2A)	129(2)
B(1)-F(1B)-F(2A) E(2B)-E(2A)-B(1)	49.3(18) 85.4(15)
F(2B) - F(2A) - F(1B)	126(2)
B(1) - F(2A) - F(1B)	48.2(18)
F(2B) - F(2A) - F(4B) B(1) - F(2A) - F(4B)	50.3(9)
F(1B)-F(2A)-F(4B)	69.1(11)
F(2A) - F(2B) - B(1)	63.4(11)
B(1) - F(2B) - F(3A)	45.4(4)
F(3B) - F(3A) - B(1)	87.9(14)
F(3B)-F(3A)-F(2B) B(1)-F(3A)-F(2B)	106.3(19) 52 3(7)
F(3A) - F(3B) - B(1)	63.7(12)
F(4B) - F(4A) - B(1)	73.4(13)
F(4A) - F(4B) - B(1) F(4A) - F(4B) - F(2A)	112.1(17)
B(1)-F(4B)-F(2A)	44.3(8)
F(1B)-B(1)-F(2A) F(1B)-B(1)-F(3A)	82(4) 117(2)
F(2A) - B(1) - F(3A)	109.1(15)
F(1B) - B(1) - F(4A)	112.0(11)
F(2A)-B(1)-F(4A) F(3A)-B(1)-F(4A)	118.8(10) 113.7(13)
F(1B)-B(1)-F(1A)	28(3)
F(2A) - B(1) - F(1A)	107.6(8)
F(3A) - B(1) - F(1A) F(4A) - B(1) - F(1A)	109.0(9)
F(1B)-B(1)-F(4B)	96.2(18)
F(2A) - B(1) - F(4B)	85.4(16)
F(4A) - B(1) - F(4B)	36.0(8)
F(1A)-B(1)-F(4B)	110.8(6)
F(1B)-B(1)-F(2B) F(2A)-B(1)-F(2B)	109(3) 31 2(8)
F(3A)-B(1)-F(2B)	82.3(8)
F(4A) - B(1) - F(2B)	119.4(6)
F(1A)-B(1)-F(2B) F(4B)-B(1)-F(2R)	127.7(5) 98.1(11)
	()

F(1B)-B(1)-F(3B)F(2A)-B(1)-F(3B)F(3A)-B(1)-F(3B)F(4A)-B(1)-F(3B)F(1A)-B(1)-F(3B)F(4B)-B(1)-F(3B)F(2B)-B(1)-F(3B)	137(3) 124.7(13) 28.4(9) 85.5(9) 109.2(4) 117.0(12)	
F(4B)-B(1)-F(3B) F(2B)-B(1)-F(3B)	93.6(6)	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for shelx. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	111	1122	1133	1123	1113	
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) N(1) N(2) F(1A) F(1B) F(2A) F(2B) F(2A) F(2B) F(3A) F(3B) F(4A) F(4B) B(1)	139(2)74(1)96(2)107(2)109(2)112(2)90(1)108(2)96(2)87(1)120(2)110(2)174(14)191(10)122(5)374(15)117(4)136(3)107(5)75(2)	189(3) 95(2) 115(2) 111(2) 124(2) 131(2) 91(2) 106(2) 124(2) 109(2) 105(2) 122(3) 173(15) 469(17) 158(7) 240(8) 227(6) 176(7) 103(5) 83(2)	98(2) 88(2) 136(3) 183(4) 134(3) 97(2) 88(2) 134(3) 94(2) 97(2) 110(2) 174(6) 530(30) 115(4) 112(5) 290(12) 129(4) 164(6) 244(19) 97(3)	$\begin{array}{c} -52(2)\\ -16(2)\\ -29(2)\\ -13(3)\\ 16(2)\\ -19(2)\\ -19(2)\\ -16(2)\\ -7(2)\\ 5(2)\\ -18(1)\\ -23(1)\\ -32(2)\\ -80(20)\\ 66(7)\\ -25(4)\\ -104(11)\\ 18(4)\\ -80(4)\\ -11(7)\\ -4(2)\end{array}$	$\begin{array}{c} 60(2)\\ 31(1)\\ 40(2)\\ 31(2)\\ 10(2)\\ 28(2)\\ 31(1)\\ 35(2)\\ 28(2)\\ 43(1)\\ 36(1)\\ 66(3)\\ 230(19)\\ 41(5)\\ 19(3)\\ 218(14)\\ 66(3)\\ 31(3)\\ 46(9)\\ 37(2) \end{array}$	$\begin{array}{c} -35(2) \\ -9(1) \\ 3(2) \\ 10(2) \\ -4(2) \\ -19(2) \\ -8(1) \\ 8(2) \\ -16(2) \\ -22(1) \\ 6(1) \\ 14(2) \\ -60(11) \\ 57(7) \\ -3(3) \\ -184(10) \\ -5(3) \\ 30(4) \\ -10(4) \\ -9(2) \end{array}$

checkCIF/PLATON report (basic structural check)

No syntax errors found. Please wait while processing

CIF dictionary Interpreting this report

Datablock: shelx

Bond precisi	on: C-C =	0.0047 A	Wavelength=0.71073
Cell:	a=13.372(2)	b=6.2221(9)	c=13.8278(19)
	alpha=90	beta=112.232	(11) gamma=90
Temperature:	293 K		-
-	Calculat	ted	Reported
Volume	1065.0(3	3)	1064.9(3)
Space group	P 21/a		P 21/a
Hall group	-P 2yab		-P 2yab
Moiety formu	la C9 H9 N2	2, B F4	C9 H9 N2, B F4
Sum formula	С9 Н9 В	F4 N2	C9 H9 B F4 N2
Mr	231.99		231.99
Dx,g cm-3	1.447		1.447
Z	4		4
Mu (mm-1)	0.136		0.136
F000	472.0		472.0
F000'	472.36		
h,k,lmax	17,8,17		17,8,17
Nref	2419		2357
Tmin,Tmax	0.973,0	.986	
Tmin'	0.973		
Correction m	ethod= Not giv	en	
Data complet	eness= 0.974	Theta(ma	ax) = 27.398
R(reflection	s)= 0.0362(70	7) wR2(:	reflections)= 0.0992(2357)
S = 0.716	Npar	= 191	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

.Alert level B

PLAT026_ALERT_3_B Ratio Ob	oserved / Unique Reflections too Low	30
%		
PLAT242_ALERT_2_B Low	Ueq as Compared to Neighbors for	B1
Check		

.Alert level C

GOODF01_ALERT_2_C The least squares goodness of fit parameter lie	es
outside the range 0.80 <> 2.00	
Goodness of fit given = 0.716	
PLAT234_ALERT_4_C Large Hirshfeld Difference F3A B1	0.23 Ang.
PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for	C4
Check	
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.0047
Ang.	

Alert level G

PLAT128 ALERT 4 G Alternate Setting for Input Space Group P21/a P21/c Note PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 293 Check PLAT230_ALERT_2_G Hirshfeld Test Diff for F3B -- B1 6.2 su PLAT301_ALERT_3_G Main Residue Disorder Percentage = 25 Note PLAT432_ALERT_2_G Short Inter X...Y Contact F4A ... C9 ... 2.97 Ang. And 2 other PLAT432 Alerts

More PLAT764_ 1 35 Rati	_ALERT_4	L_G Over	omplete	e CIF Bo	nd List [Detecte	ed (Rep/Expd) .	
PLAT779_ Check	_ALERT_4	I_G Suspe	ect or Iri	relevant	(Bond)	Angle	in CIF #	55
PLAT779_ Check	B1 -F4I _ALERT_4	B -F2A 4_G Suspe	1.555 ect or Iri	1.555 relevant	1.555 (Bond)	Angle	44.30 Deg. in CIF #	62
PLAT779_	F1B -B1 _ALERT_4	-F1A I_G Suspe	1.555 ect or In	1.555 elevant	1.555 (Bond)	Angle	28.00 Deg. in CIF #	69
PLAT779_	F4A -B1 _ALERT_4	-F4B I_G Suspe	1.555 ect or Irr	1.555 relevant	1.555 (Bond)	Angle	36.00 Deg. in CIF #	72
PLAT779_	F2A -B1 _ALERT_4	-F2B I_G Suspe	1.555 ect or Irr	1.555 relevant	1.555 (Bond)	Angle	31.20 Deg. in CIF #	79
Спеск	F3A -B1	-F3B	1.555	1.555	1.555		28.40 Deg.	

0 ALERT level A = Most likely a serious problem - resolve or explain

2 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 14 ALERT level G = General information/check it is not something unexpected

<u>C-Supplementary Tables</u>

Table S1: View of the $[CuBr_2]_{\infty}$ chain with the corresponding selected Bond distances [Å] and Angles (deg.)

a(bc)d: dihedral angle between the abc and bcd planes, (bc) being the common shared-edge

Table S2: Thermal ellipsoid view of the MQ moiety of $(MQ)[CuBr_2]_{\infty}$ with its corresponding selected Bond distances [Å] and Angles (deg.). Comparison with those measured in $(MQ)[BF_4]$ and reported in $(MQ)_2\{H_2-[Fe^{II}(CN)_6]\}$.⁷

		$(MQ)[CuBr_2]_{\infty}$	(MQ)[BF ₄] (ESI [†])	$(MQ)_{2}{H_{2}-[Fe^{II}(CN)_{6}]}^{7}$
	$C_1 - N_1 =$	1.480 (6)	1.478 (3)	1.476 (7)
~	$C_{9}-N_{1}=$	1.315 (6)	1.305 (3)	1.364 (6)
	$C_{9}-C_{8}=$	1.398 (8)	1.392 (4)	1.288 (8)
ice	$C_8 - N_2 =$	1.298 (8)	1.295 (3)	1.331 (6)
star	$C_7 - N_2 =$	1.372 (6)	1.357 (3)	1.389 (5)
Dis	$C_7 - C_2 =$	1.414 (7)	1.390 (3)	1.355 (6)
p	$C_2 - C_3 =$	1.397 (6)	1.385 (3)	1.440 (6)
301	$C_3 - C_4 =$	1.362 (8)	1.361 (4)	1.342 (7)
-	$C_4 - C_5 =$	1.405 (9)	1.363 (4)	1.331 (8)
	$C_{5}-C_{6}=$	1.364 (9)	1.341 (4)	1.388 (7)
	$C_{6}-C_{7}=$	1.403 (8)	1.402 (3)	1.440 (6)
	$C_1 - N_1 - C_2 =$	119.2 (4)	121.2 (3)	122.8 (3)
	$C_9 - N_1 - C_2 =$	120.7 (4)	120.1 (2)	115.0 (3)
gles	$N_1 - C_9 - C_8 =$	119.6 (5)	119.4 (3)	123.4 (4)
	$C_9 - C_8 - N_2 =$	123.3 (5)	123.8 (3)	125.2 (5)
	$C_8 - N_2 - C_7 =$	117.5 (5)	116.6 (2)	112.9 (3)
an	$N_2 - C_7 - C_2 =$	121.6 (5)	122.1 (2)	124.0 (3)
ıar	$C_7 - C_2 - N_1 =$	117.1 (4)	118.0 (2)	119.0 (3)
Plan	$C_7 - C_2 - C_3 =$	120.8 (5)	120.5 (3)	119.2 (4)
	$C_2 - C_3 - C_4 =$	118.1 (5)	118.6 (3)	117.8 (4)
	$C_3 - C_4 - C_5 =$	122.2 (5)	121.6 (3)	123.7 (5)
	$C_4 - C_5 - C_6 =$	120.0 (5)	120.8 (3)	121.5 (5)
	$C_{5}-C_{6}-C_{7} =$	119.7 (5)	120.1 (3)	116.2 (4)

$C_6 - C_7 - C_2 =$	119.2 (5)	118.5 (3)	121.2 (3)
0 / 2			· · · · ·

Table S3: Average Interplanar distances between two consecutives cations in some cationic π -deficient heterocycles with a similar stacking arrangement.

Compound Formula ^a	Temperature (K)	Interplanar distance [Å] (b)	Ref.
$(NMP)_2[Pd(C_2O_4)_2]$	295	3.25 ^(c)	11a
$(NMP)_2[Cu(mnt)_2]$	295	3.33	11b
$(NMP)_2[Pd(NO_2)_4]$	295	3.33	11c
$(NMP)[Ni(S_2C_6H_4)_2]$	295	3.36	11d
(NMP)[TCNQ]	295	3.36	11e
$(NMP)[Ni(mnt)_2]$	295	3.38	11f
$(NMP)[2,5-Cl_2TCNQ]$	296	3.42	11g
(NMP) ₂ [Ni(mmt) ₂]	295	3.42	11h
$(Q)_{4}[Ge_{1}Mo_{12}O_{39}OH]$	295	3.42	11i
$(Q)_4[PMo_9W_3O_{40}\cdot 2DMF]$	295	3.44	11j
$(Q)[Co(Co)_4]$	295	3.46	11k
$(MQ)_{2}{H_{2}-[Fe^{II}(CN)_{6}]}$	295	3.47	7
$(N-MeA)_2[Ni(mnt)_2]$	291	3.52	111
$(N-MeA)[X], H_2O(X=Cl^-, Br^-)$	295	$3.52^{\text{Cl}}, 3.54^{\text{Br}}$	11m

(a) NMP=N-Methylphenazinium, Q=N-Methylquinolinium, MQ=N-methylquinoxalinium, N-MeA=N-Methylacridinium. (b) Average distance measured between two consecutive planes which contain only the phenazine or quinoxaline core. (c) Specific distance measured in a NMP/NMP/[Pb(C₂O₄)₂] tryad

D-Supplementary Figures

Figure S1. Stacking parameters within the organic sub-network of (MQ)[CuBr₂]_∞: Interplanar distance (h), shift distance between the centres of the two phenyls (r), inclination angle between two MQ moieties (θ), twist angle between two MQ (φ), direction of the shift r along the N⁺-CH₃

direction (ψ). Calculated effective stacking surface (red) of about 12%.

Figure S2. Cyclic Voltammogram of (MQ)[BF4] (0.65mM) in DMF, with TBAP (0.1 M) as supporting electrolyte on Pt, at different scan rates.

Figure S3. Infrared spectra (MQ)[CuBr₂] $_{\infty}$ (solid line) and (MQ)[BF₄] (dashed line).

Figure S4. X-band EPR spectrum of polycrystalline (MQ)[CuBr₂] $_{\infty}$ recorded at ambient temperature (experimental conditions: frequency, 9.4471 GHz; power, 20.0 mW; modulation, 0.2

Figure S5. X-band EPR spectrum of (MQ)[CuBr₂] recorded in DMSO solution at 333 K (experimental conditions: frequency, 9.4235 GHz; power, 50.3 mW; modulation, 0.6 mT). Two identifiable four-line Cu(II) signals are indicated above the spectrum.

Figure S6. Comparison of the EPR spectra of 'exposed' (MQ)[CuBr2] (black) and CuBr2 (red) inDMSO solution at 293 K (experimental conditions: frequency, 9.4248 GHz; power, 15.0 mW;modulation,0.6mT).

Figure S7. Conductivity of single crystal along the *b* axis of $(MQ)[CuBr_2]_{\infty}$ plotted as a function of the inverse temperature. The black line is the fit of the data with an activation law.

E-Further experimental techniques

Resistivity measurements. Gold wires were attached with silver paint on the corresponding small faces of the plate-like single crystals. Because of very high resistance values, two-probe DC measurements were performed under vacuum, applying a constant voltage in the range 100 - 200V and measuring the current using a Keithley 6487 Picoammeter / Voltage Source. The temperature dependence of the resistivity has been measured in a Quantum Design PPMS.