Chiral *N*,*N*'-Dioxide-FeCl₃ Complex Catalyzed Asymmetric Intramolecular Cannizzaro Reaction

Wangbin Wu,[†] Xiaohua Liu,[†] Yuheng Zhang,[†] Jie Ji,[†] Tianyu Huang,[†] Lili Lin,[†] and Xiaoming Feng^{*,†,‡}

[†]Key Laboratory of Green Chemistry & Technology (Sichuan University), Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

[‡] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), P. R. China

xmfeng@scu.edu.cn

Supporting Information

CONTENTS:

(A) General information	2
(B) Optimization of the conditions	2
(C) Methods for the preparation of glyoxals	6
(D) Typical procedure for the asymmetric intramolecular Cannizzaro reaction	6
(E) Gram-scale experiment	7
(F) Deuterium-label experiments	8
(H) Control experiments	9
(I) The electrospray ionization mass spectrometry (ESI-MS) analysis	10
(J) Spectral characterization data and HPLC conditions for the products	11
(K) Spectral characterization data and HPLC conditions for the alkyl products	28
(L) Copies of NMR spectra for products	34
(M) References	69

(A) General information

Reactions were carried out using commercial available reagents in oven-dried apparatus. CH₂Cl₂, *iso*-propanol, *tert*-butanol, cyclopentanol and cyclohexanol were dried and distilled from calcium hydride under nitrogen just before use. Methanol and ethanol were refluxed and distilled from magnesium powder under nitrogen just before use. Molecular sieves were dried at 500 °C for 4 h and restored in nitrogen before use. ¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = $\frac{1}{2}$ singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR data were collected at 100 MHz with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomeric excesses (ee) were determined by chiral HPLC analysis on Daicel Chiralcel IA/IC/AD-H/AS-H/OD-H in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_D^T = (c; g/100 \text{ mL})$ in solvent). ESI-HRMS spectra were recorded on a commercial apparatus and methanol or acetonitrile was used to dissolve the sample. The N,N'-dioxides were prepared according to the methods reported in the literature.^[1]

(B) Optimization of the conditions

Screening of the metal salts

Entry ^a	Metal	Ligand	Yield ^b (%)	ee^{c} (%)
1	Sc(OTf) ₃	L-RaPr ₂	41	87
2	Y(OTf) ₃	L-RaPr ₂	nr	-
3	La(OTf) ₃	L-RaPr ₂	nr	-
4	Yb(OTf) ₃	L-RaPr ₂	24	74
5	Fe(OTf) ₃	L-RaPr ₂	39	91
6	Cu(OTf) ₂	L-RaPr ₂	nr	-
7	In(OTf) ₃	L-RaPr ₂	43	84
8	FeCl ₂	L-RaPr ₂	66	92
9	FeBr ₂	L-RaPr ₂	58	91
10	Fe(acac) ₃	L-RaPr ₂	nr	-
11	FeCl ₃	L-RaPr ₂	38	93
12	FeBr ₃	L-RaPr ₂	58	90

^{*a*}Unless otherwise noted, the reactions were performed with L-metal (1.2:1, 10 mol%), **1a** (0.25 mmol), 3 Å MS (100 mg) in *t*BuOH (1.0 mL) at 30 °C for 12 h without extrusion of air. ^{*b*} Yield of the isolated products according to the amount of **1a**. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Screening of the ligands

L-PrPh: R = Ph, n=1 L-PiPh: R = Ph, n=2 L-PrPr₂: R = 2,6-*i*Pr₂C₆H₃, n=1 L-PiPr₂: R = 2,6-*i*Pr₂C₆H₃, n=2

L-RaPh: R = Ph **L-RaPr₂**: R = 2,6-*i*Pr₂C₆H₃

Entry ^a	Metal	Ligand	$\operatorname{Yield}^{b}(\%)$	ee^{c} (%)
1	FeCl ₃	L-RaPr ₂	38	93
2	FeCl ₃	L-PrPh	nr	-
3	FeCl ₃	L-PiPh	nr	-
4	FeCl ₃	L-RaPh	nr	-
5	FeCl ₃	L-PrPr ₂	30	86
6	FeCl ₃	L-PiPr ₂	51	82

^{*a*}Unless otherwise noted, the reactions were performed with L-FeCl₃ (1.2:1, 10 mol%), **1a** (0.25 mmol), 3 Å MS (100 mg) in *t*BuOH (1.0 mL) at 30 °C for 12 h without extrusion of air. ^{*b*} Yield of the isolated products according to the amount of **1a**. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Screening of solvents and additives

	L-Ral OH + <i>t</i> BuOH	Pr ₂ -FeCl ₃ (1.2:1) <u>10 mol%</u> additives		I
1a	2a		3aa	
Entry ^a	Solvent volume,	Additive	Yield ^b (%)	ee ^c (%)
	tBuOH/CH2Cl2 ratio			
1	1.0 mL, 1:0	3 Å MS, 100 mg	38	93
2	0.5 mL, 1:0	3 Å MS, 100 mg	44	95
3	0.4 mL, 1:0	3 Å MS, 100 mg	29	96
4	0.4 mL, 1:1	3 Å MS, 100 mg	65	87
5	0.4 mL, 5:1	3 Å MS, 100 mg	88	94
6	0.4 mL, 6:1	3 Å MS, 100 mg	94	93
7	0.4 mL, 7:1	3 Å MS, 100 mg	45	93
8	0.4 mL, 6:1	Na ₂ SO ₄ , 100 mg	nr	-
9	0.4 mL, 6:1	K ₂ CO ₃ , 100 mg	nr	-
10	0.4 mL, 6:1	4 Å MS, 100 mg	69	93
11	0.4 mL, 6:1	5 Å MS, 100 mg	74	92

^{*a*}Unless otherwise noted, the reactions were performed with **L-RaPr**₂-FeCl₃ (1.2:1, 10 mol%), **1a** (0.25 mmol), in solvent at 30 ^{*a*}C for 12 h without extrusion of air. ^{*b*} Yield of the isolated products according to the amount of **1a**. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Screening of the solvents in the optimized conditions

^{*a*}Unless otherwise noted, the reactions were performed with L-RaPr₂-FeCl₃ (1.1:1, 5 mol%), 1a (0.25 mmol), 3 Å MS (100 mg) in *t*BuOH (0.4 mL, *t*BuOH/solvent = 6:1) at 30 °C for 12 h. ^{*b*} Yield of the isolated products according to the amount of 1a. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

Screening of the ligand-metal ratio and the catalyst loading

Entry ^a	L:metal	X (mol%)	Yield ^b (%)	ee^{c} (%)
1	1.5:1	10	94	90
2	1.2:1	10	91	91
3	1.1:1	10	94	93
4	1:1	10	92	90
5	1:1.1	10	91	89
6	1:1.2	10	89	89
7	1:1.5	10	87	85
8	1.1:1	5	93	93
9^d	1.1:1	3	93	93
10^d	1.1:1	2	95	94
11^e	1.1:1	1	95	93

^{*a*}Unless otherwise noted, the reactions were performed with **L-RaPr₂**, FeCl₃, **1a** (0.25 mmol), 3 Å MS (100 mg) in *t*BuOH (0.4 mL, *t*BuOH/CH₂Cl₂ = 6:1) at 30 °C for 12 h without extrusion of air. ^{*b*} Yield of the isolated products according to the amount of **1a**. ^{*c*} Determined by HPLC analysis using a chiral stationary phase. ^{*d*} At 30 °C for 20 h. ^{*e*} At 30 °C for 51 h.

Screening of the gas environment

	OH + <i>t</i> BuOH ⁻ ਅH 2a	L -RaPr₂- FeCl ₃ (5 mol% CH ₂ Cl ₂ , 30 °C 3 Å MS	1.1:1)	OH O/Bu O 3aa
Entry ^a	Gas atmosphere	Yield(%)	ee(%) ^a	
1	Air	91	92	
2	N_2	81	91	
3	H_2	88	91	
4	O_2	92	93	

^{*a*}Unless otherwise noted, the reactions were performed with **L-RaPr₂-FeCl₃** (1.1:1, 5 mol%), **1a** (0.25 mmol), 3 Å MS (100 mg) in *t*BuOH (0.4 mL, *t*BuOH/CH₂Cl₂ = 6:1) at 30 °C for 24 h. ^{*b*} Yield of the isolated products according to the amount of **1a**. ^{*c*} Determined by HPLC analysis using a chiral stationary phase. ^{*d*}

ОН O -RaPr₂-metal (1.1:1) .O*t*Bu 5 mol% *t*BuOH CH₂Cl₂, 30 °C όн 3 Å MS 3aa 1a 2a Yield(%)^b Entry^a Metal ee(%)^c 1 78 Fe(acac)₃ trace 2 93 93 FeCl₃ 3 93 FeBr₃ 89 4 Fe(OTf)₃ 90 93

Screening of Fe(III) salts in the optimized conditions

"Unless otherwise noted, the reactions were performed with L-RaPr2-metal (1.1:1, 5 mol%), 1a (0.25 mmol), 3 Å MS (100 mg)

in *t*BuOH (0.4 mL, *t*BuOH/CH₂Cl₂ = 6:1) at 30 °C for 12 h. ^{*b*} Yield of the isolated products according to the amount of 1a. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

(C) Methods for the preparation of glyoxals

Glyoxal monohydrates **1a–1y** were prepared according to the methods reported in the literature.^[2]

(D) Typical procedure for the asymmetric intramolecular Cannizzaro reaction

Procedure A (Standard): Chiral *N*,*N'*-dioxide **L-RaPr**₂ (5.5 mol%) and FeCl₃ (5 mol%) were added in a dry reaction tube, then CH₂Cl₂ (0.5 mL) was added in air. The mixture was stirred at 30°C for 90 min, and then the solvent was removed under reduced pressure. Then 3 Å MS (100 mg), glyoxal monohydrate (1) (0.25 mmol) and solvent (0.4 mL, *t*BuOH/CH₂Cl₂ = 6:1) were added. The reaction was stirred vigorously at 30°C (monitored by TLC). The mixture was purified by column chromatography on silica gel to afford the desired product **3**. The yields of **3** were calculated according to the amount of **1**.

Procedure B: Phenylglyoxal monohydrate (1a) (0.25 mmol), chiral N,N'-dioxide L-RaPr₂ (5.5 mol), 3 Å MS (100 mg), FeCl₃ (5 mol%) and alcohol (1.0 mL) were added in the reaction tube sequently. The reaction was stirred vigorously at 30°C in air (monitored by TLC). The mixture was purified by column chromatography on silica gel to afford the desired product 3. The yields of 3 were calculated according to the amount of 1a.

(E) Gram-scale experiment

Chiral *N*,*N'*-dioxide **L-RaPr₂** (5.5 mol%) and FeCl₃ (5 mol%) were added in a dry reaction vessel, then CH₂Cl₂ (12 mL) was added. The mixture was stirred at 30°C for 90 min, and then the solvent was removed under reduced pressure. Then 3 Å MS (2.4 g), phenylglyoxal monohydrate (**1a**) and solvent (9.6 mL, *t*BuOH/CH₂Cl₂ = 6:1) were added in the reaction vessel. The reaction was stirred vigorously at 30°C in air (monitored by TLC). The mixture was purified by column chromatography on silica gel to afford the desired product **3aa**. The yields of **3aa** were calculated according to the amount of **1a**.

3aa: A white solid; 92% yield, 94% ee. HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 4.97 min, 8.17 min.

Chiral *N*,*N*'-dioxide **L-RaPr₂** (1.1 mol%) and FeCl₃ (1 mol%) were added in a dry reaction vessel, then CH₂Cl₂ (5 mL) was added. The mixture was stirred at 30°C for 90 min, and then the solvent was removed under reduced pressure. Then 3 Å MS (2.4 g), phenylglyoxal monohydrate (**1a**) and solvent (12.8 mL, *t*BuOH/CH₂Cl₂ = 6:1) were added in the reaction vessel. The reaction was stirred vigorously at 30°C in air

(monitored by TLC). The mixture was purified by column chromatography on silica gel to afford the desired product **3aa**. The yields of **3aa** were calculated according to the amount of **1a**. No SDE effect was found for the product.

3aa: A white solid; 80% yield, 92% ee. HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.21 min, 10.33 min.

(F) Deuterium-label experiments

Crossover experiment: Deuterated phenylglyoxal monohydrate **1a-d** was prepared according to the methods reported in the literature.^[3] Chiral *N*,*N'*-dioxide **L-RaPr**₂ (5.5 mol% for glyxols D-**1a** and **1q**) and FeCl₃ (5 mol% for glyxols D-**1a** and **1q**) were added in a dry reaction tube, then CH₂Cl₂ (0.5 mL) was added. The mixture was stirred at 30°C for 90 min, and then the solvent was removed under reduced pressure. Then 3 Å MS (100 mg), deuterated phenylglyoxal monohydrate (D-**1a**) (0.025 mmol), 2-naphthylglyoxal monohydrate (**1q**) (0.025 mmol) and solvent (0.8 mL, *t*BuOH/CH₂Cl₂ = 6:1) were added in the reaction tube. The reaction was stirred vigorously at 30°C in air for 24 h (monitored by TLC).The mixture was purified by column chromatography on silica gel to afford the desired products.

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.79 (m, 4H), 7.59 – 7.26 (m, 8H), 5.21 (s, 1H), 5.04 (s, 0.1H), 3.67 (d, *J* = 5.5 Hz, 1H), 3.52 (s, 1H), 1.40 (s, 18H).

(H) Control experiments

Preparation of **cat***: N,N'-dioxide **L-RaPr₂** (0.11 mmol), FeCl₃ (0.1 mmol) CH₂Cl₂ (4 mL) and were added in the reaction vessel. The mixture was stirred at at 30 °C for 90 min, and then the solvent was removed under reduced pressure to afford the desired catalyst **cat***. The catalyst was used right after preparation.

A: 3 Å MS (100 mg), phenylglyoxal monohydrate (**1a**, 0.25 mmol), and CH_2Cl_2 (0.5 mL) were added in the reaction tube. The mixture was stirred at 30 °C for 6 h. And then the solvent was removed under reduced pressure.

B: Cat* and solvent (0.4 mL, $tBuOH/CH_2Cl_2 = 6:1$) was added in the reaction mixture. The reaction was stirred vigorously at 30°C for 12 h. The mixture was purified by column chromatography on silica gel to afford the desired product **3aa**. The yields of **3aa** were calculated according to the amount of **1a**.

C: 3 Å MS (100 mg), phenylglyoxal monohydrate (**1a**, 0.25 mmol), and *tert*-butanol (343 μ L) were added in the reaction tube. The mixture was stirred at 30 °C for 6 h.

D: Cat* and CH₂Cl₂ (57 μ L) was added in the reaction mixture. The reaction was stirred vigorously at 30°C for 12 h. The mixture was purified by column chromatography on silica gel to afford the desired product **3aa**. The yields of **3aa** were calculated according to the amount of **1a**.

E: Phenylglyoxal monohydrate (**1a**, 0.25 mmol), and *tert*-butanol (343 μ L) were added in the reaction tube. The mixture was stirred at 30 °C for 6 h.

F: Cat* and CH₂Cl₂ (57 μ L) was added in the reaction mixture. The reaction was stirred vigorously at 30°C for 12 h. The mixture was purified by column chromatography on silica gel to afford the desired product **3aa**. The yields of **3aa** were calculated according to the amount of **1a**.

(I) The electrospray ionization mass spectrometry (ESI-MS) analysis

(J) Spectral characterization data and HPLC conditions for the products

(S)-tert-butyl mandelate (3aa)

 $(C_{12}H_{16}O_3)$ a white solid; 93% yield, 93% ee. $[\alpha]_D{}^{14} = +102.82$ (c = 0.390, in CH₂Cl₂), {Lit.^[4] $[\alpha]_D{}^{25} = -102.40$ (c = 0.584, in CH₂Cl₂), conf. (R)}. HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.09 min, 9.03 min;¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 5H), 5.04 (d, J = 5.9 Hz, 1H), 3.51 (d, J = 6.0 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 172.92$, 138.97, 128.41, 128.11, 126.38, 83.10, 73.01, 27.84. ESI-HRMS: calcd for C₁₂H₁₆NaO₃⁺ [M+Na⁺] 231.0992, found 231.1000.

	Retention Time	%Area
1	5.087	96.56
2	9.033	3.44

(S)-tert-butyl α-hydroxy-α-(2-methylphenyl)acetate (2b)

(C₁₃H₁₈O₃) a colorless oil; 97% yield, 81% ee. $[\alpha]_D^{15} = +103.38$ (*c* = 1.064, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 7.31 min, 9.25 min. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 1H), 7.18 (m, 3H), 5.25 (d, *J* = 5.3 Hz, 1H), 3.51 (d, *J* = 5.3 Hz, 1H), 2.43 (s, 3H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.39, 137.35, 136.23, 130.61, 128.05, 126.32, 126.11, 82.99, 70.37, 27.85, 19.31.¹³C NMR (101 MHz, CDCl₃). ESI-HRMS: calcd for C₁₃H₁₈NaO₃⁺ [M+Na⁺] 245.1148, found 245.1144.

	Retention Time	%Area
1	7.308	90.70
2	9.254	9.30

(S)-tert-butyl α-hydroxy-α-(3-methylphenyl)acetate (3ac)

(C₁₃H₁₈O₃) a colorless oil; 94% yield, 92% ee. $[\alpha]_D{}^{10} = +84.00$ (*c* = 0.600, in CH₂Cl₂), HPLC DAICEL CHIRALCEL ODH,2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 4.66 min, 8.05 min;¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.14 (m, 3H), 7.11 (m, 1H), 5.00 (d, *J* = 6.0 Hz, 1H), 3.51 (d, *J* = 6.1 Hz, 1H), 2.35 (s, 3H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.00, 138.89, 138.09, 128.87, 128.29, 127.03, 123.55, 82.99, 73.05, 27.86, 21.44. ESI-HRMS: calcd for C₁₂H₁₆NaO₃⁺ [M+Na⁺] 245.1148, found 245.1154.

(S)-tert-butyl α-hydroxy-α-(4-methylphenyl)acetate (3ad)

 $(C_{13}H_{18}O_3)$ a white solid; 94% yield, 94% ee. $[\alpha]_D{}^{13} = +95.51$ (*c* = 0.468, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 4.83 min, 7.82 min. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 7.14 (m, 2H), 4.99 (d, *J* = 6.1 Hz, 1H), 3.49 (d, *J* = 6.1 Hz, 1H), 2.34 (s, 3H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.07, 137.79, 136.08, 129.11,

126.31, 82.90, 72.89, 27.86, 21.16. ESI-HRMS: calcd for $C_{13}H_{18}NaO_{3^+}$ [M+Na⁺] 245.1148, found 245.1147.

	Retention Time	%Area
1	4.828	97.20
2	7.826	2.80

(S)-tert-butyl α-hydroxy-α-(4-(tert-butyl)phenyl)acetate (3ae)

 $(C_{16}H_{24}O_3)$ a white solid; 91% yield, 91% ee. $[\alpha]_D{}^{10} = +70.78$ (c = 0.332, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 2/98, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 6.17 min, 7.79 min. ¹H NMR (400 MHz, CDCl₃) $\delta 7.35 - 7.21$ (m, 4H), 4.94 (s, 1H), 3.35 (s, 1H), 1.36 (s, 9H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.03$, 151.04, 135.93, 126.06, 125.39, 82.98, 72.83, 34.56, 31.33, 27.92. ESI-HRMS: calcd for $C_{16}H_{24}NaO_3^+$ [M+Na⁺] 287.1618, found 287.1622.

S-14

	Retention Time	%Area
1	6.169	95.60
2	7.786	4.40

(S)-tert-butyl α-hydroxy-α-(3-methoxylphenyl)acetate (3af)

(C₁₃H₁₈O₄)a white solid; 97% yield, 92% ee. $[\alpha]_D^9 = +75.46$ (c = 0.542, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 15/85, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.57 min, 11.03 min. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 1H), 6.98 (m, 2H), 6.84 (m, 1H), 5.01 (d, J = 6.0 Hz, 1H), 3.80 (s, 3H), 3.59 (d, J = 6.1 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 172.78$, 159.65, 140.49, 129.41, 118.78, 113.91, 111.63, 83.09, 72.93, 55.22, 27.85. ESI-HRMS: calcd for C₁₃H₁₈NaO₄⁺ [M+Na⁺] 261.1097, found 261.1102.

(S)-tert-butyl α-hydroxy-α-(4-methoxylphenyl)acetate (3ag)

 $(C_{13}H_{18}O_4)$ a white solid; 90% yield, 95% ee. $[\alpha]_D^{11} = +96.04$ (c = 0.278, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.26 min, 8.97 min. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 2H), 6.99 – 6.80 (m, 2H), 4.98 (d, J = 5.9 Hz, 1H), 3.81 (s, 3H), 3.43 (d, J = 5.9 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.15, 159.45, 131.22, 127.65, 113.82, 82.93, 72.59, 55.26, 27.86. ESI-HRMS: calcd for C₁₃H₁₈NaO₄⁺ [M+Na⁺] 261.1097, found 261.1098.

	Retention Time	%Area
1	5.264	97.38
2	8.972	2.62

(S)-tert-butyl α-hydroxy-α-(3,4-methylenedioxylphenyl)acetate (3ah)

(C₁₃H₁₆O₅) a white solid; 96% yield, 95% ee. $[\alpha]_D^{12} = +81.75$ (*c* = 0.400, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 7.99 min, 10.85 min. 1H NMR (400 MHz, CDCl₃) δ 6.98 – 6.83 (m, 2H), 6.82– 6.70 (m, 1H), 5.95 (s, 2H), 4.93 (d, *J* = 5.8 Hz, 1H), 3.55 (d, *J* = 5.8 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.88, 147.72, 147.45, 132.94, 120.15, 108.15, 106.83, 101.11, 83.06, 72.77, 27.86. ESI-HRMS: calcd for C₁₃H₁₆NaO₅⁺ [M+Na⁺] 275.0890, found 275.0893.

	Retention Time	%Area
1	7.992	97.80
2	10.845	2.20

(S)-tert-butyl α-hydroxy-α-(4-flurophenyl)acetate (3ai)

(C₁₂H₁₅FO₃) a white solid; 90% yield, 92% ee. $[\alpha]_D^{12} = +102.70$ (*c* = 0.370, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 1/99, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 10.25 min, 11.79 min. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.31 (m, 2H), 7.15 – 6.93 (m, 2H), 5.02 (d, *J* = 5.6 Hz, 1H), 3.53 (d, *J* = 5.6 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.73, 163.81, 161.37, 134.78, 128.12, 128.04, 115.42, 115.20, 83.33, 72.32, 27.83ESI-HRMS: calcd for C₁₂H₁₅FNaO₃⁺ [M+Na⁺] 249.0897, found 249.0904.

(S)-tert-butyl α-hydroxy-α-(3-chlorophenyl)acetate (3aj)

 $(C_{12}H_{15}ClO_3)$ a white solid; 95% yield, 93% ee. $[\alpha]_D{}^{11} = +89.86$ (*c* = 0.276, in CH₂Cl₂), HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.64 min, 6.71 min. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.36 – 7.21 (m, 3H), 5.01 (d, *J* = 5.4 Hz, 1H), 3.62 (d, *J* = 5.6 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.28, 140.89, 134.31, 129.63, 128.25, 126.56, 124.54, 83.61, 72.33, 27.83.

ESI-HRMS: calcd for $C_{12}H_{15}Cl^{34.9689}NaO_3^+$ [M+Na⁺] 265.0602, found 265.0603; calcd for $C_{12}H_{15}Cl^{36.9659}NaO_3^+$ [M+Na⁺] 267.0572, found 267.0591.

	1	, or 11 cu
1	5.644	96.40
2	6.705	3.60

(S)-tert-butyl α-hydroxy-α-(4-chlorophenyl)acetate (3ak)

(C₁₂H₁₅ClO₃) a white solid; 95% yield, 91% ee. $[\alpha]_D^{11} = +95.69$ (c = 0.394, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IA, 2-propanol/*n*-hexane = 1/99, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 9.93 min, 10.51 min. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 4H), 5.01 (d, J = 5.6 Hz, 1H), 3.53 (d, J = 5.6 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 172.48$, 137.46, 133.93, 128.57, 127.74, 83.50, 72.32, 27.82. ESI-HRMS: calcd for C₁₂H₁₅Cl^{34.9689}NaO₃⁺ [M+Na⁺] 265.0602, found 265.0606; calcd for C₁₂H₁₅Cl^{36.9659}NaO₃⁺ [M+Na⁺] 267.0572, found 267.0588.

	Retention Time	%Area
1	10.181	49.49
2	10.873	50.51

	Retention Time	%Area
1	9.931	95.32
2	10.510	4.68

(S)-tert-butyl α-hydroxy-α-(2,3,4-trichlorophenyl)acetate (3al)

 $(C_{12}H_{13}Cl_3O_3)$ a white solid; 92% yield, 81% ee. $[\alpha]_D{}^{16} = +114.80$ (c = 0.250, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.98 min, 7.04 min. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.34 (m, 1H), 7.31 – 7.24 (m, 1H), 5.43 (d, J = 4.6 Hz, 1H), 3.75 (d, J = 4.6 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 171.54$, 137.45, 133.90, 133.58, 132.17, 128.37, 126.47, 83.99, 70.75, 27.79. ESI-HRMS: calcd for C₁₂H₁₃Cl₃^{34.9689}NaO₃⁺ [M+Na⁺] 332.9822, found 332.9832; calcd for C₁₂H₁₃Cl₂^{34.9689}Cl^{36.9659}NaO₃⁺ [M+Na⁺] 334.9792, found 334.9811.

	Retention Time	%Area
1	5.979	9.68
2	7.039	90.32

(S)-tert-butyl α-hydroxy-α-(4-bromophenyl)acetate (3am)

 $(C_{12}H_{15}BrO_3)$ a white solid; 93% yield, 91% ee. $[\alpha]_D{}^{10}= +79.37$ (*c* = 0.286, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ASH, 2-propanol/*n*-hexane = 1/99, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 10.74 min, 11.78 min. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 5.00 (d, *J* = 3.9 Hz, 1H), 3.55 (d, *J* = 4.7 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.41, 137.97, 131.52, 128.08, 122.11, 83.55, 72.35, 27.83. ESI-HRMS: calcd for C₁₂H₁₅Br^{78.9183}NaO₃⁺ [M+Na⁺] 309.0097, found 309.0106; calcd for C₁₂H₁₅Br^{80.9163}NaO₃⁺ [M+Na⁺] 311.0063, found 311.0086.

(S)-tert-butyl α-hydroxy-α-(4-cyanophenyl)acetate (3an)

 $(C_{13}H_{15}NO_3)$ a white solid; 91% yield, 92% ee. $[\alpha]_D^{13} = +86.76$ (c = 0.340, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IA, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 9.54 min, 10.57 min. ¹H NMR (400 MHz, CDCl₃) $\delta 7.83 - 7.43$ (m, 4H), 5.11 (s, 1H), 3.76 (s, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 171.64$, 144.05, 132.18, 127.09, 118.65, 111.95, 84.06, 72.38, 27.79. ESI-HRMS: calcd for C₁₂H₁₅NNaO₅⁺ [M+Na⁺] 256.0944, found 256.0945.

(S)-tert-butyl α-hydroxy-α-(4-(trifluoromethyl)phenyl)acetate (3ao)

(C₁₃H₁₅F₃O₃) a white solid; 99% yield, 91% ee. $[\alpha]_D^{12} = +77.90$ (*c* = 0.335, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, 2-propanol/*n*-hexane = 1/99, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 9.20 min, 10.18 min. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 5.10 (d, *J* = 5.5 Hz, 1H), 3.63 (d, *J* = 5.5 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.11, 142.78, 130.79, 130.47, 130.14, 129.82, 125.38, 125.34, 125.30, 125.27, 122.72, 83.81, 72.44, 27.80. ESI-HRMS: calcd for C₁₂H₁₅NNaO₅⁺ [M+Na⁺] 299.0866, found 276.0878.

	Retention Time	%Area
1	9.195	95.51
2	10.182	4.49

(S)-tert-butyl α-hydroxy-α-(4-nitrophenyl)acetate (3ap)

0₂N

 $(C_{12}H_{15}NO_5)$ a white solid; 63% yield, 91% ee. $[\alpha]_D^{11} = +84.83$ (c = 0.244, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ASH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 8.21 min, 9.29 min. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 5.16 (d, J = 4.6 Hz, 1H), 3.74 (d, J = 5.0 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 171.52$, 147.77, 145.92, 127.25, 123.57, 84.28, 72.23, 27.79. ESI-HRMS: calcd for C₁₂H₁₅NNaO₅⁺ [M+Na⁺] 276.0842, found 276.0847.

(S)-tert-butyl α-hydroxy-α-(naphthalen-2-yl)acetate (3aq)

(C₁₆H₁₈O₃) a white solid; 99% yield, 92% ee. $[\alpha]_D^{11} = +90.40$ (c = 0.250, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ASH, 2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 11.26 min, 12.83 min. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.76 (m, 4H), 7.61 – 7.40 (m, 3H), 5.20 (d, J = 5.8 Hz, 1H), 3.67 (d, J = 5.8 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 172.90$, 136.39, 133.24, 133.20, 128.20, 128.15, 127.69, 126.20, 126.15, 125.63, 124.22, 83.27, 73.17, 27.87. ESI-HRMS: calcd forC₁₆H₁₈NaO₃⁺ [M+Na⁺] 281.1148, found 281.1160.

	Retention Time	%Area
1	11.455	49.73
2	13.101	50.27

	Retention Time	%Area
1	11.257	94.81
2	12.833	5.19

(S)-tert-butyl α-(fur-2-yl)-α-hydroxyacetate (3ar)

 $(C_{10}H_{14}O_4)$ a white solid; 49% yield, 97% ee. $[\alpha]_D^{13} = +54.51$ (*c* = 0.288, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ASH, 2-propanol/n-hexane = 2/98, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 13.57 min, 16.26 min. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 6.43 – 6.25 (m, 2H), 5.06 (d, *J* = 5.1 Hz, 1H), 3.44 (d, *J* = 5.9 Hz, 1H), 1.46 (s, 10H).¹³C NMR (101 MHz, CDCl₃) δ = 170.64, 151.58, 142.73, 110.41, 108.18, 83.51, 67.10, 27.87. ESI-HRMS: calcd for C₁₀H₁₄NaO₄⁺ [M+Na⁺] 221.0784, found 221.0789.

(S)-tert-butyl α-(thiophen-2-yl)-α-hydroxyacetate (3as)

1.23

98.77

13.565

16.264

1

2

(C₁₀H₁₄O₃S) a white solid; 89% yield, 95% ee. $[\alpha]_D^{15} = +53.88$ (c = 0.258, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 6.56 min, 10.18 min. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 1H), 7.13 – 7.05 (m,1H), 7.02 – 6.93 (m,1H), 5.28 (d, *J* = 6.4 Hz, 1H), 3.63 (d, *J* = 6.6 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 171.61, 142.15, 126.83, 125.31, 124.93, 83.67, 69.36, 27.87. ESI-HRMS: calcd for C₁₀H₁₄NaO₃S⁺ [M+Na⁺] 237.0556, found 237.0570.

		707 11 Ca
1	6.562	97.60
2	10.181	2.40

(S)-tert-butyl α-(thiophen-3-yl)-α-hydroxyacetate (3at)

(C₁₀H₁₄O₃S) a white solid; 92% yield, 94% ee. $[\alpha]_D{}^{16} = +65.26$ (*c* = 0.262, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.41 min, 6.87 min. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 2H), 7.18 – 7.03 (m, 1H), 5.13 (d, *J* = 6.2 Hz, 1H), 3.50 (d, *J* = 6.3 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.33, 139.91, 126.01, 125.78, 122.08, 83.23, 69.70, 27.92. ESI-HRMS: calcd for C₁₀H₁₄NaO₃S⁺ [M+Na⁺] 237.0556, found 237.0565.

	Retention Time	%Area
1	5.394	50.17
2	6.880	49.83

	Retention Time	%Area
1	5.410	97.07
2	6.871	2.93

(S)-ethyl mandelate (3ba)

(C₁₀H₁₂O₃) a white solid; 71% yield, 75% ee. $[\alpha]_D^{19} = +87.66$ (c = 0.608, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ASH,2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 10.70 min, 11.93 min;¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.27 (m, 5H), 5.15 (s, 1H), 4.33 – 4.05 (m, 2H), 3.61 (s, 1H), 1.21 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) $\delta = 173.70$, 138.45, 128.58, 128.41, 126.56, 72.91, 62.24, 14.04. ESI-HRMS: calcd for C₁₁H₁₄NaO₃⁺ [M+Na⁺] 203.0679, found 203.0680.

	Retention Time	%Area
1	10.587	87.46
2	12.716	12.54

(S)-iso-propyl mandelate (3ca)

(C₁₁H₁₄O₃) a white solid; 66% yield, 81% ee. $[\alpha]_D^{11} = +90.77$ (*c* = 0.206, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ADH,2-propanol/*n*-hexane = 5/95, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 10.70 min, 11.93 min;¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.28 (m, 5H), 5.12 (s, 1H), 5.07 (dt, *J* = 12.5, 6.3 Hz, 1H), 3.52 (s, 1H), 1.28 (d, *J* = 6.3 Hz, 3H), 1.11 (d, *J* = 6.2 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ = 173.27, 138.55, 128.51, 128.31, 126.44, 72.89, 70.21, 21.72, 21.41. ESI-HRMS: calcd for C₁₁H₁₄NaO₃⁺ [M+Na⁺] 217.0835, found 217.0841.

(S)-cyclopentyl mandelate (3da)

11.926

8.20

2

(C₁₃H₁₆O₃) a white solid; 88% yield, 86% ee. $[\alpha]_D^{20} = +59.83$ (*c* = 0.468, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH,2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.87 min, 10.59 min;¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.27 (m, 5H), 5.23 (dt, *J* = 8.3, 2.7 Hz, 1H), 5.12 (d, *J* = 5.3 Hz, 1H), 3.56 (d, *J* = 5.7 Hz, 1H), 1.91 – 1.63 (m, 4H), 1.62 – 1.41 (m, 4H).¹³C NMR (101 MHz, CDCl₃) δ = 173.48, 138.55, 128.48, 128.28, 126.37, 79.38, 72.83, 32.48, 23.54, 23.39. ESI-HRMS: calcd for C₁₃H₁₇O₃⁺ [M+H⁺] 221.1172, found 221.1173.

(S)-cyclohexyl mandelate (3ea)

(C₁₄H₁₈O₃) a white solid; 62% yield, 84% ee. $[\alpha]_D^{19} = +59.88$ (c = 0.506, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH,2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.80 min, 10.31 min;1H NMR (400 MHz, CDCl₃) δ 7.66 – 7.27 (m, 5H), 5.14 (d, J = 5.2 Hz, 1H), 4.83 (td, J = 8.3, 4.0 Hz, 1H), 3.59 (d, J = 5.6 Hz, 1H), 1.88 – 1.44 (m, 6H), 1.41 – 1.21 (m, 4H).¹³C NMR (101 MHz, CDCl₃) $\delta = 173.22$, 138.70, 128.47, 128.27, 126.44, 74.74, 72.88, 31.33, 30.96, 25.19, 23.37, 23.16. ESI-HRMS: calcd for C₁₄H₁₈NaO₃⁺ [M+Na⁺] 257.1148, found 257.1148.

(S)-adamant-1-yl mandelate (3fa)

(C₁₈H₂₂O₃) a white solid; 52% yield, 96% ee. $[\alpha]_D^{19} = +70.50$ (*c* = 0.834, in CH₂Cl₂). HPLC DAICEL CHIRALCEL ODH,2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.80 min, 10.31 min;¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.0 Hz, 2H), 7.39 – 7.27 (m, 3H), 5.03 (d, *J* = 5.4 Hz, 1H), 3.57 (d, *J* = 5.8 Hz, 1H), 2.14 (s, 3H), 2.09 – 1.97 (m, 6H), 1.62 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ = 172.64, 139.11, 128.39, 128.08, 126.42, 83.11, 72.97, 41.08, 35.97, 30.82. ESI-HRMS: calcd for C₁₈H₂₂NaO₃⁺ [M+Na⁺] 309.1461, found 309.1456.

	Retention Time	%Area
1	5.400	97.81
2	8.737	2.19

(K) Spectral characterization data and HPLC conditions for the alkyl products

3au-3ay (x mmol) obtained in asymmetric intramolecular Cannizzaro reaction, benzoic anhydride (1.1x mmol), pyridine (x mmol), DMAP (x mmol) and CH_2Cl_2 (1 mL) were added in the reaction tube sequently. The reaction was stirred vigorously at 30°C (monitored by TLC). The mixture was purified by column chromatography on

silica gel (petroleum ether/ethyl acetate) to afford the desired product **4au-4ay**. The ee of **3au-3ay** was determined according to the ee of **4au-4ay**.

(S)-tert-butyl 2-hydroxyundecanoate (3au)

(C₁₅H₂₀O₃) a colorless oil; 90% yield. $[\alpha]_D^{15} = -1.74$ (c = 0.460, in CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 4.05 (s, 1H), 2.83 (s, 1H), 1.81 – 1.60 (m, 2H), 1.49 (s, 9H), 1.40 – 1.17 (m, 14H), 0.88 (t, J = 6.7 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ = 174.78, 82.25, 70.58, 34.49, 31.90, 29.51, 29.49, 29.39, 29.30, 28.03, 24.60, 22.68, 14.12. ESI-HRMS: calcd for C₁₅H₂₀NaO₃⁺ [M+Na⁺] 281.2087, found 281.2083.

(S)-tert-butyl 2-benzoxyundecanoate (4au)

 $(C_{22}H_{34}O_4)$ a colorless oil; 89% ee. $[\alpha]_D^{15} = -7.92$ (c = 0.808, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, 2-propanol/*n*-hexane = 2/98, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.72 min, 6.44 min. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.03 (m, 2H), 7.61 – 7.53 (m, 1H), 7.50 – 7.40 (m, 2H), 5.20 – 5.02 (m, 1H), 2.02 – 1.86 (m, 2H), 1.47 (s, 9H), 1.44 – 1.14 (m, 14H), 0.88 (t, J = 6.6 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) $\delta = 169.49$, 166.17, 133.14, 129.80, 128.37, 81.98, 73.26, 31.89, 31.25, 29.49, 29.40, 29.29, 29.22, 28.00, 25.21, 22.68, 14.13. ESI-HRMS: calcd for C₂₂H₃₄NaO₄⁺ [M+Na⁺] 385.2349, found 385.2346.

(S)-tert-butyl 2-cyclopentyl-2-hydroxyacetate (3av)

(C₁₁H₂₀O₃) a colorless oil; 89% yield. $[\alpha]_D{}^{16} = -11.38$ (c = 0.290, in CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 1H), 2.71 (s, 1H), 2.11 (dt, J = 13.2, 7.9 Hz, 1H), 1.70 - 1.45 (m, 8H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.55$, 82.26, 72.72, 43.53, 28.75, 28.05, 26.15, 25.87, 25.69. ESI-HRMS: calcd for C₁₁H₂₀NaO₃⁺ [M+Na⁺] 223.1305, found 223.1305.

(S)-tert-butyl 2-benzoxy-2-cyclopentylacetate (4av)

(C₁₈H₂₄O₄) a colorless oil; 89% ee. $[\alpha]_D^{14} = -25.65$ (*c* = 0.386, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 5.75 min, 6.65 min. ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.90 (m, 2H), 7.55 – 7.45 (m, 1H), 7.44 – 7.32 (m, 2H), 4.93 (d, *J* = 6.0 Hz, 1H), 2.50 – 2.36 (m, 1H), 1.83 – 1.51 (m, 8H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 169.16, 166.28, 133.13, 129.88, 129.78, 128.39, 81.90, 76.05, 41.00, 28.77, 28.01, 27.98, 25.74, 25.58. ESI-HRMS: calcd for C₁₈H₂₄NaO₄⁺ [M+Na⁺] 281.2087, found 281.2083.

	Retention Time	%Area
1	5.746	95.12
2	6.645	4.88

(S)-tert-butyl 2-cyclohexyl-2-hydroxyacetate (3aw)

 $(C_{12}H_{22}O_3)$ a colorless oil 97% yield; $[\alpha]_D{}^{15} = +7.82$ (c = 0.358, in CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 1H), 2.69 (s, 1H), 1.87 – 1.50 (m, 6H), 1.43 (s, 9H), 1.24 – 1.05 (m, 5H).¹³C NMR (101 MHz, CDCl₃) δ = 174.20, 82.34, 74.79, 42.04, 29.12, 28.11, 26.34, 26.15, 26.12, 26.10. ESI-HRMS: calcd for $C_{12}H_{22}NaO_3^+$ [M+Na⁺] 237.1461, found 237.1463.

(S)-tert-butyl 2-benzoxy-2-cyclohexylacetate (4aw)

(C₁₉H₂₆O₄) a colorless oil; 91% ee. $[\alpha]_D^{15} = -6.89$ (*c* = 0.638, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 210 nm, retention time: 7.66 min, 8.23 min. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 7.92 (m, 2H), 7.55 – 7.45 (m, 1H), 7.44 – 7.29 (m, 2H), 4.88 (d, *J* = 4.5 Hz, 1H), 1.84 – 1.52 (m, 6H), 1.40 (s, 9H), 1.30 – 1.08 (m, 5H).¹³C NMR (101 MHz, CDCl₃) δ = 168.74, 166.24, 133.11, 129.95, 129.77, 128.38, 81.97, 39.78, 29.28, 28.06, 27.75, 26.11, 26.09, 26.06. ESI-HRMS: calcd for C₁₉H₂₆NaO₄⁺ [M+Na⁺] 341.1723, found 341.1718.

(S)-tert-butyl 2-hydroxy-3,3-dimethylbutanoate (3ax)

4.54

5.985

2

 $(C_{10}H_{20}O_3)$ a colorless oil; 99% yield. $[\alpha]_D{}^{18} = -1.02$ (c = 0.590, in CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 3.67 (d, J = 6.8 Hz, 1H), 2.87 (d, J = 7.1 Hz, 1H), 1.50 (s, 9H), 0.97 (s, 9H). 13C NMR (101 MHz, CDCl₃) $\delta = 173.78$, 82.56, 78.40, 35.36, 28.14, 25.97. ESI-HRMS: calcd for $C_{10}H_{21}O_3^+$ [M+H⁺] 189.1485, found 189.1481.

(S)-tert-butyl 2-benzoxy-3,3-dimethylbutanoate (4ax)

 $(C_{17}H_{24}O_4)$ a colorless oil; 81% ee. $[\alpha]_D{}^{18} = +30.02$ (c = 0.856, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.44 min, 7.26 min. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 7.3 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 4.70 (s, 1H), 1.47 (s, 9H), 1.14 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 168.08$, 166.20, 133.13, 129.96, 129.72, 128.41, 81.89, 80.82, 33.90, 28.04, 26.52. ESI-HRMS: calcd for C₁₇H₂₄NaO₄⁺ [M+Na⁺] 315.1567, found 315.1572.

	Retention Time	%Area
1	5.435	85.02
2	7.260	14.98

(S)-tert-butyl 2-hydroxy-2-(adamantan-1-yl)acetate (3ay)

 $(C_{16}H_{26}O_3)$ a colorless oil; 87% yield. $[\alpha]_D{}^{15} = +33.08$ (c = 0.266, in CH₂Cl₂).¹H NMR (400 MHz, CDCl₃) δ 3.52 (s, 1H), 2.74 (s, 1H), 1.99 (s, 3H), 2.06 – 1.93 (m, 4H), 1.67 – 1.60 (m, 8H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 173.25, 82.48, 78.80, 38.02, 37.17, 36.99, 36.56, 35.83, 28.30, 28.25, 27.35. ESI-HRMS: calcd for $C_{16}H_{26}NaO_3^+$ [M+Na⁺] 289.1774, found 289.1783.

(S)-tert-butyl 2-benzoxy-2-(adamantan-1-yl)acetate (4ay)

 $(C_{23}H_{30}O_4)$ a colorless oil; 95% ee. $[\alpha]_D^{15} = +48.56$ (c = 0.348, in CH₂Cl₂). HPLC DAICEL CHIRALCEL IC, 2-propanol/*n*-hexane = 2/98, flow rate = 1.0 mL/min, $\lambda = 210$ nm, retention time: 5.44 min, 7.26 min. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) $\delta 8.24 - 8.00$ (m, 2H), 7.62 - 7.52 (m, 1H), 7.52 - 7.40 (m, 2H), 4.57 (s, 1H), 2.05 (s, 3H), 1.85 - 1.66 (m, 12H), 1.48 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 167.64$, 166.32, 133.09, 130.07, 129.73, 128.40, 81.88, 81.24, 38.57, 36.87, 35.70, 28.20, 28.14. ESI-HRMS: calcd for C₂₃H₃₀NaO₄⁺ [M+Na⁺] 393.2036, found 393.2038.

	Retention Time	%Area
1	5.435	97.37
2	7.260	2.63

(L) Copies of NMR spectra for products

(S)-tert-butyl mandelate (3aa)

(S)-tert-butyl α-hydroxy-α-(2-methylphenyl)acetate (3ab)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(S)-tert-butyl α-hydroxy-α-(4-methylphenyl)acetate (3ad)

(S)-tert-butyl α-hydroxy-α-(4-(tert-butyl)phenyl)acetate (3ae)

(S)-tert-butyl α-hydroxy-α-(4-methoxylphenyl)acetate (3ag)

(S)-tert-butyl α-hydroxy-α-(4-chlorophenyl)acetate (3ak)

(S)-tert-butyl α-hydroxy-α-(4-bromophenyl)acetate (3am)

(S)-tert-butyl α-(furan-2-yl)-α-hydroxyacetate (3ar)

(S)-tert-butyl α-(thiophen-2-yl)-α-hydroxyacetate (3as)

(S)-tert-butyl 2-benzoxyundecanoate(4au)

(S)-tert-butyl 2-cyclopentyl-2-hydroxyacetate (3av)

(S)-tert-butyl 2-benzoxy-2-cyclopentylacetate(4av)

(S)-tert-butyl 2-cyclohexyl-2-hydroxyacetate (3aw)

(S)-tert-butyl 2-benzoxy-2-cyclohexylacetate(4aw)

(S)-tert-butyl 2-hydroxy-3,3-dimethylbutanoate (3ax)

(S)-tert-butyl 2-hydroxy-2-(adamantan-1-yl)acetate (3ay)

(S)-tert-butyl 2-benzoxy-2-(adamantan-1-yl)acetate (4ay)

(S)-cyclopentyl mandelate (3da)

S-66

(S)-cyclohexyl mandelate (3ea)

S-67

(M) References

[1]Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie and X. M. Feng, Angew. Chem., 2008,

120, 1328; Angew. Chem. Int. Ed., 2008, 120, 1308.

[2]P. Wang, W. Tao, X. Sun, S. Liao and Y. Tang, J. Am. Chem. Soc., 2013, 135,

16849.

[3]J. M. Nathalie, M. G. Danielle, T. M. Jacques, L. G. René, *J. Org. Chem.*, 1996, **61**, 5067.

[4] a) Y. H. Zhang, X. H. Liu, L. Zhou, W. B. Wu, T. Y. Huang, Y. T. Liao, L. L. Lin

and X. M. Feng, Chem. Eur. J., 2014, 20, 15884; b) D. Basavaiah, P. R. Krishna,

Tetrahedron, 1995, **51**, 2403.