SUPPLEMENTARY INFORMATION:

Pulsed EPR spectroscopy distance measurements of DNA internally labelled with Gd³⁺-DOTA

Filip Wojciechowski, ^{*a*} Andreas Groß, ^{*a,b*} Isabelle Holder, ^{*a,b*} Malte Drescher, ^{**a,b*} and Jörg S. Hartig^{**a,b*}

Experimental procedures

General

25

- ¹⁰ All reactions were performed in oven-dried glassware under nitrogen. Chemicals and solvents were purchased from Sigma. Solvents were of laboratory grade. Thin-layer chromatography (TLC) was performed on aluminium-backed plates pre-coated with silica gel 60 (0.2 mm, UV₂₅₄. Merck, Germany). Flash
- ¹⁵ column chromatography (FCC) was performed using silica gel 60 (Merck, Germany). ESI mass spectra were recorded on a Bruker Daltonics esquire 3000plus. NMR spectra were recorded using Avance 400 (400 MHz, Bruker, Germany). ³¹P NMR spectra was recorded at 161.8 MHz using 85% H₃PO₄ as an external standard.
- ²⁰ All spectra were referenced to the signals of the corresponding solvent. Chemical shifts are given in ppm (δ scale) and coupling constants (*J*) in Hz. High resolution electrospray ionization (ESI) mass spectra were recorded on a micrOTOF II (Bruker Daltonics).

5-[6-hydroxy-hexynyl]-5'-O-(4,4'-dimethoxytrityl)-2'deoxyuridine (1),

To a 50 mL round-bottom flask, is added 5'-DMT-5-iodo-2'deoxyuridine (1.3 g, 1.98 mmol) and 15 mL of THF under a ³⁰ nitrogen atmosphere. NEt₃ (2.0 mL, 14.5 mmol) followed by 5hexyn-1-ol (0.6 mL, 5.44 mmol) are added and the solution is cooled below 0°C with a dry-ice/acetone bath. The solution is deoxygenated three times using freeze-pump-thaw cycling. To the solution is added Pd(PPh₃)₂Cl₂ (200 mg, 0.285 mmol) and CuI ³⁵ (80 mg, 0.421 mmol) and the suspension is deoxygenated once

- using freeze-pump-thaw cycling. The reaction is removed from the dry-ice/acetone bath and stirred for 16 hours at room temperature. The reaction is diluted with CH₂Cl₂ (200 mL) and extracted with an aqueous solution of EDTA (5%, 50 40 mL)/NaHCO₃ (5%, 50 mL), NaHCO₃ (5%, 100 ml), water (100
- mL) and brine (100 mL) dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by FCC, eluting with stepwise ethyl acetate/hexane gradient (6:4, 8:2, 1:0 + \sim 0.1% NEt₃). The compound was dissolved in CH₂Cl₂ (2 mL) and precipitated by
- ⁴⁵ adding diethyl ether (5 mL) and hexane (25 mL), the solvents were decanted and the residue was dried in vacuo to give (0.89 g, 72%) of an off-white foam. ¹H NMR (400MHz, CDCl₃): 8 8.02 (s, 1 H), 7.27 7.50 (m, 10 H), 6.77 6.93 (m, 4 H), 6.34 (m, 1 H), 4.52 4.53 (m, 1 H), 4.10 (m, 1 H), 3.79 (s, 6 H), 3.51 (t, *J* = 6.02 (m, 10 H), 6.17 6.10 (m, 1 H), 4.10 (m, 1 H), 4.1

⁵⁰ 6.3 Hz, 2 H), 3.43 (dd, *J* = 3.0, 10.5 Hz, 1 H), 3.33 (dd, *J* = 3.5,

10.8 Hz, 1 H), 2.52 (ddd, J = 2.5, 5.7, 13.6 Hz, 1 H), 2.23 - 2.33 (m, 1 H), 2.14 (t, J = 6.9 Hz, 2 H), 1.46 - 1.56 (m, 2 H), 1.33 - 1.41 (m, 2 H). ¹³C NMR (100 MHz , CDCl₃): δ 19.1, 24.2, 31.7, 41.4, 55.2, 61.9, 63.6, 71.2, 72.2, 76.7, 77.0, 77.2, 77.3, 85.7, 55 86.6, 86.9, 95.2, 101.0, 113.3, 126.8, 128.0, 130.0, 135.6, 141.4, 144.5, 149.5, 158.5, 162.5. HRMS (ESI) *m*/*z* calcd for C₃₆H₃₈N₂O₈Na [MNa⁺] 649.2526, found 649.2520.

5-[6-iodo-hexynyl]-5'-O-(4,4'-dimethoxytrityl)-2'deoxyuridine-3'-O-(2-cyanoethyl-N,N-

60 diisopropyl)phosphoramidite (2),

To a 25 mL round-bottom flask is added 1 (0.338 g, 0.54 mmol) and anhydrous DMF (2.5 mL) under a nitrogen atmosphere, followed by N,N-diisopropylethylamine (0.280 mL, 1.62 mmol). The solution is cooled to 0°C with an ice bath and 65 the flask is charged with (PhO)₃PCH₃I (0.294 g, 0.65 mmol). The reaction is removed from the ice bath and stirred for at room temperature for 6 hours. The reaction is diluted with CH₂Cl₂ (100 mL) and extracted with saturated aqueous NaHCO₃ (50 mL), water (50 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, 70 and concentrated in vacuo. The residue is passed through a silica plug (50 g) eluting with ethyl acetate/hexane (8:2 + -0.1% NEt₃). The compound containing fractions are concentrated in vacuo. The crude compound is dissolved in anhydrous CH₂Cl₂ (10 mL), cooled to 0 °C, and N,N-diisopropylethylamine (0.28 mL, 1.62 75 mmol) is added followed by 2-cyanoethyl diisopropylethylamine (130 µL, 0.59 mmol). The reaction is removed from the ice-bath and stirred for 2.0 h at rt, diluted with CH2Cl2 (50 mL) and the organic phase is washed with saturated aqueous NaHCO₃ (25 mL), brine (25 mL), dried over anhydrous Na₂SO₄, concentrated 80 in vacuo and purified by FCC, eluting with hexane/ethyl acetate (8:2 to 1:1 + \sim 0.1% NEt₃). The resulting oil was dissolved in a minimal amount of CH₂Cl₂ and precipitated by the addition of hexane (20 mL), after 2h at room temperature the hexane was decanted and the residue was dried under reduced pressure to 85 give a white foam (263 mg, 52%, 2 steps). ¹H NMR (400MHz, CDCl₃); 8 8.12 (s, 0.5 H), 8.07 (s, 0.5 H), 7.40 - 7.49 (m, 2 H), 7.28 - 7.40 (m, 7 H), 7.20 - 7.25 (m, 1 H), 6.80 - 6.91 (m, 4 H), 6.26 - 6.37 (m, 1 H), 4.58 (m, 1 H), 4.12 - 4.25 (m, 1 H), 3.81(s,

3H), 3.80 (s, 3 H), 3.42 - 3.70 (m, 4 H), 3.22 - 3.31 (m, 1 H), 2.90 90 (m, 2 H), 2.62 (t, J = 6.3 Hz, 1 H), 2.43 (t, J = 6.3 Hz, 1 H), 2.23 -2.36 (m, 1 H), 1.96 - 2.14 (m, 2 H), 1.51 - 1.70 (m, 4 H), 1.21 -1.37 (m, 4 H), 1.17 (m, 9 H), 1.06 (d, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 6.3, 6.3, 18.3, 20.1, 20.2, 20.3, 20.4, 24.4, 24.5, 24.6, 24.6, 28.7, 28.7, 32.2, 40.6, 43.1, 43.2,43.3, 43.3, 95 55.3, 55.3, 58.1, 58.2, 58.2, 58.4, 63.0, 63.2, 71.2, 73.3, 73.4, 73.6, 73.8, 77.2, 85.4, 85.5, 86.9, 94.2, 100.9, 100.9, 113.3, 126.9, 127.9, 128.0, 130.0, 130.0, 135.4, 135.5, 135.5, 135.6, 141.6, 144.4, 144.5, 149.0, 149.1, 158.6, 161.5. ³¹P NMR (161.8 MHz ,CDCl₃): δ 149.1, 148.6. HRMS (ESI) *m/z* calcd for 100 C₄₅H₅₄IN₄O₈PNa [MNa⁺] 959.2622, found 959.2616.

DNA synthesis

DNA synthesis was performed on a 1.0 µmole scale on a Applied-Biosystem 392 DNA/RNA synthesizer. Chemicals and the solid support was purchased from AzcoBiotech (USA), J.T. ¹⁰⁵ Baker (Netherlands) and Link-Technologies (Scotland, UK). 5- (ethylthio)-1H-tetrazole (0.25 M in acetonitrile) was used as the activator and coupling times of 3 min were used for the modified building block **2**.

Two resin-bound modified oligodeoxynucleotides were synthesized ODN 1 5'-GCGAGTGACTGGTATGAXGATGCT-3' and ODN 2 5'-AGCATCATCATACCAGXCACTCGC-3' containing the modified building block X. The resin-bound DNA

- ⁵ was placed in a 1.5 mL microcentrifuge tube with a screw cap. The resin-bound DNA was placed in a 1.5 mL microcentrifuge tube with a screw cap, anhydrous DMF (1.0 mL) was added followed by sodium azide (45 mg, 0.69 mmol). The vial was placed in an eppendorf thermomixer, and shaken for 24 hours at
- ¹⁰ 55°C. The microcentrifuge tube was cooled to room temperature and spun down in an eppendorf centrifuge MiniSpin. The DMF was removed and the resin was washed with acetonitrile/water (1:1, 3 x 1 mL), then acetonitrile (3 x 1 mL).
- To the resin-bound azide containing DNA was added DMF 15 (0.5 mL), water (0.5 mL), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (1 mg, 1.88 μ mol), CuSO₄ (1.5mg, 9.4 μ mol), and sodium ascorbate (10 mg, 51 μ mol) and 12 mg (20 μ mol) of alkyne-(Gd³⁺-DOTA) was added. The vial was placed in an eppendorf thermomixer, and shaken for 24 hours at 50°C. The
- ²⁰ microcentrifuge tube was cooled to room temperature and spun down in an eppendorf centrifuge MiniSpin. The resin was washed with DMF (3 x 1 mL)), then acetonitrile (3 x 1 mL).

Cleavage from the solid support and final deprotection was achieved with 30% NH₄OH solution (50°C, 12 h). HPLC ²⁵ purification was performed using a Prominence HPLC

- (Shimadzu, Japan) equipped with a Phenomenex Jupiter semipreparative RP-HPLC column (5 μ m, C18, 300Å) using A = 0.1 M triethylammonium acetate in H₂O, pH 7.0; B = 0.1 M triethylammonium acetate in CH₃CN/H₂O 4:1, pH 7.0, detection ³⁰ wavelength at 260 nm. The oligonucleotides were desalted using
- Sephadex-G10.

The modified oligonucleotides were confirmed by ESI-MS; ODN 1 5'-GCGAGTGACTGGTATGA**X**GATGCT-3' $C_{261}H_{328}GdN_{101}O_{151}P_{23}$ Exact Mass: 8162.4 found 8161.3 and ³⁵ ODN 2 5'-AGCATCATCATACCAG**X**CACTCGC-3' $C_{255}H_{326}GdN_{95}O_{147}P_{23}$ Exact Mass: 7940.4 found 7939.4.

Thermal denaturation studies

Thermal denaturation studies were recorded on a Varian Cary 100-Bio UV/VIS spectrophotometer (Varian Inc.), equipped with ⁴⁰ a Peltier element at 260 nm with a heating/cooling rate of 0.5° C/min. A heating cycle in the temperature range 20–90°C was applied. All measurements were carried out in a buffer consisting of 50 mM NaCl and 10 mM Tris (pH = 7.4) at 1.0 μ M strand concentration.

45 CD spectra

CD spectra were measured on a JASCO J-715 spectropolarimeter using quartz cuvettes with a path length of 1 cm. All measurements were carried out in a buffer consisting of All measurements were carried out in a buffer consisting of 50

 $_{50}$ mM NaCl and 10 mM Tris (pH = 7.4) at 1.0 μM strand concentration.

Microinjection of DNA samples

Sample preparation of intracellular EPR samples were done as described by Qi *et al.*⁹ Briefly, the *Xenopus laevis* oocytes on ⁵⁵ stage V/VI (purchased from EcoCyte Bioscience, Castrop-Rauxel, Germany) were kept in MBS at 18°C. Three oocytes

were prepared on a poly (tetrafluoroethylene) holder and microinjected with 50 nL of a 3.7 mM solution of the Gd(III)labelled duplex DNA sample solution and washed with MBS ⁶⁰ buffer. The oocytes were collected in a Q-band tube (quartz glass, 1 mm inner diameter, Bruker Biospin) via slightly applied negative pressure and were visually inspected directly afterwards and after 15 min of incubation time using a Stemi 2000-C binocular microscope mounted with an AxiaCam ERc 5s camera ⁶⁵ (ZEISS). After removal of supernatant MBS buffer the oocytes were shock-frozen in liquid nitrogen and stored at -80°C until

Investigating cytotoxic effects of injected samples

measuring them without de-freezing them.

Gd(III) is highly toxic. The toxicity can significantly be reduced by complexation.¹⁻⁴ Consequently, Gd(III) chelates are routinely used as MRI contrast agents in medicine.

However, even for injection of 50 nL 8 mM uncomplexed GdCl₃ ⁷⁵ per *Xenopus laevis* oocyte, we observe morphological stability

for several hours, see Figure S1. In contrast, upon microinjection 50 nL 3.7 mM Gd(III)-DOTA labelled duplex DNA we found an increased cytotoxic effect, resulting in apoptosis after 1.5 h. This suggests that the duplex

⁸⁰ DNA contributes to the toxic effect.

Figure S1: Micrographs of *Xenopus laevis* oocytes after microinjection of 50 nL 8 mM GdCl₃ (left) and untreated oocytes (right) after the indicated incubation times at 18°C. Signs for apoptosis tagged by green circles and ⁸⁵ progressed apoptosis tagged by red circles. Scale bar = 1 mm.

EPR measurements

Q-band EPR experiments were performed at 34 GHz microwave frequency using an ELEXSYS E500 spectrometer 90 equipped with an EN 5107D2 Q-Band EPR probehead (both Bruker Biospin) and a 10 W microwave power solid state amplifier (HBH Microwave). A CF935 helium gas flow system (Oxford Instruments) was used for temperature control.

Two pulse echo detected field sweeps were obtained at T = 10 $_{95}$ K using a Hahn-echo sequence with $\tau = 400$ ns, $\pi/2$ pulse = 8 ns,

 π pulse = 16 ns and a sweep width of 4000 G with B_0 = ~12200 G.

The four-pulse, dead-time free DEER was obtained using the following pulse sequence:

5

 $(\pi/2)_{obs}\cdots\tau_1\cdots(\pi)_{obs}\cdots\cdots\cdots(\pi)_{pump}\cdots(\tau_1+\tau_2-t)\cdots(\pi)_{obs}\cdots\tau_2\cdots echo.$

The pump pulse (length 16 ns for *in vitro*, resp. 18 ns for *in* ¹⁰ *cellulo* experiments) was set to the maximum of the Gd(III) spectrum and the observer pulses (lengths 14/14/28 ns) were shifted $\Delta v = 125$ MHz to lower frequencies. The time separation τ_1 was 400. Shot repetition time was set to 2 µs.

¹⁵ The transverse relaxation time T_2 was determined by incremental elongation of the time separation τ_1 between $\pi/2$ pulse and π pulse shown in Figure S2 *in vitro* and *in cellula*.

- ²⁰ Fig. S2 T₂ relaxation time experiment of doubly Gd(III)-DOTA labelled duplex DNA at 10 K in deuterated Tris-HCl buffer (pH = 7.4, DNA concentration = 100 μ M) (black) and inside *Xenopus laevis* oocytes after microinjection of 50 nL 3.7 mM labelled duplex DNA in Tris-HCl buffer (pH = 7.4) (15 min incubation
- $_{25}$ time, absolute spin concentration = 180 μ M) (orange); initial pulse separation time = 400 ns, mw-frequency = 34 GHz, pulse lengths: 14/28 ns. The observed ESEEM in the *in vitro* experiment (black) is due to Gd(III) interaction with the deuterated solvent.

30

References of Supporting Information:

1. D. H. Carr, J. Brown, G. M. Bydder, R. E. Steiner, H. J. Weinmann, U. Speck, A. S. Hall and I. R. Young, *Am. J.* 35 *Roentgenol.*, 1984, **143**, 215-224.

2. H. J. Weinmann, R. C. Brasch, W. R. Press and G. E. Wesbey, *Am. J. Roentgenol.*, 1984, **142**, 619-624.

3. J. C. Bousquet, S. Saini, D. D. Stark, P. F. Hahn, M. Nigam, J. Wittenberg and J. T. Ferrucci, *Radiology*, 1988, **166**, 693-698.

⁴⁰ 4. W. P. Cacheris, S. C. Quay and S. M. Rocklage, *M. R. I.*, 1990, **8**, 467-481.