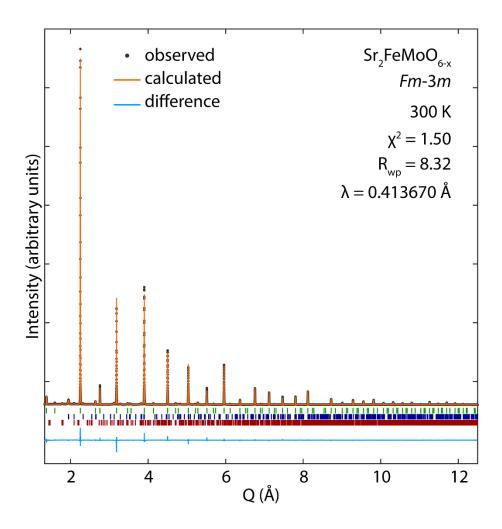
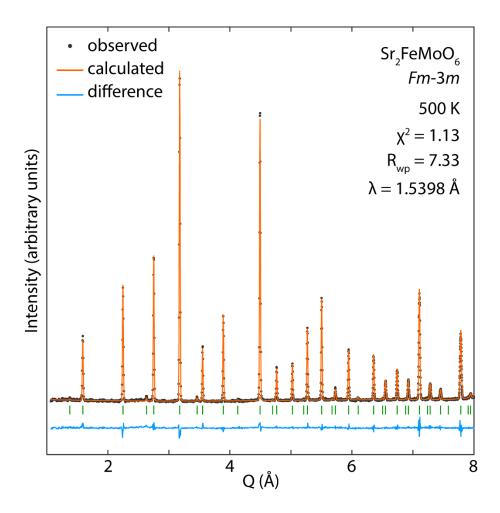
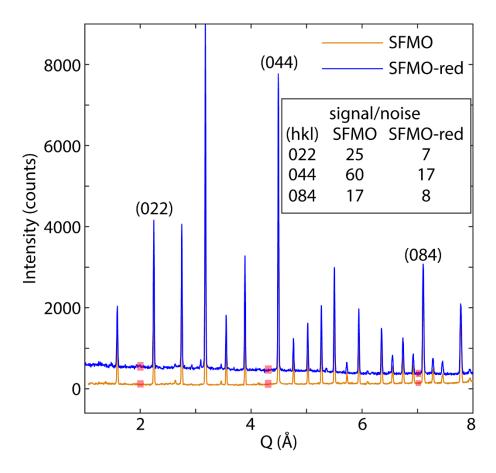
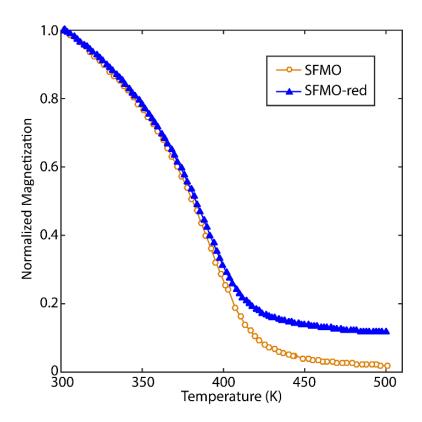

Stabilization of cubic Sr₂FeMoO₆ through topochemical reduction


Daniel D. Taylor^a, Nathaniel J. Schreiber^a, Craig M. Brown^{b,c}, Angel M. Arevalo-Lopez^d, and Efrain E. Rodriguez^{a,e}

- ^a Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742-2115, USA
- ^b NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
- ^c Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- d Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- ^e Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, 20742-4454, USA. E-mail: efrain@umd.edu


Electronic Supplemental Information


Figure S1. Synchrotron X-ray powder diffraction data of starting material, Sr₂FeMoO₆, collected at 300 K. The locations of the allowed reflections for Sr₂FeMoO₆ are shown as green tick marks, and the locations of allowed reflections for SrMoO₄ are shown as red tick marks, below the observed and calculated patterns. The presence of SrMoO₄ was only detected in Synchrotron XRD experiments. Neutron powder diffraction, a truly bulk technique, showed the sample to be pure Sr₂FeMoO₆.


Figure S2. Synchrotron X-ray powder diffraction data of reduced material, Sr₂FeMoO_{6-x}, collected at 300 K. The locations of the allowed reflections for Sr₂FeMoO_{6-x} are shown as green tick marks, the locations of allowed reflections for SrMoO₄ are shown as blue tick marks, and the locations of allowed reflections for SrCO₃ are shown as red tick marks, below the observed and calculated patterns. The presence of SrMoO₄ and SrCO₃ were only detected in Synchrotron XRD experiments. Neutron powder diffraction, a truly bulk technique, showed the sample to be pure Sr₂FeMoO_{6-x}.

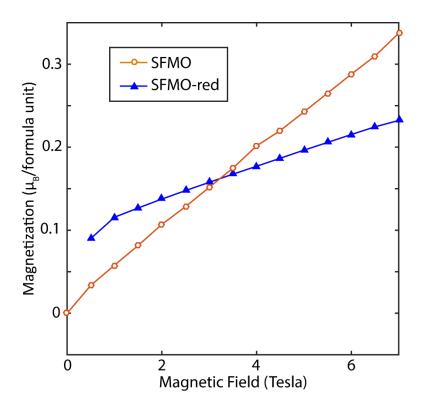

Figure S3. Neutron powder diffraction data of starting material, Sr₂FeMoO₆, collected at 500 K. The locations of the allowed reflections for Sr₂FeMoO₆ are shown as green tick marks below the observed and calculated patterns.

Figure S4. Overlay of the NPD patterns collected at 500 K. The background for the reduced sample (SFMO-red) is large and downward sloping, as is expected when an incoherent scattering element (e.g. hydrogen) is present in the material. The signal to noise ratio was calculated for three peaks in each pattern. The peaks were selected to represent low, medium, and high Q. The signal was taken as the highest intensity point from the given peak and the noise was calculated by taking the average counts for 11 points from the area highlighted with a red square.

Figure S5. Magnetization versus temperature (cooling) for the starting material, Sr_2FeMoO_6 (SFMO), and the reduced material, Sr_2FeMoO_{6-x} (SFMO-red) under an applied field of 0.5 Tesla. Magnetization data is normalized to its value at 300 K.

Figure S6. Magnetization versus field at 500 K (paramagnetic region) for the starting material, Sr₂FeMoO₆(SFMO), and the reduced material, Sr₂FeMoO_{6-x}(SFMO-red).

Table S1. Complete refinement parameters for synchrotron X-ray and neutron powder diffraction experiments. ASD is the percent disorder on the B-site sublattice and rot. angle is the octahedral tilt angle.

		Sr ₂ FeMoO ₆			Sr ₂ FeMoO _{6-x}	
Temperature		300 K		500 K	300 K	500 K
Technique		S-XRD		NPD	S-XRD	NPD
Space Group		I4/m		Fm-3m	Fm-3m	Fm-3m
a (Å)		5.572022(7)		7.90784(6)	7.890986(7)	7.90795(6)
c (Å)		7.90426(1)		-	-	-
volume (ų)		245.4069(7)		494.51(1)	491.353(1)	494.53(1)
ASD%		10.5(2)		-	14.0(2)	-
rot. angle (°)		7.93		0	0	0
Sr	(0 1/2	1/4)	(1/4 1/4 1/4)			
	B_{iso}	0.689(6)	B_{iso}	1.16(2)	0.720(6)	1.13(2)
Fe	(0 0 1/2	2)	(0 0 0)			
	B_{iso}	0.25(1)	B_{iso}	0.49(4)	0.43(1)	0.50(5)
Mo	(0 0 0)		(1/2 1/2 1/2)			
	Biso	0.356(7)	Biso	0.66(5)	0.256(6)	0.66(6)
O(1)	(x y 0)		(x 0 0)			
	x	0.2284(6)	χ	0.2533(4)	0.2543(2)	0.2530(5)
	у	0.2630(4)				
	осс	1.006(3)	осс	1.000(5)	0.929(3)	0.898(4)
	B_{iso}	1.08(4)	U_{11}	0.0070(5)	-	0.0061(5)
			$U_{22} & U_{33}$	0.0241(3)	-	0.0232(3)
			$(U_{12} \& U_{13} \& U_{23} = 0)$			
			Biso	-	1.01(2)	-
O(2)	$(0\ 0\ z)$					
	z	0.2456(3)				
	осс	1.006(3)				
	B_{iso}	0.86(4)				
R_{wp}		10.09		7.33	8.38	4.72
χ^2		1.69		1.13	1.5	1.14