Rhodium-Catalyzed Intramolecular Alkynylsilylation of Alkynes

Ryo Shintani,* Hiroki Kurata, and Kyoko Nozaki*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Electronic Supplementary Information

I. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques or in a glove box under argon. NMR spectra were recorded on JEOL JNM-ECS400 or BRUKER Ascend500 spectrometers. Elemental analyses were performed by One-Stop Sharing Facility Center for Future Drug Discoveries, Graduate School of Pharmaceutical Sciences, The University of Tokyo. High resolution mass spectra were recorded on JEOL AccuTOF LC-plus spectrometer. Optical rotations were recorded on JASCO P-2200 polarimeter. UV-VIS spectra were recorded on SHIMADZU UV-3150 spectrometer. Fluorescence spectra were recorded on JASCO FP-8500 Spectrofluorometer. Absolute quantum yields were determined by Hamamatsu C9920-02G Absolute PL Quantum Yields Measurement System. X-ray crystallographic analysis was performed by RIGAKU VariMax Dual with Saturn724 diffractometer.

Et₂O, THF, and CH₂Cl₂ were purified by passing through neutral alumina columns under argon. dichlorodimethylsilane (TCI), phenylacetylene (TCI), 1,4-dimethoxy-2-butyne (Aldrich), MeCN (Kanto Chemical; dehydrated), PPh₃ (Wako Chemicals), P(4-MeOC₆H₄)₃ (TCI), P(4-FC₆H₄)₃ (Alfa Aesar), (*S*)-Ph-phox (Aldrich), and (*R*)-*i*Pr-phox (Strem), 1propynylmagnesium bromide (Aldrich; 0.5 M solution in THF), *t*-BuLi (Kanto Chemical; 1.63 M solution in pentane), *n*-BuLi (Kanto Chemical; 1.55 M solution in hexane), and ZnCl₂ (TCI) were used as received. 1-Bromo-8-iodonaphthalene,¹ Pd(PPh₃)₄,² [RhCl(C₂H₄)₂]₂,³ (*R*)-MeO-mop,⁴ (*S*,*S*,*S*)-phosphoramidite,⁵ (*R*,*S*,*S*)-phosphoramidite,⁵ and sodium tetrakis(3,5bistrifluoromethylphenyl)borate⁶ were synthesized following the literature procedures.

¹ Cottet, F.; Castagnetti, E.; Schlosser, M. Synthesis 2005, 798.

² Coulson, D. R.; Satek, L. C.; Grim, S. O. Inorg. Synth. 1972, 13, 121.

³ Cramer, R.; McCleverty, J. A.; Bray, J. Inorg. Synth. 1974, 15, 14.

⁴ Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J. Org. Chem. **1993**, 58, 1945.

⁵ Choi, Y. H.; Choi, J. Y.; Yang, H. Y.; Kim, Y. H. *Tetrahedron: Asymmetry* **2002**, *13*, 801.

⁶ Reger, D. L.; Wright, T. D.; Little, C. A.; Lamba, J. J. S.; Smith, M. D. *Inorg. Chem.* **2001**, 40, 3810.

II. Synthesis of Substrates

Representative Procedures for Substrates: Dimethyl(phenylethynyl)(8-(1-propynyl)-1-naphthyl)silane (1a)

ZnCl₂ (1.77 g, 13.0 mmol) was dried under vacuum using a heat gun. THF (10 mL) was added to it and the suspension was cooled to 0 °C. 1-Propynylmagnesium bromide (24.0 mL, 12.0 mmol; 0.5 M solution in THF) was added to it slowly over 8 min and the resulting mixture was stirred for 25 min at 0 °C. Pd(PPh₃)₄ (325 mg, 0.281 mmol) and 1-bromo-8-iodonaphthalene (3.46 g, 10.4 mmol) were successively added to it with THF (5 mL) and the mixture was stirred for 12.5 h while gradually raising the temperature to room temperature. The reaction was quenched with 1 M HClaq and diluted with H₂O. After extraction with Et₂O, the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane to afford 1-bromo-8-(1-propynyl)naphthalene as a yellow oil (1.57 g, 6.40 mmol, 61% yield).

¹H NMR (CDCl₃): 7.83 (dd, ³ J_{HH} = 7.4 Hz and ⁴ J_{HH} = 1.1 Hz, 1H), 7.80-7.72 (m, 3H), 7.38 (t, ³ J_{HH} = 7.7 Hz, 1H), 7.25 (t, ³ J_{HH} = 7.8 Hz, 1H), 2.15 (s, 3H).

t-BuLi (6.28 mL, 10.2 mmol; 1.63 M solution in pentane) was added slowly to a solution of 1-bromo-8-(1-propynyl)naphthalene (1.26 g, 5.14 mmol) in Et₂O (17 mL) over 9 min at – 75 °C and the mixture was stirred for 50 min at –75 °C. Dichlorodimethylsilane (926 μ L, 7.68 mmol) was added to it and the resulting mixture was stirred for 16 h while gradually raising the temperature to room temperature. The volatiles were then removed under vacuum to afford a crude of chlorodimethyl(8-(1-propynyl)-1-naphthyl)silane. Separately, *n*-BuLi (3.30 mL, 5.12 mmol); 1.55 M solution in hexane) was added to a solution of phenylacetylene (590 μ L, 5.37 mmol) in Et₂O (10 mL) at –75 °C and the mixture was stirred for 55 min at – 75→–60 °C and the cooling bath was removed. This was then added slowly over 7 min with the aid of additional Et₂O (10 mL) to the crude of chlorodimethyl(8-(1-propynyl)-1-naphthyl)silane obtained above in Et₂O (5 mL) at –50 °C. The mixture was stirred for 20 min at –40 °C and for 6 h at room temperature. The reaction was quenched with H₂O, and extracted with Et₂O. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane to afford compound **1a** as a white solid (1.01 g, 3.11 mmol, 61% yield).

¹H NMR (CDCl₃): 8.41 (dd, ${}^{3}J_{\text{HH}} = 7.1$ Hz and ${}^{4}J_{\text{HH}} = 1.1$ Hz, 1H), 7.89 (dd, ${}^{3}J_{\text{HH}} = 8.1$ Hz and ${}^{4}J_{\text{HH}} = 1.1$ Hz, 1H), 7.89 (dd, ${}^{3}J_{\text{HH}} = 8.1$ Hz and ${}^{4}J_{\text{HH}} = 1.1$ Hz, 1H), 7.76 (dd, ${}^{3}J_{\text{HH}} = 7.2$ Hz and ${}^{4}J_{\text{HH}} = 1.2$ Hz, 1H), 7.55-7.50 (m, 2H), 7.48 (dd, ${}^{3}J_{\text{HH}} = 8.0$ and 7.2 Hz, 1H), 7.41 (t, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 1H), 7.34-7.29 (m, 3H), 2.19 (s, 3H), 0.82 (s, 6H). 13 C NMR (CDCl₃): δ 138.2, 137.3, 134.5, 134.4, 134.3, 132.0, 131.7, 129.9, 128.5, 128.4, 125.3, 125.0, 123.8, 122.6, 106.4, 96.2, 94.9, 83.8, 6.1, 3.6. Anal. Calcd for C₂₃H₂₀Si: C, 85.13; H, 6.21. Found: C, 84.87; H, 6.49.

Analytical Data for Other Substrates: Dimethyl(4-methoxyphenylethynyl)(8-(1-propynyl)-1-naphthyl)silane (1b)

¹H NMR (CDCl₃): 8.40 (d, ${}^{3}J_{HH} = 7.0$ Hz, 1H), 7.87 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.80 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.75 (d, ${}^{3}J_{HH} = 7.1$ Hz, 1H), 7.47 (t, ${}^{3}J_{HH} = 7.8$ Hz, 1H), 7.45 (d, ${}^{3}J_{HH} = 8.4$ Hz, 2H), 7.40 (t, ${}^{3}J_{HH} = 7.7$ Hz, 1H), 6.84 (d, ${}^{3}J_{HH} = 8.4$ Hz, 2H), 3.81 (s, 3H), 2.18 (s, 3H), 0.80 (s, 6H). ¹³C NMR (CDCl₃): δ 159.7, 138.2, 137.3, 134.4, 133.5, 131.6, 129.8, 125.3, 124.9, 122.6, 116.0, 113.9, 106.5, 94.8, 94.5, 83.8, 55.4, 6.1, 3.7. Anal. Calcd for C₂₄H₂₂OSi: C, 81.31; H, 6.26. Found: C, 81.23; H, 6.50.

Dimethyl(4-chlorophenylethynyl)(8-(1-propynyl)-1-naphthyl)silane (1c)

¹H NMR (CDCl₃): δ 8.38 (dd, ³*J*_{HH} = 7.0 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 7.91 (dd, ³*J*_{HH} = 8.1 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 7.78 (dd, ³*J*_{HH} = 8.1 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 7.78 (dd, ³*J*_{HH} = 7.2 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 7.50 (dd, ³*J*_{HH} = 8.1 and 7.1 Hz, 1H), 7.48-7.44 (m, 2H), 7.43 (dd, ³*J*_{HH} = 7.9 and 7.3 Hz, 1H), 7.33-7.29 (m, 2H), 2.20 (s, 3H), 0.82 (s, 6H). ¹³C NMR (CDCl₃): δ 138.2, 137.3, 134.54, 134.45, 134.0, 133.2, 131.8, 129.9, 128.7, 125.3, 125.0, 122.5, 122.3, 105.1, 97.5, 94.9, 83.8, 6.1, 3.6. Anal. Calcd for C₂₃H₁₉ClSi: C, 76.96; H, 5.34. Found: C, 76.82; H, 5.41.

Dimethyl(1-propynyl)(8-(1-propynyl)-1-naphthyl)silane (1d)

¹H NMR (CDCl₃): δ 8.38 (dd, ³*J*_{HH} = 6.9 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 7.86 (dd, ³*J*_{HH} = 8.3 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 7.79 (dd, ³*J*_{HH} = 8.1 Hz and ⁴*J*_{HH} = 1.2 Hz, 1H), 7.73 (dd, ³*J*_{HH} = 7.2 Hz and ⁴*J*_{HH} = 1.3 Hz, 1H), 7.46 (dd, ³*J*_{HH} = 8.0 and 7.2 Hz, 1H), 7.38 (t, ³*J*_{HH} = 7.6 Hz, 1H), 2.16 (s, 3H), 1.98 (s, 3H), 0.72 (s, 6H). ¹³C NMR (CDCl₃): δ 138.3, 137.3, 134.7, 134.5, 131.5, 129.9, 125.3, 124.9, 122.5, 104.2, 94.6, 85.7, 83.7, 6.0, 5.4, 3.8. HRMS (ESI-TOF) calcd for C₁₈H₁₈SiCs (M+Cs⁺) 395.0232, found 395.0217.

Dimethyl(phenylethynyl)(8-(1-pentynyl)-1-naphthyl)silane (1e)

¹H NMR (CDCl₃): 8.44 (dd, ${}^{3}J_{\rm HH} = 7.0$ Hz and ${}^{4}J_{\rm HH} = 1.4$ Hz, 1H), 7.88 (dd, ${}^{3}J_{\rm HH} = 8.2$ Hz and ${}^{4}J_{\rm HH} = 1.2$ Hz, 1H), 7.80 (dd, ${}^{3}J_{\rm HH} = 8.1$ Hz and ${}^{4}J_{\rm HH} = 1.2$ Hz, 1H), 7.77 (dd, ${}^{3}J_{\rm HH} = 7.2$ Hz and ${}^{4}J_{\rm HH} = 1.4$ Hz, 1H), 7.54-7.49 (m, 2H), 7.47 (dd, ${}^{3}J_{\rm HH} = 8.1$ and 7.1 Hz, 1H), 7.40 (dd, ${}^{3}J_{\rm HH} = 8.1$ and 7.3 Hz, 1H), 7.34-7.30 (m, 3H), 2.52 (t, ${}^{3}J_{\rm HH} = 7.2$ Hz, 2H), 1.71 (sext, ${}^{3}J_{\rm HH} = 8.1$

7.3 Hz, 2H), 1.07 (t, ${}^{3}J_{HH} = 7.4$ Hz, 3H), 0.81 (s, 6H). ${}^{13}C$ NMR (CDCl₃): δ 138.3, 137.2, 134.9, 134.44, 134.36, 132.0, 131.6, 129.8, 128.5, 128.3, 125.3, 125.0, 123.8, 122.6, 106.6, 99.2, 96.4, 84.5, 23.0, 22.0, 14.0, 3.9. HRMS (ESI-TOF) calcd for C₂₅H₂₄SiCs (M+Cs⁺) 485.0702, found 485.0690.

Dimethyl(phenylethynyl)(8-(phenylethynyl)-1-naphthyl)silane (1f)

¹H NMR (CDCl₃): 8.44 (d, ³ J_{HH} = 7.0 Hz, 1H), 7.93 (d, ³ J_{HH} = 7.0 Hz, 1H), 7.92 (d, ³ J_{HH} = 8.0 Hz, 1H), 7.88 (d, ³ J_{HH} = 8.4 Hz, 1H), 7.69-7.63 (m, 2H), 7.51 (t, ³ J_{HH} = 7.7 Hz, 1H), 7.47 (t, ³ J_{HH} = 7.6 Hz, 1H), 7.43-7.32 (m, 5H), 7.31-7.25 (m, 3H), 0.86 (s, 6H). ¹³C NMR (CDCl₃): δ 138.3, 136.8, 135.7, 134.54, 134.48, 132.0, 131.9, 131.7, 130.8, 128.6, 128.5, 128.4, 128.3, 125.5, 125.0, 123.9, 123.7, 121.9, 107.2, 97.3, 96.0, 93.4, 3.8. Anal. Calcd for C₂₈H₂₂Si: C, 87.00; H, 5.74. Found: C, 86.73; H, 5.86.

Cyclohexyldi(phenylethynyl)(8-(1-propynyl)-1-naphthyl)silane (1g)

¹H NMR (CDCl₃): 8.70 (d, ³ J_{HH} = 7.0 Hz, 1H), 7.91 (d, ³ J_{HH} = 8.2 Hz, 1H), 7.81 (d, ³ J_{HH} = 8.2 Hz, 1H), 7.78 (d, ³ J_{HH} = 6.8 Hz, 1H), 7.60-7.54 (m, 4H), 7.51 (t, ³ J_{HH} = 7.6 Hz, 1H), 7.42 (t, ³ J_{HH} = 7.7 Hz, 1H), 7.37-7.28 (m, 6H), 2.24 (s, 3H), 1.98-1.68 (m, 6H), 1.66-1.52 (m, 2H), 1.38-1.23 (m, 3H). ¹³C NMR (CDCl₃): δ 140.5, 137.3, 134.53, 134.46, 132.2, 129.7, 129.2, 128.7, 128.3, 125.3, 125.1, 123.6, 122.7, 107.7, 96.8, 91.7, 83.9, 28.3, 28.1, 27.0, 6.4. Anal. Calcd for C₃₅H₃₀Si: C, 87.82; H, 6.32. Found: C, 87.88; H, 6.62.

Cyclohexyldi(1-propynyl)(8-(1-propynyl)-1-naphthyl)silane (1h)

¹H NMR (CDCl₃): 8.62 (dd, ${}^{3}J_{HH} = 7.0$ Hz and ${}^{4}J_{HH} = 0.9$ Hz, 1H), 7.86 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H), 7.78 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H), 7.73 (d, ${}^{3}J_{HH} = 7.2$ Hz, 1H), 7.46 (t, ${}^{3}J_{HH} = 7.5$ Hz, 1H), 7.38 (t, ${}^{3}J_{HH} = 7.7$ Hz, 1H), 2.20 (s, 3H), 2.01 (s, 6H), 1.83-1.54 (m, 6H), 1.47-1.33 (m, 2H), 1.30-1.16 (m, 3H). ¹³C NMR (CDCl₃): δ 140.5, 137.2, 134.5, 134.4, 131.9, 129.9, 129.8, 125.2, 124.9, 122.6, 105.5, 96.3, 83.8, 81.4, 28.0, 27.9, 26.9, 6.2, 5.7. HRMS (ESI-TOF) calcd for C₂₅H₂₆SiCs (M+Cs⁺) 487.0858, found 487.0841.

Methyldi(1-propynyl)(8-(1-propynyl)-1-naphthyl)silane (1i)

¹H NMR (CDCl₃): 8.60 (d, ${}^{3}J_{HH} = 7.7$ Hz, 1H), 7.88 (d, ${}^{3}J_{HH} = 7.9$ Hz, 1H), 7.78 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.72 (d, ${}^{3}J_{HH} = 7.1$ Hz, 1H), 7.48 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H), 7.39 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H), 2.20 (s, 3H), 1.99 (s, 6H), 0.82 (s, 3H). ¹³C NMR (CDCl₃): δ 139.4, 137.2, 134.4, 134.1, 132.0, 131.7, 129.6, 125.3, 125.0, 122.5, 104.8, 96.3, 83.5, 83.1, 6.3, 5.6, 4.4. HRMS (ESI-TOF) calcd for C₂₀H₁₈SiCs (M+Cs⁺) 419.0232, found 419.0238.

1,2-Bis(dimethyl(phenylethynyl)silyl)benzene (1j)

¹H NMR (CDCl₃): 7.96-7.90 (m, 2H), 7.53-7.46 (m, 4H), 7.44-7.38 (m, 2H), 7.35-7.27 (m, 6H), 0.67 (s, 12H). ¹³C NMR (CDCl₃): δ 143.1, 135.9, 132.0, 128.72, 128.65, 128.4, 123.4, 107.7, 94.8, 2.1. HRMS (ESI-TOF) calcd for C₂₆H₂₆Si₂Cs (M+Cs⁺) 527.0628, found 527.0614.

1,8-Bis(dimethyl(phenylethynyl)silyl)naphthalene (1k)

¹H NMR (CDCl₃): 8.11 (dd, ${}^{3}J_{\rm HH} = 7.1$ Hz and ${}^{4}J_{\rm HH} = 1.3$ Hz, 2H), 7.80 (dd, ${}^{3}J_{\rm HH} = 7.9$ Hz and ${}^{4}J_{\rm HH} = 1.3$ Hz, 2H), 7.48-7.44 (m, 4H), 7.43 (dd, ${}^{3}J_{\rm HH} = 8.0$ and 7.1 Hz, 2H), 7.33-7.26 (m, 6H), 0.61 (s, 12H). ¹³C NMR (CDCl₃): δ 141.5, 138.0, 136.2, 133.5, 131.9, 131.5, 128.6, 128.3, 124.0, 123.6, 107.6, 95.8, 3.4. HRMS (ESI-TOF) calcd for C₃₀H₂₈Si₂Cs (M+Cs⁺) 577.0784, found 577.0763.

1,4-Bis(dimethyl(8-(1-propynyl)-1-naphthyl)silylethynyl)benzene (4)

¹H NMR (CDCl₃): 8.37 (dd, ${}^{3}J_{\text{HH}} = 7.0$ Hz and ${}^{4}J_{\text{HH}} = 1.3$ Hz, 2H), 7.89 (dd, ${}^{3}J_{\text{HH}} = 8.1$ Hz and ${}^{4}J_{\text{HH}} = 1.2$ Hz, 2H), 7.81 (dd, ${}^{3}J_{\text{HH}} = 8.2$ Hz and ${}^{4}J_{\text{HH}} = 1.2$ Hz, 2H), 7.76 (dd, ${}^{3}J_{\text{HH}} = 7.1$ Hz and ${}^{4}J_{\text{HH}} = 1.2$ Hz, 2H), 7.48 (dd, ${}^{3}J_{\text{HH}} = 7.9$ and 7.1 Hz, 2H), 7.45 (s, 4H), 7.41 (t, ${}^{3}J_{\text{HH}} = 7.7$ Hz, 2H), 2.18 (s, 6H), 0.81 (s, 12H). ¹³C NMR (CDCl₃): δ 138.2, 137.3, 134.5, 134.4, 134.1, 131.8, 131.7, 129.9, 125.3, 125.0, 123.7, 122.5, 105.9, 98.4, 94.9, 83.8, 6.1, 3.6. HRMS (ESI-TOF) calcd for C₄₀H₃₄Si₂Cs (M+Cs⁺) 703.1254, found 703.1232.

III. Catalytic Reactions

General Procedure for Table 1 and Equations 3–4.

A solution of $[RhCl(C_2H_4)_2]_2$ (3.1 mg, 16 µmol Rh) and PPh₃ (4.2 mg, 16 µmol) in CH₂Cl₂ (0.60 mL) was stirred for 5 min at room temperature and MeCN (10.5 µL, 0.201 mmol) was added to it with additional CH₂Cl₂ (0.10 mL). A mixture of compound **1** (0.200 mmol) and NaBAr^F₄ (28.4 mg, 32.0 µmol) in CH₂Cl₂ (0.60 mL) was then added with the aid of additional CH₂Cl₂ (0.70 mL). The reaction mixture was stirred for 16 h at 40 °C, and this was directly passed through a pad of Celite with EtOAc. After removal of the solvent under vacuum, the residue was purified by silica gel preparative TLC to afford compound **3**.

Table 1, Entry 1 (compound 3a). Pale yellow solid. 82% yield.

¹H NMR (CDCl₃): 7.85 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.78 (d, ${}^{3}J_{HH} = 7.4$ Hz, 1H), 7.75 (d, ${}^{3}J_{HH} = 6.5$ Hz, 1H), 7.72 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.58-7.49 (m, 4H), 7.42-7.32 (m, 3H), 2.55 (s, 3H), 0.62 (s, 6H). ¹³C NMR (CDCl₃): δ 145.6, 143.2, 141.7, 138.8, 132.5, 131.4, 129.8, 128.6, 128.3, 128.1, 127.5, 126.6, 126.5, 123.64, 123.60, 95.8, 91.2, 23.3, -2.2. HRMS (ESI-TOF) calcd for C₂₃H₂₀SiCs (M+Cs⁺) 457.0389, found 457.0399.

Table 1, Entry 2 (compound 3b). The reaction was conducted at 0.05 M substrate concentration (in 4.0 mL of CH_2Cl_2). Pale yellow solid. 90% yield (Z/E = 98/2).

¹H NMR (CDCl₃): 7.84 (d, ${}^{3}J_{HH} = 8.2$ Hz, 1H), 7.76 (d, ${}^{3}J_{HH} = 7.9$ Hz, 1H), 7.74 (d, ${}^{3}J_{HH} = 6.8$ Hz, 1H), 7.71 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.57-7.49 (m, 2H), 7.46 (d, ${}^{3}J_{HH} = 8.8$ Hz, 2H), 6.91 (d, ${}^{3}J_{HH} = 8.8$ Hz, 2H), 3.85 (s, 3H), 2.53 (s, 3H), 0.60 (s, 6H). ¹³C NMR (CDCl₃): δ 159.8, 144.6, 143.2, 141.9, 138.9, 132.9, 132.5, 129.8, 128.0, 127.9, 126.64, 126.62, 126.3, 123.4, 115.8, 114.3, 94.6, 91.3, 55.5, 23.3, -2.1. HRMS (ESI-TOF) calcd for C₂₄H₂₂OSiCs (M+Cs⁺) 487.0494, found 487.0489.

Table 1, Entry 3 (compound 3c). The reaction time was 1 h. Pale yellow solid. 93% yield.

¹H NMR (CDCl₃): δ 7.85 (dd, ³*J*_{HH} = 8.1 Hz and ⁴*J*_{HH} = 0.9 Hz, 1H), 7.78 (d, ³*J*_{HH} = 7.3 Hz, 1H), 7.77-7.72 (m, 2H), 7.58-7.50 (m, 2H), 7.46-7.42 (m, 2H), 7.38-7.33 (m, 2H), 2.53 (s, 3H), 0.59 (s, 6H). ¹³C NMR (CDCl₃): δ 146.2, 143.2, 141.6, 138.6, 134.3, 132.54, 132.49, 129.9, 129.0, 128.1, 127.1, 126.70, 126.69, 126.6, 123.7, 122.2, 96.7, 90.0, 23.2, -2.2. Anal. Calcd for C₂₃H₁₉ClSi: C, 76.96; H, 5.34. Found: C, 76.50; H, 5.56.

Table 1, Entry 4 (compound 3d). The reaction was conducted at 80 °C in toluene. White solid. 82% yield.

¹H NMR (CDCl₃): δ 7.82 (d, ³*J*_{HH} = 8.2 Hz, 1H), 7.74-7.66 (m, 3H), 7.56-7.47 (m, 2H), 2.41 (s, 3H), 2.09 (s, 3H), 0.52 (s, 6H). ¹³C NMR (CDCl₃): δ 143.6, 143.1, 141.8, 139.1, 132.5, 129.6, 128.3, 128.0, 126.6, 126.5, 126.0, 123.2, 87.9, 86.2, 23.2, 4.6, -2.4. Anal. Calcd for C₁₈H₁₈Si: C, 82.38; H, 6.91. Found: C, 82.20; H, 6.91.

Table 1, Entry 5 (compound 3e). The reaction time was 2 h. Pale yellow solid. 84% yield.

¹H NMR (CDCl₃): 7.89 (d, ³ J_{HH} = 8.1 Hz, 1H), 7.83-7.79 (m, 2H), 7.77 (d, ³ J_{HH} = 8.2 Hz, 1H), 7.62-7.55 (m, 4H), 7.46-7.36 (m, 3H), 2.92 (t, ³ J_{HH} = 7.8 Hz, 2H), 1.98 (sext, ³ J_{HH} = 7.5 Hz, 2H), 1.20 (t, ³ J_{HH} = 7.3 Hz, 3H), 0.69 (s, 6H). ¹³C NMR (CDCl₃): δ 145.2, 143.3, 141.2, 139.0, 133.5, 132.5, 131.4, 129.8, 128.6, 128.3, 128.0, 126.64, 126.59, 126.57, 123.8, 123.4, 94.5, 92.5, 37.1, 21.5, 14.4, -2.0. Anal. Calcd for C₂₅H₂₄Si: C, 85.17; H, 6.86. Found: C, 84.91; H, 7.05.

Table 1, Entry 6 (compound 3f). The reaction was conducted at 0.05 M substrate concentration (in 4.0 mL of CH_2Cl_2) with P(4-MeOC₆H₄)₃ instead of PPh₃. Yellow solid. 82% yield (Z/E = 94/6).

¹H NMR (CDCl₃): 7.81 (d, ³ J_{HH} = 8.1 Hz, 1H), 7.78 (dd, ³ J_{HH} = 6.6 Hz and ⁴ J_{HH} = 0.9 Hz, 1H), 7.62 (d, ³ J_{HH} = 8.1 Hz, 1H), 7.57-7.51 (m, 3H), 7.50-7.39 (m, 5H), 7.38-7.30 (m, 3H), 7.13 (t, ³ J_{HH} = 7.8 Hz, 1H), 6.89 (d, ³ J_{HH} = 7.4 Hz, 1H), 0.72 (s, 6H). ¹³C NMR (CDCl₃): δ 146.8, 143.3, 140.7, 140.0, 138.1, 132.5, 131.5, 131.3, 129.9, 129.3, 128.6, 128.44, 128.41, 128.14, 128.09, 127.0, 126.6, 126.3, 123.6, 123.1, 94.1, 93.1, -2.1. HRMS (ESI-TOF) calcd for C₂₈H₂₂SiCs (M+Cs⁺) 519.0545, found 519.0530.

Table 1, Entry 7 (compound 3g). The reaction time was 2 h. Pale yellow solid. 93% yield.

¹H NMR (CDCl₃): 7.95-7.86 (m, 2H), 7.79 (d, ${}^{3}J_{HH} = 7.4$ Hz, 1H), 7.73 (d, ${}^{3}J_{HH} = 8.1$ Hz, 1H), 7.67-7.57 (m, 3H), 7.53 (t, ${}^{3}J_{HH} = 7.8$ Hz, 1H), 7.38-7.29 (m, 5H), 7.28-7.16 (m, 3H), 2.58 (s, 3H), 2.31-2.19 (m, 1H), 1.86-1.48 (m, 6H), 1.35-1.06 (m, 3H), 1.01-0.85 (m, 1H). ¹³C NMR (CDCl₃): δ 144.0, 141.5, 141.1, 133.8, 132.5, 132.3, 131.7, 131.4, 129.3, 128.7, 128.6,

128.5, 128.3, 128.2, 126.8, 126.60, 126.57, 123.9, 123.6, 123.1, 107.8, 96.3, 92.7, 88.6, 28.3, 27.8, 27.6, 27.2, 26.8, 25.3, 23.4. HRMS (ESI-TOF) calcd for $C_{35}H_{30}SiCs$ (M+Cs⁺) 611.1171, found 611.1169.

Table 1, Entry 8 (compound 3h). The reaction was conducted for 1 h at 0.05 M substrate concentration (in 4.0 mL of CH₂Cl₂). Yellow solid. 82% yield.

¹H NMR (CDCl₃): 7.87-7.79 (m, 2H), 7.68 (d, ${}^{3}J_{HH} = 7.1$ Hz, 1H), 7.67 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H), 7.54 (dd, ${}^{3}J_{HH} = 8.1$ and 6.8 Hz, 1H), 7.47 (t, ${}^{3}J_{HH} = 7.7$ Hz, 1H), 2.42 (s, 3H), 2.12 (s, 3H), 2.11-2.02 (m, 1H), 1.94 (s, 3H), 1.85-1.73 (m, 1H), 1.72-1.10 (m, 8H), 0.98-0.82 (m, 1H). 13 C NMR (CDCl₃): δ 143.7, 141.5, 139.7, 134.6, 132.4, 131.0, 129.7, 128.3, 126.6, 126.4, 126.0, 123.2, 105.3, 89.4, 86.6, 78.0, 28.3, 28.1, 27.5, 27.3, 26.9, 25.3, 23.3, 5.5, 4.9. HRMS (ESI-TOF) calcd for C₂₅H₂₆SiCs (M+Cs⁺) 487.0858, found 487.0866.

Table 1, Entry 9 (compound 3i). The reaction was conducted at 0.05 M substrate concentration (in 4.0 mL of CH_2Cl_2) with P(4-MeOC₆H₄)₃ instead of PPh₃. White solid. 73% yield.

¹H NMR (CDCl₃): 7.86-7.81 (m, 2H), 7.72-7.66 (m, 2H), 7.55 (dd, ${}^{3}J_{HH} = 8.0$ and 6.8 Hz, 1H), 7.48 (t, ${}^{3}J_{HH} = 7.8$ Hz, 1H), 2.42 (s, 3H), 2.13 (s, 3H), 1.91 (s, 3H), 0.65 (s, 3H). ${}^{13}C$ NMR (CDCl₃): δ 143.2, 141.1, 140.8, 136.0, 132.5, 130.2, 129.8, 128.5, 126.7, 126.6, 126.1, 123.3, 104.9, 89.6, 86.3, 79.6, 23.2, 5.4, 4.7, -2.0. HRMS (ESI-TOF) calcd for C₂₀H₁₈SiCs (M+Cs⁺) 419.0232, found 419.0212.

Equation 3 (compound 3j). Yellow oil. 80% yield.

¹H NMR (CDCl₃): 7.67-7.62 (m, 1H), 7.55-7.46 (m, 5H), 7.43-7.33 (m, 8H), 0.59 (s, 6H), 0.09 (s, 6H). ¹³C NMR (CDCl₃): δ 153.0, 149.6, 149.1, 147.2, 144.0, 132.3, 132.2, 131.6, 129.0, 128.9, 128.7, 128.6, 128.2, 128.1, 127.7, 123.4, 93.3, 92.7, 1.0, -0.7. HRMS (ESI-TOF) calcd for C₂₆H₂₆Si₂Cs (M+Cs⁺) 527.0628, found 527.0623.

Equation 4 (compound 3k). The reaction time was 2 h. White solid. 95% yield.

¹H NMR (CDCl₃): 7.90-7.82 (m, 3H), 7.66 (d, ${}^{3}J_{HH} = 6.6$ Hz, 1H), 7.53 (t, ${}^{3}J_{HH} = 7.4$ Hz, 1H), 7.50-7.38 (m, 8H), 7.38-7.30 (m, 3H), 0.71 (s, 6H), 0.01 (s, 6H). ${}^{13}C$ NMR (CDCl₃): δ 149.0, 147.7, 144.4, 140.8, 139.5, 139.1, 133.9, 133.4, 133.1, 131.5, 130.4, 130.3, 128.7, 128.5, 128.3, 128.0, 125.10, 125.07, 123.4, 96.8, 93.1, 1.2, 0.5. HRMS (ESI-TOF) calcd for C₂₀H₂₈Si₂Cs (M+Cs⁺) 577.0784, found 577.0784.

Procedure for Equation 5.

A solution of $[RhCl(C_2H_4)_2]_2$ (1.5 mg, 7.7 µmol Rh) and PPh₃ (2.0 mg, 7.6 µmol) in CH₂Cl₂ (0.60 mL) was stirred for 5 min at room temperature and MeCN (5.2 µL, 0.10 mmol) was added to it with additional CH₂Cl₂ (0.10 mL). A mixture of compound **4** (57.0 mg, 99.8 µmol) and NaBAr^F₄ (14.1 mg, 15.9 µmol) in CH₂Cl₂ (0.60 mL) was then added with the aid of additional CH₂Cl₂ (0.70 mL). The reaction mixture was stirred for 16 h at 40 °C, and the precipitates that formed were collected by filtration. The solid was washed with CH₂Cl₂ to afford compound **5** as a yellow solid (44.2 mg, 77.4 µmol; 78% yield).

¹H NMR (CDCl₃): 7.86 (dd, ${}^{3}J_{HH} = 8.1$ Hz and ${}^{4}J_{HH} = 0.9$ Hz, 2H), 7.79 (d, ${}^{3}J_{HH} = 7.4$ Hz, 2H), 7.76 (dd, ${}^{3}J_{HH} = 6.6$ Hz and ${}^{4}J_{HH} = 1.1$ Hz, 2H), 7.74 (d, ${}^{3}J_{HH} = 8.0$ Hz, 2H), 7.59-7.49 (m, 8H), 2.56 (s, 6H), 0.63 (s, 12H). ¹³C NMR (CDCl₃): δ 146.3, 143.3, 141.7, 138.7, 132.5, 131.4, 129.9, 128.1, 127.2, 126.70, 126.66, 123.7, 123.4, 97.8, 91.0, 23.3, -2.1. HRMS (ESI-TOF) calcd for C₄₀H₃₄Si₂Cs (M+Cs⁺) 703.1254, found 703.1220.

Figure S1. UV-vis (red line; at 1.75 x 10^{-5} M) and fluorescence spectra (blue line; at 1.75 x 10^{-5} M; excited at 350 nm) of compound **5** in CH₂Cl₂ at 25 °C.

Procedure for Table 3, Entry 7.

A solution of $[RhCl(C_2H_4)_2]_2$ (1.4 mg, 7.2 µmol Rh) and (*R*,*S*,*S*)-phosphoramidite (3.9 mg, 7.3 µmol) in CH₂Cl₂ (0.50 mL) was stirred for 5 min at room temperature and this was diluted with CH₂Cl₂ (1.40 mL). Compound **1g** (34.5 mg, 72.1 µmol) and NaBAr^F₄ (12.8 mg, 14.4 µmol) were added to it with additional CH₂Cl₂ (0.50 mL) and the mixture was stirred for 12 h at 40 °C. This was then directly passed through a pad of silica gel with EtOAc and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC with EtOAc/hexane = 1/200 to afford compound **3g** as a pale yellow oil (20.3 mg, 42.4 µmol; 59% yield). The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = 98/2, flow = 0.6 mL/min. Retention times: 9.3 min [major enantiomer], 10.9 min [minor enantiomer]. 94% ee. [α]²²_D+296 (*c* 0.92, CHCl₃).

IV. X-ray Crystal Structure of Compound 3b

Data Collection

A colorless MeOH solution of **3b** was prepared at room temperature. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

A colorless block crystal of $C_{24}H_{22}OSi$ having approximate dimensions of 0.300 x 0.140 x 0.140 mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn724 diffractometer using graphite monochromated Mo-K α radiation.

The crystal-to-detector distance was 44.73 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

$$\begin{aligned} \mathbf{a} &= 8.624(4) \text{ Å} \\ \mathbf{b} &= 15.417(7) \text{ Å} \\ \mathbf{c} &= 7.309(3) \text{ Å} \\ \mathbf{V} &= 940.1(7) \text{ Å}^3 \end{aligned}$$

For Z = 2 and F.W. = 354.52, the calculated density is 1.252 g/cm^3 . Based on the reflection conditions of:

h0l: $1 \pm 2n$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

Pc (#7)

The data were collected at a temperature of -180 ± 1 °C to a maximum 20 value of 63.2°. A total of 720 oscillation images were collected. A sweep of data was done using ω scans from -110.0 to 70.0° in 0.50° step, at $\chi = 45.0^{\circ}$ and $\phi = 0.0^{\circ}$. The exposure rate was 2.0 [sec./°]. The detector swing angle was -19.88° . A second sweep was performed using ω scans from -110.0 to 70.0° in 0.50° step, at $\chi = 45.0^{\circ}$ and $\phi = 90.0^{\circ}$. The exposure rate was 2.0 [sec./°]. The detector swing angle was -19.88° . A second sweep was performed using ω scans from -110.0 to 70.0° in 0.50° step, at $\chi = 45.0^{\circ}$ and $\phi = 90.0^{\circ}$. The exposure rate was 2.0 [sec./°]. The detector swing angle was -19.88° . The crystal-to-detector distance was 44.73 mm. Readout was performed in the 0.141 mm pixel mode.

Data Reduction

Of the 8691 reflections were collected, where 4784 were unique ($R_{int} = 0.0403$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku).⁷

The linear absorption coefficient, μ , for Mo-K α radiation is 1.343 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.856 to 0.981. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods⁸ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁹ on F^2 was based on 4784 observed reflections and 235 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0413$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1089$$

The goodness of fit¹⁰ was 1.05. Unit weights were used. Plots of $\Sigma w(|Fo| - |Fc|)^2$ versus |Fo|, reflection order in data collection, sin θ/λ and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.29 and $-0.33 \text{ e}^{-}/\text{Å}^3$, respectively. The final Flack parameter¹¹ was 0.10(8), indicating that the present absolute structure is correct.¹²

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4.¹³ Anomalous dispersion effects were included in Fcalc¹⁴; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley.¹⁵ The values for the mass attenuation coefficients are those of Creagh and Hubbell.¹⁶ All calculations were performed

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

where: N_0 = number of observations, N_V = number of variables

¹¹ Parsons, S.; Flack, H. Acta Cryst. **2004**, A60, s61.

⁷ <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998–2014). Tokyo 196-8666, Japan.

⁸ SHELXS97: Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

⁹ Least Squares function minimized: (SHELXL2013)

¹⁰ Goodness of fit is defined as:

 $^{[\}Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$

¹² Flack, H. D.; Bernardinelli J. Appl. Cryst. 2000, 33, 114.

¹³ International Tables for Crystallography, Vol.C (1992). Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, p. 572.

¹⁴ Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. **1964**, *17*, 781.

¹⁵ Creagh, D. C.; McAuley, W. J. "International Tables for Crystallography", Vol C (1992), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Boston, Table 4.2.6.8, p. 219.

¹⁶ Creagh, D. C.; Hubbell, J. H. "International Tables for Crystallography", Vol C, (1992),

Wilson, A. J. C., Ed., Kluwer Academic Publishers, Boston, Table 4.2.4.3, p. 200.

using the CrystalStructure¹⁷ crystallographic software package except for refinement, which was performed using SHELXL2013.¹⁸

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 1401151). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html.

¹⁷ <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000–2014). Tokyo 196-8666, Japan.

¹⁸ <u>SHELXL2013</u>: Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

Experimental Details

A. Crystal Data

Empirical Formula	$C_{24}H_{22}OSi$
Formula Weight	354.52
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.300 X 0.140 X 0.140 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{array}{l} a = 8.624(4) \ \text{\AA} \\ b = 15.417(7) \ \text{\AA} \\ c = 7.309(3) \ \text{\AA} \\ \beta = 104.681(7) \ \text{\AA} \\ V = 940.1(7) \ \text{\AA}^3 \end{array}$
Space Group	Pc (#7)
Z value	2
D _{calc}	1.252 g/cm^3
F000	376.00
μ(ΜοΚα)	1.343 cm^{-1}

B. Intensity Measurements

Diffractometer	Saturn724
Radiation	MoK α ($\lambda = 0.71075$ Å) graphite monochromated
Voltage, Current	50 kV, 24 mA
Temperature	–180.0 °C
Detector Aperture	72.8 mm x 72.8 mm
Data Images	720 exposures
$ω$ oscillation Range (χ =45.0, $φ$ =0.0)	-110.0 - 70.0°
Exposure Rate	2.0 sec./°
Detector Swing Angle	-19.88°
ω oscillation Range (χ=45.0, φ=90.0)	-110.0 - 70.0°
Exposure Rate	2.0 sec./°
Detector Swing Angle	-19.88°
Detector Position	44.73 mm
Pixel Size	0.141 mm
20 _{max}	63.2°
No. of Reflections Measured	Total: 8691 Unique: 4784 (R _{int} = 0.0403) Parsons quotients (Flack x parameter): 1781
Corrections	Lorentz-polarization Absorption (trans. factors: 0.856 - 0.981)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXS97)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	w = $1/[\sigma^{2}(Fo^{2})+(0.0625P)^{2}+0.2261P]$ where P = $(Max(Fo^{2},0)+2Fc^{2})/3$
2θ _{max} cutoff	63.2°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4784
No. Variables	235
Reflection/Parameter Ratio	20.36
Residuals: R1 (I>2.00σ(I))	0.0413
Residuals: R (All reflections)	0.0430
Residuals: wR2 (All reflections)	0.1089
Goodness of Fit Indicator	1.053
Flack parameter (Parsons' quotients = 1781)	0.10(8)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.29 e^{-1}/Å^{3}$
Minimum peak in Final Diff. Map	-0.33 e ⁻ /Å ³

V. ¹H and ¹³C NMR Spectra

